
Solution of Large Scale Partially Separable
Unconstrained Optimization Problems
Using Element-by-Element Preconditioners

M. J. Daydéi, J. P. Décampsi, J.-Y. L’Excellenti, N. I. M. Gouldii

1 INTRODUCTION

We study the numerical solution of large scale unconstrained
optimization problems. We consider the minimization of a partially sep-
arable objective function f(x). The function f is said to be partially

separable (see [1]) if

f(x) =
p
∑

i=1

fi(x), (1)

where each element function fi has a large invariant subspace. Typically,
this occurs when fi(x) is only a function of a small subset of the variables
x, but may, of course, happen for other reasons (see, for example, [2]).
The decomposition (1) is extremely general. Indeed, any sufficiently
differentiable function with a sparse Hessian matrix may be expressed in
this form [1]. In this paper, we shall be concerned with those partially
separable functions for which

f(x) =
p
∑

i=1

fi(x
i), (2)

where each set of local variables, xi ∈ ℜn
i , is a subset of the global vari-

ables, x ∈ ℜn, and ni ≪ n. In unconstrained optimization, one of the
key computation is to obtain an (approximate) solution, d, to the Newton
equations

∇xxf(x)d = −∇xf(x). (3)

iENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse CEDEX, France
iiRutherford Appleton Laboratory, Oxfordshire, OX11 0QX, England

If f has the form (2), these equations become

(p
∑

i=1

∇xxfi(x
i)

)

d = −
p
∑

i=1

∇xfi(x
i). (4)

where the element Hessians, ∇xxfi(x
i) are extremely sparse matrices.

Note that similar linear systems arise when solving constrained optimiza-
tion problems using penalty functions or augmented Lagrangian meth-
ods (see, for example, [2], [3] and [4]). It has been demonstrated [5] that
Element-by-Element preconditioners are extremely effective for the solu-
tion of such systems of linear equations, particularly if a preprocessing
step in which element Hessians are amalgamed is performed. This has
the effect of decreasing overlap between elements, and of improving vec-
torization and parallelization. PAREBE [6] is a software package which
provides a set of routines to solve unassembled symmetric positive linear
systems by exploiting the structure — arising from partial separability
in our case — of a matrix. The package uses the conjugate gradient
algorithm [7] with several preconditioning techniques. It also includes
a preprocessing technique, known as element merging or amalgamation,
to improve the unassembled structure of the matrix, and colouring al-
gorithms for the parallelization of the matrix-vector products and the
preconditioning step. The unconstrained optimization algorithm we de-
scribe in this paper is based on the truncated Newton method (see, for
instance, [8] and [9]) and makes use of PAREBE to determine the search
direction. We report on experiments on a range of test problems from the
CUTE collection (see [10]) expressed in SIF format. Results are provided
on two computers, the Alliant FX/80, a parallel vector machine, and the
HP 715/64 a RISC workstation.

In Section 2, we describe the truncated Newton algorithm used,
then in Sections 3 and 4 we describe briefly the preconditioners used and
our preprocessing procedure. In Section 5, we compare the efficiency of
the preconditioners considered on a range of test problems.

2 THE TRUNCATED NEWTON ALGORITHM

The algorithm can be described as follows:

0. Select x0, k = 0, f(x0)
1. Compute g(xk) = ∇xf(xk). If ‖g(xk)‖2 < ǫ, stop
2. Compute H(xk) = ∇xxf(xk)

Find a search direction pk such that ‖H(xk) pk + gk‖2 ≤ ηk

where ηk = min(0.1, ‖g(xk)‖1/22) ‖g(xk)‖2,
by solving the system H(xk) pk = −g(xk)

using Preconditioned Conjugate Gradient as supplied in PAREBE

If H(xk) is found not to be positive definite then
use a modification of the conjugate gradient (see [11])

3. xk+1 = xk + αk pk

where αk is the largest scalar of the form 2−l, l = 0, 1, 2, ...
such that f(xk + 2−l pk) ≤ f(xk) + βk 2

−l pT
k g(xk)

and βk = 10−4

4. k ← k + 1, goto 1

An interface between this algorithm and the CUTE test set has been
written. Constrained problems have been included by minimizing the
artificial penalty function f̂(x) = f(x) + ρ ‖c(x)‖2 where f is the cost
function, c the vector of constraints and ρ the penalty parameter set to 1.

3 PRECONDITIONERS USED

For a more detailed description of the preconditioners men-
tioned here see [5]. We use the following preconditioners in our tests:
no preconditioning (NONE), the diagonal preconditioner (DIAG), the
EBE Element-by-Element preconditioner (EBE) and the Gauss-Seidel
Element-by-Element preconditioner (GSEBE).

More precisely, we consider the solution of the system Ax = b,
where A =

∑ne

i=1Ai. Let ∆(M) be the diagonal of M , W = ∆(A),
W i = ∆(Ai).
The EBE preconditioner is

PEBE =
√
W

ne
∏

i=1

Li

ne
∏

i=1

Di

1
∏

i=ne

LT
i

√
W , (5)

where Li and Di are the LDLT factors of the Winget decomposition of

Ai = I +
√
W

−1
(Ai −W i)

√
W

−1
= LiDiL

T
i .

The GSEBE preconditioner is

PGSEBE =
√
W

ne
∏

i=1

(I +Li)
1
∏

i=ne

(I +LT
i)
√
W , (6)

where
√
W

−1
(Ai −W i)

√
W

−1
= Li +LT

i .

4 PREPROCESSING

Let f(x) be of the form (2). Clearly, this decomposition may
not be unique, and different decompositions may significantly affect the
performance of the preconditioners considered in this paper since their
efficiency depends on the partitioning of the initial matrix and on the

magnitude of the off-diagonal elements of the elementary matrices. It
has been observed [5] that, in some of the experiments, the performance
of the conjugate gradient method, both for vectorization and paralleliza-
tion, is limited because of a non-optimal choice of the decomposition.
Frequently, the construction of an initial decomposition of f into ele-
ments by a user depends more on considerations on the easiness of ex-
pressing the function and its derivatives, rather than considerations of
computational performance. It is our experience with many of the test
examples in the CUTE package, for example, that the overlap between
elements is high (and even that some elements are entirely subsumed by
other elements). It pays to merge the two elements into a single super-
element or group if the local variable set for one element is completely
contained within another. More generally, if the local variable sets for two
elements significantly overlap it is advantageous to merge the elements
into a single group. Therefore, we regard it to be crucial for performance
to determine an heuristic to partition the original set of elements into
computationally attractive disjoint groups.

It is clear that determining an optimal partitioning of the ele-
ments into groups may be costly, or even impossible. The main difficulty
is to define a suitable heuristic to control this amalgamation process.
Several parameters are used to control this merging process in PAREBE.
This problem has been considered [12] from the point of view of improv-
ing the matrix-vector product at the heart of many iterative methods for
minimizing partially separable functions. Two elements are amalgamated
if it leads to a decrease in the number of floating point operations in the
matrix-vector product. In PAREBE, the same idea is applied for decreas-
ing the cost of a preconditioned conjugate gradient iteration (time spent
in triangular solves and in matrix-vector products). Several strategies
for amalgamating elements are available in PAREBE. We only describe
here the one we have used in our experiments. Let Gi denote an element,
Vi denote the set of indices of variables used by the element Gi, and |Vi|
denote the cardinal of Vi. Finally, let tim(i) be the estimated time spent
in a matrix-vector product of order i for the preconditioners NONE and
DIAG (strategy amalg1) and in a matrix-vector product and in two tri-
angular solves of order i for the other preconditioners (strategy amalg2).
The amalgamation process we have used computes the benefit,

b(Gi,Gj) =
tim(|Vi|) + tim(|Vj |)− tim(|Vi ∪ Vj |)

tim(|Vi|) + tim(|Vj |)
, (7)

for all pairs of elements, and amalgamates the pair with the largest ben-
efit as long as it is larger than a threshold value (equal to zero in our
experiments). Note that tim(i) only depends on i and can be computed
once and for all on the target computer, and subsequently retrieved as

needed.

5 NUMERICAL RESULTS

We report on experiments on a set of unconstrained and con-
strained optimization problems (denoted as U and C) from the CUTE col-
lection. In order to isolate the effect of the preconditioners, we have only
selected convex problems so as to avoid issues relating to the modification
of the conjugate gradient method when the Hessian is not positive defi-
nite. In Table 1 we report some statistics on each of our test problems :
the name of the problem, whether it is constrained (c) or unconstrained
(u), the number of variables (#v.), number of elements (#elts), mini-
mum size of elements (Min.), maximum size of elements (Max.), average
size of elements (Avrge) with the following merging strategies (#A.) :
0. no merging (amalg0); 1. amalg1; 2. amalg2, the degree of overlap,
defined as Ov. = #elts Avrge

#v.
(that is the average number of elements con-

taining each variable) and κ the condition number of the Hessian at the
solution.

We show in Tables 2 and 3 the number of Newton iterations
(#it.op), the total execution time (t.op), the total number of iterations
in the linear system solution (#it.sl) and the time spent in the solution of
the linear systems (t.sl) both with and without amalgamation. The total
execution time does not include the time for performing the symbolic
part of the amalgamation process which is reported in the last column
of the tables (t.amal).

The amalgamation time can become prohibitive on some prob-
lems. On problem BDQRTIC , it is large because one variable is included in
all the groups. This occurs in some academic problems from the CUTE

collection, but is less common on real problems. The problem POWER

(see Table 2) also has a particular structure. One group contains all the
variables, thus the numerical amalgamation assembles the whole matrix
and EBE behaves as a direct method. As a consequence, the execution
time becomes prohibitive because the methods we use are not optimal
for dense problems, where blocked factorizations would be much more ef-
ficient. With these exceptions, our amalgamation procedure is efficient.
Indeed, amalgamation reduces the optimization time and the linear solu-
tion time in nearly all the cases, even when the numerical amalgamation
time is included. If we also include the time of symbolic amalgamation,
we still have benefits on difficult problems (see for instance DIXON3DQ,
FLETCHBV2, GENHS28). On parallel computers, the amalgamation proce-
dure can be parallelized. We have also experimented using graph parti-
tioning techniques (see [13]) that give similar results with a preprocessing

Problems C/U #v. #A. #elts Min. Max. Avrge Ov. κ

BDQRTIC U 1000 0 1992 1 5 3.0 6.0 5× 103

1 249 8 8 8.0 2.0
2 125 8 12 12.0 1.5

CRAGGLVY U 1000 0 2495 1 2 1.6 4.0 1× 102

1 167 4 7 7.0 1.2
2 125 8 9 9.0 1.1

DIXON3DQ U 1000 0 1000 1 2 2.0 2.0 6× 104

1 500 1 3 3.0 1.5
2 300 1 7 5.0 1.5

DIXON3DQ U 2000 0 2000 1 2 2.0 2.0 2× 104

1 1000 1 3 3.0 1.5
2 500 1 7 5.0 1.3

DIXON3DQ U 3000 0 3000 1 2 2.0 2.0 1× 104

1 1500 1 3 3.0 1.5
2 750 1 7 5.0 1.3

ENGVAL1 U 1000 0 999 2 2 2.0 2.0 9× 100

1 499 3 4 3.0 1.5
2 249 5 8 5.0 1.3

FLETCBV2 U 1000 0 2001 1 2 1.5 3.0 2× 104

1 167 4 7 7.0 1.2
2 125 8 9 9.0 1.1

FMINSURF U 1024 0 962 4 1024 5.0 4.8 8× 104

1 1 1024 1024 1024 1.0
2 1 1024 1024 1024 1.0

MOREBV U 1000 0 1000 2 3 3.0 3.0 2× 104

1 249 6 8 6.0 1.5
2 125 8 10 10.0 1.3

POWELLSG U 1000 0 1000 2 2 2.0 2.0 1× 104

1 250 4 4 4.0 1.0
2 250 4 4 4.0 1.0

POWER U 1000 0 1 1000 1000 1000 1.0 5× 102

1 1 1000 1000 1000 1.0
2 1 1000 1000 1000 1.0

SCHMVETT U 1000 0 998 3 3 3.0 3.0 5× 101

1 249 6 8 6.0 1.5
2 125 8 10 10.0 1.3

TRIDIA U 1000 0 1000 1 2 2.0 2.0 9× 103

1 499 3 4 3.0 1.5
2 249 5 8 5.0 1.3

GENHS28 C 1000 0 999 3 1000 4.0 4.0 1× 102

1 1 1000 1000 1000 1.0
2 1 1000 1000 1000 1.0

GRIDNETA C 924 0 485 2 924 5.7 3.0 8× 102

1 1 924 924 924 1.0
2 1 924 924 924 1.0

GRIDNETD C 924 0 485 2 924 5.7 3.0 6× 102

1 1 924 924 924 1.0
2 1 924 924 924 1.0

HAGER1 C 2001 0 2001 1 3 2.0 2.0 3× 104

1 334 3 7 7.0 1.2
2 251 5 9 9.0 1.1

Table 1: Statistics on the range of CUTE problems solved before and
after preprocessing (on a HP 715/64 workstation).

Amalg No/Yes No/Yes No/Yes No/Yes Yes
Problem Prec. #it.op t.op #it.sl t.sl t.am
BDQRTIC NONE 14/14 2.3/1.9 79/79 0.9/0.5 2.9
1000 DIAG 9/9 1.1/1.2 17/ 17 0.2/ 0.3 2.9

EBE 10/10 2.1/1.6 12/11 1.1/0.6 145.5
GSEBE 10/10 1.8/1.5 13/13 0.8/0.5 138.2

CRAGGLVY NONE 15/15 2.7/2.0 115/115 1.1/0.5 1.1
1000 DIAG 18/18 2.7/2.3 82/82 0.9/0.4 1.1

EBE 14/14 3.1/2.1 29/30 1.7/0.7 1.1
GSEBE 14/14 3.0/2.0 31/35 1.5/0.6 1.1

DIXON3DQ NONE 4/4 8.9/5.0 1748/1748 8.8/4.9 0.3
1000 DIAG 5/5 9.7/5.5 1881/1881 9.6/5.3 0.2

EBE 5/5 16.2/3.6 673/440 16.1/3.5 0.2
GSEBE 5/5 16.5/5.5 696/704 16.4/5.4 0.3

DIXON3DQ NONE 4/4 27.6/16.0 2748/2748 27.4/15.7 1.0
2000 DIAG 5/5 29.7/17.1 2846/2846 29.4/16.9 1.0

EBE 5/5 67.0/11.1 1030/628 66.7/10.9 1.0
GSEBE 5/5 67.4/27.8 1070/1107 67.1/27.5 1.0

DIXON3DQ NONE 5/5 59.5/36.3 3754/3754 59.1/35.9 2.1
3000 DIAG 5/5 63.8/40.3 3878/3878 63.3/39.9 2.1

EBE 5/5 122.1/23.3 1350/833 121.6/22.8 2.1
GSEBE 5/5 122.6/54.1 1389/1444 122.1/53.7 2.1

ENGVAL1 NONE 10/10 0.7/0.7 29/29 0.1/0.2 0.2
1000 DIAG 10/10 0.7/0.7 20/20 0.1/0.1 0.2

EBE 8/8 0.8/0.8 9/9 0.3/0.3 0.2
GSEBE 8/8 0.7/0.7 9/9 0.2/0.3 0.2

FLETCBV2 NONE 1/1 6.9/2.7 969/969 6.7/2.6 0.7
1000 DIAG 1/1 6.9/2.8 969/969 6.8/2.7 0.7

EBE 1/1 10.8/1.7 324/200 10.7/1.6 0.7
GSEBE 1/1 10.8/2.7 326/347 10.7/2.5 0.7

FMINSURF NONE 32/39 1285/1250 10094/10094 1257/1218 0.1
1024 DIAG 46/34 298.4/255.7 2079/1720 259.8/225.8 0.1

EBE 36/31 1637/1724 787/34 1607/1697 0.1
GSEBE 49/37 373.0/249.3 969/611 330.6/216.2 0.1

MOREBV NONE 2/2 3.3/1.8 549/549 3.2/1.7 0.3
1000 DIAG 2/2 3.7/2.0 594/594 3.6/1.9 0.3

EBE 2/2 4.4/1.6 186/164 4.3/1.5 0.3
GSEBE 2/2 5.1/2.0 217/221 5.0/1.9 0.3

POWELLSG NONE 18/18 0.8/0.8 67/67 0.3/0.3 0.2
1000 DIAG 17/17 0.8/0.7 61/61 0.3/0.3 0.2

EBE 17/17 1.7/1.0 44/17 1.3/0.5 0.2
GSEBE 17/17 1.5/1.0 44/43 1.0/0.6 0.3

POWER NONE 31/31 68.3/82.8 423/423 47.2/60.7 0.0
1000 DIAG 30/30 23.9/37.1 30/30 3.4/16.5 0.0

EBE 30/30 1082/1096 30/30 1062/1075 0.0
GSEBE 30/30 46.0/59.9 62/62 25.3/38.7 0.0

SCHMVETT NONE 6/6 1.3/1.3 47/47 0.3/0.2 0.3
1000 DIAG 6/6 1.3/1.2 38/38 0.2/0.2 0.3

EBE 6/5 1.5/1.2 15/12 0.5/0.3 0.3
GSEBE 5/5 1.1/1.2 11/14 0.3/0.3 0.3

Table 2: Results on a HP 715/64 workstation.

Amalg No/Yes No/Yes No/Yes No/Yes Yes
Problem Prec. #it.op t.op #it.sl t.sl t.am
TRIDIA NONE 9/9 3.3/2.0 576/576 3.1/1.7 0.3
1000 DIAG 8/8 0.4/0.4 46/46 0.2/0.2 0.2

EBE 7/5 0.7/0.4 18/11 0.5/0.3 0.3
GSEBE 7/7 0.6/0.5 18/18 0.4/0.3 0.3

GENHS28 NONE 7/7 9.8/13.5 75/75 8.7/12.4 0.1
1000 DIAG 6/6 6.4/9.6 46/46 5.4/8.6 0.1

EBE 6/1 9.9/1.8 19/1 8.9/1.6 0.1
GSEBE 6/6 8.1/11.2 18/18 7.1/10.2 0.1

GRIDNETA NONE 6/6 20.9/23.7 207/207 20.2/23.0 0.0
924 DIAG 6/6 19.6/22.4 194/194 18.9/21.7 0.0

EBE 6/1 40.1/4.3 153/1 39.4/4.1 0.0
GSEBE 6/6 89.0/28.5 354/99 88.3/27.8 0.0

GRIDNETD NONE 6/6 18.5/21.3 181/181 17.6/20.5 0.0
924 DIAG 6/6 17.7/20.6 173/173 16.9/19.8 0.0

EBE 6/3 33.4/12.4 117/3 32.5/11.9 0.0
GSEBE 6/6 68.1/24.7 269/82 67.2/23.9 0.0

HAGER1 NONE 11/11 60.5/35.7 5843/5851 59.8/35.1 0.7
2001 DIAG 10/10 125.3/73.5 11927/11876 124.7/72.9 0.6

EBE 12/1 635.4/0.2 15132/1 634.6/0.2 0.7
GSEBE 10/1 243.5/0.2 6055/1 243.0/0.1 0.7

Table 3: Results on a HP 715/64 workstation.

cost even more attractive (often divided by a factor of 10). We also no-
tice that the number of Newton iterations in the optimization process
does not differ a lot from preconditioner to preconditioner. This is to
be expected since the inner and outer iteration convergence tolerances
are the same for all the cases. Only the total number of iterations in
the linear system solution is significantly influenced by the choice of the
preconditioner. The cost of one iteration of EBE has been observed to
be roughly 3 times the cost of an iteration of DIAG. Thus, EBE becomes
competitive when the number of iteration is reduced by at least 3 in
comparison with DIAG. This typically happens for ill-conditioned prob-
lems when using amalgamation. A large number of problems from the
CUTE collection (including our problems: BDQRTIC, ENGVAL1, POWELLSG,
POWER, SCHMVETT) give rise to well-conditioned linear systems. Indeed,
in these cases, preconditioning does not help in reducing the number of
iterations and, in general, the number of iterations of the linear solver per
truncated Newton iteration is very low. However, as the size of the prob-
lem increases, the effectiveness of more sophisticated preconditioners is
more noticeable. Additionally, these preconditioners can lead to a more
accurate solution. For instance, on DIXON3DQ, which is numerically one
of the harder problems to solve, there is no convergence without precon-
ditioning nor with diagonal preconditioner when n = 3000 and with the
convergence criterion ‖g(xk)‖ <

√
ǫm, where ǫm is the machine precision,

but fortunately convergence is achieved using EBE and GSEBE. GSEBE
appears to be the most efficient preconditioner on problems CRAGGLVY,
FMINSURF, SCHMVETT and HAGER1. This is because the construction of
the preconditioner is very cheap, it only requires a scaling of the ele-
ments. On these problems, the construction time is large for EBE while
the convergence is slow with no or diagonal preconditioning. EBE is the
best preconditioner on problems such as DIXON3DQ, FLETCBV2, MOREBV,
TRIDIA using amalgamation. The gain is impressive —close to 10— in
some cases.

We compare in Table 4 the serial versus the parallel execution
on 8 processors of the Alliant FX/80. The three first column are similar
to the previous tables. Additionally, we report in column one the num-
ber of colours obtained with the three amalgamation strategies. These
colours correspond to groups of elements that do not share any vari-
able. Thus, we can parallelize the computations over elements within
each colour (see [14]). Column #it.op gives the number of optimization
iterations for both serial and parallel execution, #it.cg the number of cg
iterations and t.op the total execution time without the time for symbolic
amalgamation. The last column shows the speed-up achieved (sequen-
tial t.op divided by parallel t.op). The experiments demonstrate that
amalgamation increases substantially the performance of the code when
the element size is large enough to take advantage of vectorization. The
speedup achieved is good as soon as the problem structure is adequate
(see problems DIXON3DQ and MOREBV for example).

6 CONCLUSION

We have demonstrated in this study that the use of Element-by-
Element preconditioners for solving large scale unconstrained optimiza-
tion problems is efficient when the linear systems arising from the Newton
equation are difficult to solve. The structure of the problems arising from
partial separability is also fundamental because the degree of overlap has
an impact on the conjugate gradient convergence when using precondi-
tioners such as EBE, and because the sizes of the elementary Hessians
influence the performance, especially on vector processors, where large
elements are required for efficient vectorization. Our experiments sug-
gest that — except when the structure of the problem is not suitable (for
exemple when an element includes all variables) — Element-by-Element
preconditioners are competitive with diagonal preconditioning on easy
problems, and can provide large gains on hard problems. The use of
our preprocessing technique — element amalgamation — improves the
structure of the problems (because elements are often small with a large
degree of overlap) and the convergence of Element-by-Element precon-

#it.op #it.cg t.op Speedup
Problem Prec Amalg seq/par seq/par seq/par 8 procs
DIXON3DQ NONE No 4/4 1748/1748 117.8/ 22.6 5.2

1000 Yes 4/4 1748/1748 44.8/ 10.8 4.2
DIAG No 5/5 1945/1945 131.7/ 25.4 5.2

#colours Yes 5/5 1881/1881 48.9/ 11.9 4.1
3 EBE No 5/5 673/ 826 152.1/ 37.0 4.1
3 Yes 5/5 209/ 219 17.1/ 6.0 2.9
3 GSEBE No 5/5 686/ 871 153.5/ 35.7 4.3

Yes 5/5 724/ 694 46.4/ 11.4 4.1

ENGVAL1 NONE No 10/10 29/29 10.9/ 9.9 1.1
1000 Yes 10/10 29/29 11.6/ 10.3 1.1

DIAG No 10/10 20/20 10.5/ 10.1 1.0
#colours Yes 10/10 20/20 11.4/ 10.3 1.1

3 EBE No 8/8 9/9 11.1/ 8.8 1.3
3 Yes 8/8 9/9 11.5/ 9.2 1.2
3 GSEBE No 8/8 9/9 10.0/ 8.4 1.2

Yes 8/8 9/9 10.4/ 8.9 1.2

MOREBV NONE No 2/2 549/549 44.1/ 9.3 4.7
1000 Yes 2/2 549/549 16.3/ 5.1 3.2

DIAG No 2/2 594/594 47.7/ 9.9 4.8
#colours Yes 2/2 594/594 17.5/ 5.2 3.3

5 EBE No 2/2 186/228 49.9/ 12.0 4.2
3 Yes 2/2 31/29 5.4/ 3.1 1.7
3 GSEBE No 2/2 217/256 57.1/ 13.1 4.4

Yes 2/2 177/177 14.1/ 4.8 2.9

POWELLSG NONE No 18/18 67/67 12.2/ 9.1 1.3
1000 Yes 18/18 67/67 12.3/ 10.6 1.2

DIAG No 17/17 61/61 11.7/ 9.0 1.3
#colours Yes 17/17 61/61 11.7/ 10.2 1.2

2 EBE No 17/17 44/44 21.1/ 11.0 1.9
1 Yes 17/17 17/17 14.1/ 11.1 1.3
1 GSEBE No 17/17 44/68 18.6/ 11.0 1.7

Yes 17/17 43/43 14.6/ 10.9 1.3

SCHMVETT NONE No 6/6 47/47 13.9/ 11.5 1.2
1000 Yes 6/6 47/47 13.4/ 11.6 1.2

DIAG No 6/6 38/38 13.3/ 11.5 1.2
#colours Yes 6/6 38/38 13.1/ 11.5 1.1

5 EBE No 6/6 15/17 16.3/ 12.3 1.4
3 Yes 5/5 11/12 12.4/ 10.4 1.2
3 GSEBE No 5/6 11/17 11.2/ 11.8 1.1

Yes 5/5 12/13 11.7/ 10.2 1.2

TRIDIA NONE No 9/9 576/576 42.1/ 11.1 3.8
1000 Yes 9/9 576/576 19.5/ 7.5 2.6

DIAG No 8/8 46/46 6.7/ 4.6 1.5
#colours Yes 8/8 46/46 6.3/ 4.6 1.4

3 EBE No 7/8 18/26 8.7/ 5.5 1.6
3 Yes 6/6 12/13 6.3/ 4.3 1.5
3 GSEBE No 7/7 18/21 7.7/ 4.5 1.7

Yes 7/7 17/17 6.5/ 4.5 1.4

Table 4: Number of iterations, execution time, and performance of the
optimization algorithm on CUTE problems (on an ALLIANT FX/80).
Under the name of Problem, appears successively the number of vari-
ables, the number of colours before amalgamation, and the number of
colours with amalg0 to amalg2.

ditioners as well as their uniprocessor execution rate by increasing the
size of elements. At present, the cost of the symbolic part of this proce-
dure is excessive in some cases and we are currently working to improve
this. The range of preconditioners and the preprocessing technique used
in that paper are implemented in the PAREBE package [6]. Both this
package and the truncated Newton optimization technique described in
this paper will shortly be available by anonymous ftp.

References

[1] A. GRIEWANK and Ph. L. TOINT. On the unconstrained opti-
mization of partially separable functions. In M. J. D. Powell, editor,
Nonlinear Optimization 1981, pages 301–312. Academic Press, Lon-
don and New York, 1982.

[2] A. R. CONN, N. I. M. GOULD, and Ph. L. TOINT. An intro-
duction to the structure of large scale nonlinear optimization prob-
lems and the lancelot project. In R. Glowinski and A. Lichnewsky,
editors, Computing Methods in Applied Sciences and Engineering,
pages 42–54. SIAM, Philadelphia, USA, 1990.

[3] M. R. HESTENES. Multiplier and gradient methods. J. Optim.
Theory Appl., 4:303–320, 1969.

[4] M. J. D. POWELL. A method for nonlinear constraints in minimiza-
tion problems. In R. Fletcher, editor, Optimization, pages 283–298.
Academic Press, London and New York, 1969.

[5] M. J. DAYDÉ, J.-Y. L’EXCELLENT, and N. I. M. GOULD.
On the use of element-by-element preconditioners to solve large
scale partially separable optimization problems. Technical Report
RT/APO/94/4, ENSEEIHT-IRIT, Toulouse, France, 1994. to ap-
pear in the SIAM J. Sci. Comput.

[6] M. J. DAYDÉ, J.-Y. L’EXCELLENT, and N. I. M. GOULD.
PAREBE : Parallel element-by-element preconditioners for the con-
jugate gradient algorithm. Technical report, ENSEEIHT-IRIT,
Toulouse, France, 1996. to appear.

[7] M. R. HESTENES and E. L. STIEFEL. Methods of conjugate gra-
dients for solving linear systems. Natl. Bur. Stand. J. Res., 49:409–
436, 1952.

[8] R. S. DEMBO and T. STEIHAUG. Truncated-newton algorithms
for large-scale unconstrained optimization. Mathematical Program-
ming, 26:190–212, 1983.

[9] A. R. CONN, N. I. M. GOULD, A. SARTENAER, and
Ph. L. TOINT. On iterated-subspace minimization meth-
ods for nonlinear optimization. Technical Report RAL-94-069,
Rutherford Appleton Laboratory, Chilton, England, 1994.

[10] I. BONGARTZ, A. R. CONN, N. I. M. GOULD, and Ph. L. TOINT.
CUTE: Constrained and Unconstrained Testing Environment. Tech-
nical Report TR/PA/93/10, CERFACS, Toulouse, France, 1993.

[11] M. ARIOLI, T. F. CHAN, I. S. DUFF, N. I. M. GOULD, and
J. K. REID. Computing a search direction for large-scale linearly-
constrained nonlinear optimization calculations. Technical Report
TR/PA/93/34, CERFACS, Toulouse, France, 1993.

[12] A. R. CONN, N. I. M. GOULD, and Ph. L. TOINT. Im-
proving the decomposition of partially separable functions in
the context of large-scale optimization: a first approach. In
D. W. Hearn W. W. Hager and P.M. Pardalos, editors,
Large Scale Optimization: State of the Art. Kluwer Academic Pub-
lishers B.V, 1994.

[13] M. J. DAYDÉ, J.-Y. L’EXCELLENT, and N. I. M. GOULD.
On the preprocessing of sparse unassembled linear systems for
efficient solution using element-by-element preconditioners. In
A. Mignotte L. Bougé, P. Fraigniaud and Y. Robert, editors,
Proceedings of Euro-Par 96, Lyon, pages 34–43. Springer Verlag,
1996. Vol. 1124 of Lecture Notes in Computer Science.

[14] M. J. DAYDÉ, J.-Y. L’EXCELLENT, and N. I. M. GOULD. So-
lution of structured systems of linear equations using element-
by-element preconditioners. In Proceedings 2nd IMACS Interna
tional Symposium on Iterative Methods in Linear Algebra, pages
181–190, Toulouse, France, 1995.

