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Secure Degrees of Freedom of MIMO

X-Channels with Output Feedback and

Delayed CSI
Abdellatif Zaidi Zohaib Hassan Awan Shlomo Shamai (Shitz) Luc Vandendorpe

Abstract

We investigate the problem of secure transmission over a two-user multi-input multi-output (MIMO)

X-channel with noiseless local feedback and delayed channel state information (CSI) available at trans-

mitters. The transmitters are equipped withM antennas each, and the receivers are equipped withN

antennas each. For this model, we characterize the optimal sum secure degrees of freedom (SDoF) region.

We show that, in presence of local feedback and delayed CSI, the sum SDoF region of the MIMO X-

channel issameas the SDoF region of a two-user MIMO BC with2M antennas at the transmitter and

N antennas at each receiver. This result shows that, upon availability of feedback and delayed CSI, there

is no performance loss in sum SDoF due to the distributed nature of the transmitters. Next, we show

that this result also holds if onlyglobal feedback is conveyed to the transmitters. We also study the case

in which only local feedback is provided to the transmitters, i.e., without CSI, and derive a lower bound

on the sum SDoF for this model. Furthermore, we specialize our results to the case in which there are

no security constraints. In particular, similar to the setting with security constraints, we show that the

optimal sum degrees of freedom (sum DoF) region of the(M,M,N,N)-MIMO X-channel is same of
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the DoF region of a two-user MIMO BC with2M antennas at the transmitter andN antennas at each

receiver. We illustrate our results with some numerical examples.

I. INTRODUCTION

In modern era, there is a growing requirement for high data rates in wireless networks, in which multiple

users communicate with each other over a shared medium. The information transmission by multiple users

on a common channel raises an important issue of interference in networks. In existing literature on multi-

user channels, such as [1], several interference alignmenttechniques have been proposed. Most of these

techniques rely on the availability of perfect channel state information (CSI) at the transmitting nodes.

However, because the wireless medium is characterized by its inherent randomness, such an assumption

is rather idealistic and is difficult to obtain. In [2], Maddah-Ali and Tse study a multi-input single-output

(MISO) broadcast channel with delayed CSI available at the transmitter, from a degrees of freedom

(DoF) perspective. They show that delayed (or stale) CSI is useful, in the sense that it increases the DoF

region in comparison to the same MISO setting without any CSIat the transmitter. The delayed CSI

model of [2] has been extended to study a variety of models. These include the two-user MIMO BC

[3], the three-user MIMO BC [3], [4], the two-user MIMO interference channel [5], [6], and theK-user

single-input single-output (SISO) interference and X-channels [7].

In [8], Jafar and Shamai introduced a two-user X-channel model. The two-user X-channel consists

of two transmitters and two receivers, with each transmitter sending two independent messages to both

receivers. For this model, the authors establish bounds on the DoF region under the assumption of full CSI.

In [9], Maleki et. al. study a two-user single-input single-output (SISO) X-channel with local feedback

provided to the transmitters. They establish a lower bound on the allowed sum degrees of freedom (DoF).

For MIMO X-channels, the setting with no CSI at the transmitters is studied in [10]; the setting with

delayed CSI is studied [11]; and the setting with delayed CSIand noiseless output feedback is studied

in [12], all from a degrees of freedom viewpoint. In all theseworks, a symmetric network topology is

assumed, with each transmitter being equipped withM antennas and each receiver equipped withN

antennas. In [11], it is assumed that each receiver knows theCSI of its own channel and also the past

CSI of the channel to the other receiver. Also, the past CSI available at each receiver is provided to the

corresponding transmitter over a noiseless link. For this model, the authors establish a lower bound on

the total DoF. In [12], Tandonet. al.study a model which is similar to the one that is investigatedin [11],

but with additional noiseless local output feedback from the receivers to the transmitters. In particular,

they show that the total DoF of this two-user MIMO X-channel with output feedback and delayed CSI is
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the same as the sum DoF of a two-user broadcast channel with2M transmit antennas, andN antennas

at each receiver. For this model, the availability at each transmitter of output feedback together with

delayed CSI help it reconstruct the information transmitted by the other transmitter. The reader may refer

to [13]–[15] for some other related works.

In his seminal work [16], Wyner introduced a basic information-theoretic model to study security by

exploiting the physical layer attributes of the channel. The model consists of a sender which transmits

information to a legitimate receiver; and this informationis meant to be kept secret from an external

wiretapper that overhears the transmission. Wyner’s basicsetup has been extended to study the secrecy

capacity of various multiuser channels, such as the broadcast channel [17], [18], the multi-antennas

wiretap channel [19]–[22], the multiple access wiretap channel [23]–[27], the relay channel [28]–[30],

the interference channel [31], [32] and X networks [33] (thereader may also refer to [34] for a review of

many other related contributions). In [35], the authors study aK-user interference channel with security

constraints, from a secure degrees of freedom (SDoF) perspective. Similar to the setting with no security

constraints, the SDoF captures the way the spatial multiplexing gain, or secrecy capacity prelog or

degrees of freedom, scales asymptotically with the logarithm of the signal-to-noise ratio (SNR). In [36],

the authors study aK-user Gaussian multiaccess channel with an external eavesdropper, and derive a

lower bound on the allowed sum SDoF under the assumption of perfect instantaneous CSI available at

the transmitter and receivers. In [37], Yanget al. study secure transmission over a two-user MIMO BC

with delayed CSI available at the transmitter. They providean exact characterization of the SDoF region.

The coding scheme of [37] can be seen as an appropriate extension of Maddah Ali-Tse scheme [2] to

accommodate additional noise injection that accounts for security constraints.

In this paper, we consider a two-user MIMO X-channel in whicheach transmitter is equipped withM

antennas, and each receiver is equipped withN antennas. Each transmitter sends information messages

to both receivers. More precisely, Transmitter 1 wants to transmit messagesW11 andW12 to Receiver

1 and Receiver 2, respectively. Similarly, Transmitter 2 wants to transmit messagesW21 andW22 to

Receiver 1 and Receiver 2, respectively. The transmission is subject to fast fading effects. Also, we

make two assumptions, namely 1) each receiver is assumed to have perfect instantaneous knowledge

of its channel coefficients (i.e., CSIR) as well as knowledgeof the other receiver’s channel coefficients

with one unit delay, and 2) there is a noiseless output and CSIfeedback from Receiveri, i = 1, 2, to

Transmitteri. We will refer to such output feedback as beinglocal, by opposition toglobal feedback

which corresponds to each receiver feeding back its output to both transmitters. The considered model

is shown in Figure 1. Furthermore, the messages that are destined to each receiver are meant to be kept
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Fig. 1. MIMO X-channel with local feedback and delayed CSI with security constraints.

secret from the other receiver. That is, Receiver 2 wants to capture the pair(W11,W21) of messages that

are intended for Receiver 1; and so, in addition to that it is alegitimate receiver of the pair(W12,W22),

it also acts as an eavesdropper on the MIMO multiaccess channel to Receiver 1. Similarly, Receiver 1

wants to capture the pair(W12,W22) of messages that are intended for Receiver 2; and so, in addition

to that it is a legitimate receiver of the pair(W11,W21), it also acts as an eavesdropper on the MIMO

multiaccess channel to Receiver 2. The model that we study can be seen as being that of [12] but with

security constraints imposed on the transmitted messages.We concentrate on the case of perfect secrecy,

and focus on asymptotic behaviors, captured by the allowed secure degrees of freedom over this network

model.
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A. Contributions

The main contributions of this paper can be summarized as follows. First, we characterize the sum

SDoF region of the two-user(M,M,N,N)–MIMO X-channel with local feedback and delayed CSI

shown in Figure 1. We show that the sum SDoF region of this model is same as the SDoF region of a

two-user MIMO broadcast channel with2M transmit antennas andN antennas at each receiver in which

delayed CSI is provided to the transmitter. This result shows that, for symmetric antennas configurations,

the distributed nature of the transmitters does not cause any loss in terms of sum secure degrees of

freedom. The result also emphasizes the usefulness of localoutput feedback when used in conjunction

with delayed CSI in securing the transmission of messages inMIMO-X channels, by opposition to in

MIMO broadcast channels. That is, for the two-user MIMO X-channel, not only local output feedback

with delayed CSI does increase the DoF region as shown in [12], it also increases thesecureDoF region

of this network model. The coding scheme that we use for the proof of the direct part is based on an

appropriate extension of that developed by Yanget. al. [37] in the context of secure transmission over

a two-user MIMO BC with delayed CSI at the transmitter; and itdemonstrates how each transmitter

exploits optimally the available output feedback and delayed CSI.

Next, concentrating on the role of output feedback in the absence of CSI at the transmitters from a

secrecy degrees of freedom viewpoint, we study two variations of the model of Figure 1. In the first

model, the transmitters are completely ignorant of the CSI,but are provided withglobal output feedback.

As we mentioned previously, this output feedback is assumedto be noiselessly and is provided by both

receivers to both transmitters. In the second model, the transmitters are provided with only local feedback,

i.e., the model of Figure 1 but with no delayed CSI at the transmitters.

For the model with global feedback at the transmitters, we show that the sum SDoF region is same as

the sum SDoF region of the model with local feedback and delayed CSI available at the transmitters, i.e.,

the model of Figure 1. In other terms, the lack of CSI at the transmitters does not cause any loss in terms

of sum SDoF as long as the transmitters are provided with global output feedback. In this case, each

transmitter readily gets the side information or interference that is available at the unintended receiver

by means of the global feedback; and, therefore, it can alignit with the information that is destined to

the intended receiver directly, with no need of any CSI.

For the model in which only local output feedback is providedto the transmitters, we establish an

inner bound on the sum SDoF region. This inner bound is in general strictly smaller than that of the

model of Figure 1; and, so, although its optimality is shown only in some specific cases, it gives insights
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about the loss incurred by the lack of delayed CSI at the transmitters. This loss is caused by the fact

that, unlike the coding schemes that we develop for the setting with local output feedback and delayed

CSI at the transmitters and that with global feedback at the transmitters, for the model with only local

feedback each transmitter can not learn the side information that is available at the unintended receiver

and which is pivotal for the alignment of the interferences in such models.

Furthermore, we specialize our results to the case in which there are no security constraints. Similar

to the setting with security constraints, we show that the optimal sum degrees of freedom (sum DoF)

region of the(M,M,N,N)-MIMO X-channel is same of the DoF region of a two-user MIMO BCwith

2M antennas at the transmitter andN antennas at each receiver. Finally, we illustrate our results with

some numerical examples.

B. Outline and Notation

An outline of the remainder of this paper is as follows. Section II provides a formal description of the

channel model that we consider, together with some useful definitions. Section III states the sum SDoF

region of the two-user(M,M,N,N)-MIMO X-channel with local feedback and delayed CSI of Figure 1.

In section IV, we provide the formal proof of the coding scheme that we use to establish the achievability

result. In section V, we study the role of output feedback in the absence of CSI at the transmitters. In

Section VI, we specialize the results to the setting with no security constraints; and, in Section VII, we

illustrate our results through some numerical examples. Section VIII concludes the paper.

We use the following notations throughout the paper. Boldface upper case letters, e.g.,X, denote

matrices; boldface lower case letters, e.g.,x, denote vectors; and calligraphic letters designate alphabets,

i.e., X . For integersi ≤ j, we use the notationXj
i as a shorthand for(Xi, . . . ,Xj). The notation

diag({H[t]}t) denotes the block diagonal matrix withH[t] as diagonal elements for allt. The Gaussian

distribution with meanµ and varianceσ2 is denoted by Ņ(µ, σ2). Finally, throughout the paper, logarithms

are taken to base2, and the complement to unity of a scalaru ∈ [0, 1] is denoted bȳu, i.e., ū = 1− u.

II. SYSTEM MODEL AND DEFINITIONS

We consider a two-user(M,M,N,N) X-channel, as shown in Figure 1. There are two transmitters

and two receivers. Both transmitters send messages to both receivers. Transmitter 1 wants to transmit

messageW11 ∈ W11 = {1, . . . , 2nR11(P )} to Receiver 1, and messageW12 ∈ W12 = {1, . . . , 2nR12(P )}

to Receiver 2. Similarly, Transmitter 2 wants to transmit messageW21 ∈ W21 = {1, . . . , 2nR21(P )} to

Receiver 1, and messageW22 ∈ W22 = {1, . . . , 2nR22(P )} to Receiver 2. The messages pair(W11,W21)

April 8, 2013 DRAFT



7

that is intended to Receiver 1 is meant to be concealed from Receiver 2; and the messages pair(W21,W22)

that is intended to Receiver 2 is meant to be concealed from Receiver 1.

We consider a fast fading model, and assume that each receiver knows the perfect instantaneous CSI

along with the past CSI of the other receiver. Also, we assumethat Receiveri, i = 1, 2, feeds back

its channel output along with the delayed CSI to Transmitteri. The outputs received at Receiver 1 and

Receiver 2 at each time instant are given by

y1[t] = H11[t]x1[t] + H12[t]x2[t] + z1[t]

y2[t] = H21[t]x1[t] + H22[t]x2[t] + z2[t], t = 1, . . . , n (1)

wherexi ∈ CM is the input vector from Transmitteri, i = 1, 2, andHji ∈ CN×M is the channel matrix

connecting Transmitteri to Receiverj, j = 1, 2. We assume arbitrary stationary fading processes, such

that H11[t], H12[t], H21[t] and H22[t] are mutually independent and change independently across time.

The noise vectorszj[t] ∈ CN are assumed to be independent and identically distributed (i.i.d.) white

Gaussian, withzj ∼ CN (0, IN ) for j = 1, 2. Furthermore, we consider average block power constraints

on the transmitters inputs, as
n∑

t=1

E[‖xi[t]‖2] ≤ nP, for i ∈ {1, 2}. (2)

For convenience, we letH[t] =
[

H11[t] H12[t]
H21[t] H22[t]

]

designate the channel state matrix andHt−1 = {H[1], . . . ,H[t−

1]} designate the collection of channel state matrices for the past(t− 1) symbols. For convenience, we

set H0 = ∅. We assume that, at each time instantt, the channel state matrixH[t] is full rank almost

surely. Also, we denote byyt−1
j = {yj[1], . . . , yj[t − 1]} the collection of the outputs at Receiverj,

j = 1, 2, over the past(t − 1) symbols. At each time instantt, the past states of the channelHt−1 are

known to all terminals. However the instantaneous states(H11[t],H21[t]) are known only to Receiver 1,

and the instantaneous states(H12[t],H22[t]) are known only to Receiver 2. Furthermore, at each time

instant, Receiver 1 feeds back the output vectoryt−1
1 to Transmitter 1, and Receiver 2 feeds back the

output vectoryt−1
2 to Transmitter 2.

Definition 1: A code for the Gaussian(M,M,N,N)–MIMO X-channel with local feedback and

delayed CSI consists of two sequences of stochastic encoders at the transmitters,

{φ1t : W11×W12×Ht−1×Y
N(t−1)
1 −→ XM

1 }nt=1

{φ2t : W21×W22×Ht−1×Y
N(t−1)
2 −→ XM

2 }nt=1 (3)
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where the messagesW11, W12, W21 andW22 are drawn uniformly over the setsW11, W12, W21 and

W22, respectively; and four decoding functions at the receivers,

ψ11 : YNn
1 ×Hn−1×H11×H12 −→ Ŵ11

ψ21 : YNn
1 ×Hn−1×H11×H12 −→ Ŵ21

ψ12 : YNn
2 ×Hn−1×H21×H22 −→ Ŵ12

ψ22 : YNn
2 ×Hn−1×H21×H22 −→ Ŵ22. (4)

Definition 2: A rate quadruple(R11(P ), R12(P ), R21(P ), R22(P )) is said to be achievable if there

exists a sequence of codes such that,

lim
P→∞

lim sup
n→∞

Pr{Ŵij 6=Wij |Wij} = 0, for all (i, j) ∈ {1, 2}2. (5)

Definition 3: A SDoF quadruple(d11, d12, d21, d22) is said to be achievable if there exists a sequence

of codes satisfying the following reliability conditions at both receivers,

lim
P→∞

lim inf
n→∞

log |Wij(n, P )|

n logP
≥ dij, for all (i, j) ∈ {1, 2}2

lim
P→∞

lim sup
n→∞

Pr{Ŵij 6=Wij|Wij} = 0, for all (i, j) ∈ {1, 2}2 (6)

as well as the perfect secrecy conditions

lim
P→∞

lim sup
n→∞

I(W12,W22; yn1 ,H
n)

n logP
= 0

lim
P→∞

lim sup
n→∞

I(W11,W21; yn2 ,H
n)

n logP
= 0. (7)

Definition 4: We define the sum secure degrees of freedom region of the MIMO X-channel with local

feedback and delayed CSI, which we denote byCsum
SDoF, as the set of all of all pairs(d11+d21, d12+d22) for

all achievable non-negative quadruples(d11, d21, d12, d22). We also define the total (sum) secure degrees

of freedom as SDoFd-CSI,F
total = max(d11,d21,d12,d22) d11 + d21 + d12 + d22.

III. SUM SDOF OF (M,M,N,N)–MIMO X- CHANNEL WITH LOCAL FEEDBACK AND DELAYED CSI

In this section we state our main result on the optimal sum SDoF region of the two-user MIMO X-

channel with local feedback and delayed CSI. We illustrate our result by providing few examples which

give insights into the proposed coding scheme.
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For convenience we define the following quantity that we willuse extensively in the sequel. Let, for

given non-negative(M,N),

ds(N,N,M) =







0 if M ≤ N

NM(M−N)
N2+M(M−N) if N ≤M ≤ 2N

2N
3 if M ≥ 2N

(8)

The following theorem characterizes the sum SDoF region of the MIMO X-channel with local feedback

and delayed CSI.

Theorem 1:The sum SDoF regionCsum
SDoF of the two-user(M,M,N,N)–MIMO X-channel with local

feedback and delayed CSI is given by the set of all non-negative pairs(d11 + d21, d12 + d22) satisfying

d11 + d21
ds(N,N, 2M)

+
d12 + d22

min(2M, 2N)
≤ 1

d11 + d21
min(2M, 2N)

+
d12 + d22

ds(N,N, 2M)
≤ 1 (9)

for 2M ≥ N ; andCsum
SDoF= {(0, 0)} if 2M ≤ N .

Proof: The converse proof follows by allowing the transmitters to cooperate and then using the

outer bound established in [37, Theorem 3] in the context of secure transmission over MIMO broadcast

channels with delayed CSI at the transmitter, by taking2M transmit antennas andN antennas at each

receiver. Note that Theorem 3 of [37] continues to hold if oneprovides additional feedback from the

receivers to the transmitter. The proof of achievability isgiven in Section IV.

Remark 1: In the case in which2M ≥ N , the sum SDoF region of Theorem 1 is characterized fully

by the three corner points(ds(N,N, 2M), 0), (0, ds(N,N, 2M)) and

(d11 + d21, d12 + d22) =







(
N(2M−N)

2M , N(2M−N)
2M

)

if N ≤ 2M ≤ 2N
(
N
2 ,

N
2

)

if 2N ≤ 2M
(10)

Remark 2:The sum SDoF region of Theorem 1 is same as the SDoF region of a two-user MIMO BC

in which the transmitter is equipped with2M antennas and each receiver is equipped withN antennas,

and delayed CSI is provided to the transmitter [37, Theorem 3]. Therefore, Theorem 1 shows that there

is no performance loss in terms of sum SDoF due to the distributed nature of the transmitters in the

MIMO X-channel that we consider. Note that, in particular, this implies that, like the setting with no

security constraints [12, Theorem 1], the total secure degrees of freedom, defined as in Definition 4 and

April 8, 2013 DRAFT



10

Case SDoFd-CSI,F
total DoFd-CSI,F

total [12] DoFn-CSI,nF
total [10]

2M ≤ N 0 2M 2M

N ≤ 2M ≤ 2N N(2M−N)
M

4MN

2M+N
N

2N ≤ 2M N 4N
3

N

TABLE I

TOTAL SDOF AND TOTAL DOF OF (M,M,N,N)–MIMO X- CHANNELS WITH DIFFERENT DEGREES OF OUTPUT FEEDBACK

AND DELAYED CSI.
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0
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2.5

3

 

 

(M,N) = (4, 4), Case2M ≥ 2N

(M,N) = (2, 3), CaseN ≤ 2M ≤ 2N

Case2M ≤ N

d
1
2
+
d
2
2

d11 + d21

(34 ,
3
4 )

(2, 2)

Fig. 2. Sum SDoF region of the(M,M,N,N)-MIMO X-channel with local output feedback and delayed CSI,for different

antennas configurations.

given by

SDoFd-CSI,F
total =







0 if 2M ≤ N

N(2M−N)
M

if N ≤ 2M ≤ N

N if 2M ≥ 2N

(11)

is also preserved upon the availability of output feedback and delayed CSI at the transmitters, although

the latters are distributed.

Figure 2 illustrates the optimal sum SDoF of the(M,M,N,N)-MIMO X-channel with local output

feedback and delayed CSI as given in Theorem 1, for differentvalues of the transmit- and receive antennas.

Obviously, secure messages transmission is not possible if, accounting for the antennas available at both

transmitters, there are less transmit antennas than receive antennas at each receiver, i.e.,2M ≤ N . Also,
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Total DoF with local feedback and delayed CSI [12, Theorem 1]
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Fig. 3. Total secure degrees of freedom of the(M,M,N,N)-MIMO X-channel as a function of the numberM of transmit

antennas at each transmitter, for a fixed numberN = 4 of receive antennas at each receiver.

the sum SDoF region increases with the pair(M,N) if N ≤ 2M ≤ 2N . For a given numberN of receiver

antennas at each receiver, the sum SDoF region no longer increases with the number of transmit-antennas

M at each transmitter as long asM ≥ N . This shows that, from a sum SDoF perspective, there is no gain

from equipping the transmitters with more thanN antennas each. A similar behavior is shown in Table III

and Figure 3 from a total secure degrees of freedom viewpoint. Table III summarizes the optimal total

SDoF of the(M,M,N,N)-MIMO X-channel with local output feedback and delayed CSI as given by

(11), as well as the total DoF of the(M,M,N,N)–MIMO X-channel without security constraints, with

local output feedback and delayed CSI at the transmitters [12, Theorem 1] and with no output feedback

and no CSI at the transmitters [10, Theorem 11]. Figure 3 depicts the evolution of the total SDoF (11) as

a function of the number of transmit antennas at each transmitter, for an example configuration in which

each receiver is equipped withN = 4 antennas. It is interesting to note that for the caseM ≥ N the

total SDoF of the MIMO X-channel with local output feedback and delayed CSI is the same as the DoF

of the MIMO X-channel with no feedback and no CSI at transmitters. Thus, providing the transmitters

with local output feedback and delayed CSI can be interpreted as the price for secrecy in this case.
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IV. PROOF OFDIRECT PART OF THEOREM 1

In this section, we provide a description of the coding scheme that we use for the proof of Theorem 1.

This coding scheme can be seen as an extension, to the case of non-cooperative or distributed transmitters,

of that established by Yanget al. [37] in the context of secure transmission over a two-user MIMO BC

with delayed CSI provided to the transmitter.

In the case in which2M ≤ N , every receiver has enough antennas to decode all of the information

that is sent by the transmitters; and, so, secure transmission of messages is not possible. In the case in

which 2M ≥ N ,it is enough to prove that the corner points that are given inRemark 1 are achievable,

since the entire region can then be achieved by time-sharing. The achievability of each of the two corner

points (ds(N,N, 2M), 0) follows by the coding scheme of [37, Theorem 1], by having thetransmitters

sending information messages only to one receiver and the other receiver acting as an eavesdropper. In

what follows, we show that the point given by (10) is achievable. We divide the analysis into two cases.

A. Case 1:N ≤ 2M ≤ 2N

The achievability in this case follows by a careful combination of Maddah Ali-Tse coding scheme [2]

developed for the MIMO broadcast channel with additional noise injection. Also, as we already mentioned,

it has connections with, and can be seen as an extension to thecase of distributed transmitters of that

developed by Yanget. al. [37] in the context of secure transmission over a two-user MIMO broadcast

channel with delayed CSI at the transmitter. The scheme alsoextends Tandonet. al. [12] coding scheme

about X-channels without security constraints to the setting with secrecy. The communication takes place

in four phases. For simplicity of the analysis and, in accordance with the degrees of freedom framework,

we ignore the additive noise impairment.

Phase 1: Injecting artificial noise

In the first phase, the communication takes place inT1 = N2 channel uses. Letu1 = [u11, . . . , u
MT1

1 ]T and

u2 = [u12, . . . , u
MT1

2 ]T denote the artificial noises injected by Transmitter 1 and Transmitter 2 respectively.

The channel outputs at Receiver 1 and Receiver 2 during this phase are given by

y
(1)
1 = H̃

(1)
11 u1 + H̃

(1)
12 u2 (12)

y
(1)
2 = H̃

(1)
21 u1 + H̃

(1)
22 u2 (13)

where H̃
(1)
ji = diag({H(1)

ji [t]}t) ∈ CNT1×MT1 , for t = 1, . . . , T1, i = 1, 2, j = 1, 2, y(1)
1 ∈ CNT1 and

y
(1)
2 ∈ CNT1 . During this phase, each receiver getsNT1 linearly independent equations that relate2MT1
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u1- and u2-variables. At the end of this phase, the channel output at Receiver i, i = 1, 2, is fed back

along with the past CSI to Transmitteri.

Phase 2: Fresh information for Receiver 1

In this phase, the communication takes place inT2 = N(2M − N) channel uses. Both transmitters

transmit to Receiver 1 confidential messages that they want to conceal from Receiver 2. To this end,

Transmitter 1 sends fresh informationv11 = [v111, . . . , v
MT2

11 ]T along with a linear combination of the

channel outputy(1)
1 of Receiver 1 during the first phase; and Transmitter 2 sends only fresh information

v21 = [v121, . . . , v
MT2

21 ]T intended for Receiver 1, i.e.,

x1 = v11 +Θ1y
(1)
1

x2 = v21 (14)

whereΘ1 ∈ CMT2×NT1 is a matrix that is known at all nodes and whose choice will be specified below.

The channel outputs at the receivers during this phase are given by

y
(2)
1 = H̃

(2)
11 (v11 +Θ1y

(1)
1 ) + H̃

(2)
12 v21 (15a)

y
(2)
2 = H̃

(2)
21 (v11 +Θ1y

(1)
1 ) + H̃

(2)
22 v21 (15b)

where H̃
(2)
ji = diag({H(2)

ji [t]}t) ∈ CNT2×MT2 , for t = 1, . . . , T2, i = 1, 2, j = 1, 2, y(2)
1 ∈ CNT2 and

y
(2)
2 ∈ CNT2 . At the end of this phase, the channel output at Receiveri, i = 1, 2, is fed back along with

the delayed CSI to Transmitteri.

Since Receiver 1 knows the CSI(H̃
(2)
11 , H̃

(2)
12 ) and the channel outputy(1)1 from Phase 1, it subtracts out the

contribution ofy(1)1 from the received signaly(2)
1 and, thus, obtainsNT2 linearly independent equations

with 2MT2 v11- and v21-variables. Thus, Receiver 1 requires(2M − N)T2 extra linearly independent

equations to successfully decode thev11- andv21-symbols that are intended to it during this phase. Let

ỹ
(2)
2 ∈ C(2M−N)T2 denote a set of(2M −N)T2 such linearly independent equations, selected among the

availableNT2 side information equationsy(2)
2 ∈ CNT2 (recall that2M −N ≤ N in this case). If these

equations can be conveyed to Receiver 1, they will suffice to help it decode thev11- and v21-symbols,

since the latter already knowsy(1)1 . These equations will be transmittedjointly by the two transmitters

in Phase 4, and are learned as follows. Transmitter 2 learnsy(2)2 , and soỹ(2)
2 , directly by means of the

output feedback from Receiver 2 at the end of this phase. Transmitter 1 learnsy(2)2 , and soỹ(2)
2 , by

means of output as well as delayed CSI feedback from Receiver1 at the end of Phase 2, as follows.

First, Transmitter 1 utilizes the fed back outputy(2)1 to learn thev21-symbols that are transmitted by

Transmitter 2 during this phase. This can be accomplished correctly since Transmitter 1, which already
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knows v11 and y(1)1 , has also gotten the delayed CSI(H̃
(2)
11 , H̃

(2)
12 ) andM ≤ N . Next, Transmitter 1,

which also knows the delayed CSI(H̃(2)
21 , H̃

(2)
22 ), reconstructsy(2)2 as given by (15b).

Phase 3: Fresh information for Receiver 2

This phase is similar to Phase 2, with the roles of Transmitter 1 and Transmitter 2, as well as those

of Receiver 1 and Receiver 2, being swapped. More specifically, the communication takes place in

T2 = N(2M − N) channel uses. Fresh information is sent by both transmitters to Receiver 2, and is

to be concealed from Receiver 1. Transmitter 1 transmits fresh informationv12 = [v112, . . . , v
MT2

12 ]T to

Receiver 2, and Transmitter 2 transmitsv22 = [v122, . . . , v
MT2

22 ]T along with a linear combination of the

channel outputy(1)
2 at Receiver 2 during Phase 1, i.e.,

x1 = v12

x2 = v22 +Θ2y
(1)
2 (16)

whereΘ2 ∈ CMT2×NT1 is matrix that is known at all nodes and whose choice will be specified below.

The channel outputs during this phase are given by

y
(3)
1 = H̃

(3)
11 v12 + H̃

(3)
12 (v22 +Θ2y

(1)
2 ) (17a)

y
(3)
2 = H̃

(3)
21 v12 + H̃

(3)
22 (v22 +Θ2y

(1)
2 ) (17b)

where H̃
(3)
ji = diag({H(3)

ji [t]}t) ∈ CNT2×MT2 for t = 1, . . . , T2, i = 1, 2, j = 1, 2, y(3)
1 ∈ CNT2 and

y
(3)
2 ∈ CNT2 . At the end of this phase, the channel output at Receiveri, i = 1, 2, is fed back along with

the delayed CSI to Transmitteri.

Similar to Phase 2, at the end of Phase 3 since Receiver 2 knowsthe CSI(H̃(3)
21 , H̃

(3)
22 ) and the channel

outputy(1)2 from Phase 1, it subtracts out the contribution ofy(1)2 from the received signaly(3)
2 and, thus,

obtainNT2 linearly independent equations with2MT2 v12- andv22-variables. Thus, similar to Receiver 1

at the end of Phase 2, Receiver 2 requires(2M−N)T2 extra linearly independent equations to successfully

decode thev12- andv22-symbols that are intended to it during this phase. Letỹ
(3)
1 ∈ C(2M−N)T2 denote

a set of (2M − N)T2 such linearly independent equations, selected among the available NT2 side

information equationsy(3)
1 ∈ CNT2 . If these equations can be conveyed to Receiver 2, they will suffice

to help it decode thev12- andv22-symbols, since the latter already knowsy(1)2 . These equations will be

transmittedjointly by the two transmitters in Phase 4, and are learned as follows. Transmitter 1 learns

y(3)1 , and soỹ(3)
1 , directly by means of the output feedback from Receiver 1 at the end of this phase.

Transmitter 2 learnsy(3)1 , and sõy(3)
1 , by means of output as well as delayed CSI feedback from Receiver

2 at the end of Phase 3, as follows. First, Transmitter 2 utilizes the fed back outputy(3)2 to learn the
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v12-symbols that are transmitted by Transmitter 1 during this phase. This can be accomplished correctly

since Transmitter 2, which already knowsv22 andy(1)2 , has also gotten the delayed CSI(H̃
(3)
21 , H̃

(3)
22 ) and

M ≤ N . Next, Transmitter 2, which also knows the delayed CSI(H̃
(3)
11 , H̃

(3)
12 ), reconstructsy(3)1 as given

by (17a).

Phase 4: Interference alignment and decoding

Recall that, at the end of Phase 3, Receiver 1 requires(2M−N)T2 extra equations to successfully decode

the sentv11- andv21-symbols, and Receiver 2 requires(2M−N)T2 extra equations to successfully decode

the sentv12- andv22-symbols. Also, recall that at the end of this third phase,both transmitters can re-

construct the side information, or interference, equations ỹ
(3)
1 ∈ C(2M−N)T2 and ỹ(2)

2 ∈ C(2M−N)T2 that

are required by both receivers. In this phase, both transmitters transmit these equations jointly, as follows.

The communication takes place inT3 = (2M −N)2 channel uses. Let

I = Φ1[ ỹ
(2)
2

︸︷︷︸

(2M−N)T2

φ
︸︷︷︸

(2N−2M)T2

]T +Φ2[ ỹ
(3)
1

︸︷︷︸

(2M−N)T2

φ
︸︷︷︸

(2N−2M)T2

]T

whereΦ1 ∈ C2MT3×NT2 andΦ2 ∈ C2MT3×NT2 are linear combination matrices that are assumed to be

known to all the nodes. During this phase, the transmitters send

x1 = [I1, . . . , IMT3 ]

x2 = [I(M+1)T3 , . . . , I2MT3 ].

At the end of Phase 4, Receiver 1 getsNT3 equations in2NT3 variables. Since Receiver 1 knowsy(3)
1

from Phase 3 as well as the CSI, it can subtract out the contribution of ỹ(3)
1 from its received signal to

getNT3 equations inNT3 variables. Thus, Receiver 1 can recover theỹ
(2)
2 ∈ C(2M−N)T2 interference

equations. Then, using the pair of output vectors(y
(2)
1 , ỹ

(2)
2 ), Receiver 1 first subtracts out the contribution

of y(1)
1 ; and, then, it inverts the resulting2MT2 linearly independent equations relating the sent2MT2

v11- andv21-symbols. Thus, Receiver 1 successfully decodes thev11- andv21-symbols that are intended

to it. Receiver 2 performs similar operations to successfully decode thev12- and v22-symbols that are

intended to it.

Security analysis

The analysis and algebra in this section are similar to thosethe in [37] in context of secure broadcasting

of messages on a two-user MIMO broadcast channel with delayed CSI known at the transmitter.

April 8, 2013 DRAFT



16

At the end of Phase 4, the channel outputs at the receivers canbe written as

y1 =














H̃2 H̃
(2)
11 Θ1 0

H̃4Φ1G̃2 H̃4Φ1H̃
(2)
21 Θ1 H̃4Φ2

0 INT1
0

0 0 INT2














︸ ︷︷ ︸

Ĥ ∈ C4M2N×4M2N









v1

H̃1u

H̃3v2 + H̃
(3)
12 Θ2G̃1u









(18)

y2 =













0 INT1
0

0 0 INT2

G̃3 H̃
(3)
22 Θ2 0

G̃4Φ2H̃3 G̃4Φ2H̃
(3)
12 Θ2 G̃4Φ1













︸ ︷︷ ︸

Ĝ ∈ C4M2N×4M2N









v2

G̃1u

G̃2v1 + H̃
(2)
21 Θ1H̃1u









(19)

whereH̃t = [H̃
(t)
11 H̃

(t)
12 ], G̃t = [H̃

(t)
21 H̃

(t)
22 ], for t = 1, . . . , 4, u = [uT

1 uT
2 ]

T , v1 = [vT11 vT21]
T , andv2 =

[vT12 vT22]
T . The information rate to Receiver 1 is given by the mutual informationI(v1; y1), and can be

evaluated as

I(v1; y1) = I(v1, H̃1u, H̃3v2 + H̃
(3)
12 Θ2G̃1u; y1)

−I(H̃1u, H̃3v2 + H̃
(3)
12 Θ2G̃1u; y1|v1)

(a)
= rank(Ĥ). log(2P ) − rank














H̃
(2)
11 Θ1 0

H̃4Φ1H̃
(2)
21 Θ1 H̃4Φ2

INT1
0

0 INT2














. log(2P )

(b)
= N(T1 + T2). log(2P ) + rank






H̃2

H̃4Φ1G̃2




 . log(2P )

−N(T1 + T2). log(2P )

= rank






H̃2

H̃4Φ1G̃2




 . log(2P )

(c)
= 2MN(2M −N). log(2P ) (20)
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where(a) follows from [37, Lemma 2];(b) follows from the block diagonalization structure ofĤ; and

(c) follows by reasoning as in [37] for the selection ofΦ1 with appropriate rank such that the equality

holds.

Similarly, the information leaked to Receiver 2 can be bounded as

I(v1; y2) = I(v1; y2|v2)

≤ I(G̃2v1; y2|v2)

= I(G̃2v1,u; y2|v2)− I(u; y2|G̃2v1, v2)

≤ I(G̃1u, G̃2v1 + H̃
(2)
21 Θ1H̃1u; y2|v2)− I(u; y2|G̃2v1, v2)

(a)
= rank













INT1
0

0 INT2

H̃
(3)
22 Θ2 0

G̃4Φ2H̃
(3)
12 Θ2 G̃4Φ1













. log(2P )

−rank













G̃1

H̃
(2)
21 Θ1H̃1

H̃
(3)
22 Θ2G̃1

G̃4Φ2H̃
(3)
12 Θ2G̃1 + G̃4Φ1H̃

(2)
21 Θ1H̃1













. log(2P )

= N(T1 + T2). log(2P ) − rank






G̃1

H̃
(2)
21 Θ1H̃1




 . log(2P )

(b)
= 0 (21)

where(a) follows from [37, Lemma 2]; and(b) follows by choosingΘ1 by reasoning similar to in [37].

Summarizing, the above shows that2MN(2M −N) symbols are transmitted securely to Receiver 1 over

a total of4M2 time slots, thus yieldingd11+d21 = N(2M−N)/2M sum SDoF at this receiver. Similar

reasoning and algebra show that2MN(2M − N) symbols are also transmitted securely to Receiver 2

over a total of4M2 time slots, thus yieldingd12 + d22 = N(2M −N)/2M sum SDoF at this receiver.

B. Case 2:2M ≥ 2N

In this case, it is sufficient that each transmitter utilizesonly N antennas; and that Receiveri, i = 1, 2,

feeds back only its output to transmitteri, i.e., no delayed CSI. The details of the coding scheme and proof
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are similar to in Case 2, and are provided below for completeness. More specifically, the communication

takes place in four phases, each composed of only one time slot.

Phase 1: Injecting artificial noise

In this phase, both transmitters inject artificial noise. Let u1 = [u11, . . . , u
N
1 ]T denote the artificial noise

injected by Transmitter 1, andu2 = [u12, . . . , u
N
2 ]T denote the artificial noise injected by Transmitter 2.

The channel outputs at the receivers during this phase are given by

y
(1)
1 = H

(1)
11 u1 +H

(1)
12 u2 (22)

y
(1)
2 = H

(1)
21 u1 +H

(1)
22 u2 (23)

whereH(1)
ji ∈ CN×N , for i = 1, 2, j = 1, 2, y(1)

1 ∈ CN andy
(1)
2 ∈ CN . At the end of this phase, the

output at Receiveri, i = 1, 2, is fed back to Transmitteri.

Phase 2: Fresh information for Receiver 1

In this phase, both transmitters transmit confidential messages to Receiver 1. These messages are meant to

be concealed from Receiver 2. To this end, Transmitter 1 transmits fresh informationv11 = [v111, . . . , v
N
11]

T

along with a linear combination of the channel output at Receiver 1 during Phase 1, and Transmitter 2

transmits fresh informationv21 = [v121, . . . , v
N
21]

T intended for Receiver 1, i.e.,

x1 = v11 +Θ1y
(1)
1

x2 = v21

whereΘ1 ∈ CN×N is a matrix that is assumed to be known at all the nodes, and whose choice will be

specified below. The channel outputs at the receivers duringthis phase are given by

y
(2)
1 = H

(2)
11 (v11 +Θ1y

(1)
1 ) +H

(2)
12 v21 (24)

y
(2)
2 = H

(2)
21 (v11 +Θ1y

(1)
1 ) +H

(2)
22 v21 (25)

whereH(2)
ji ∈ CN×N , for i = 1, 2, j = 1, 2, y(2)

1 ∈ CN andy
(2)
2 ∈ CN . At the end of this phase, the

channel output at Receiveri, i = 1, 2, is fed back to Transmitteri. Since Receiver 1 knows the CSI and

the channel outputy(1)1 from Phase 1, it subtracts out the contribution ofy(1)1 from y
(2)
1 and, thus, obtains

N linearly independent equations that relates the2N v11- andv21-symbols. Thus, Receiver 1 requiresN

extra linearly independent equations to successfully decode thev11- and v21-symbols that are intended

to it during this phase. These extra equations will be provided by transmittingy(2)
2 by Transmitter 2 in

Phase 4. Transmitter 2 learnsy(2)2 directly by means of the output feedback from Receiver 2 at the end

of this phase.
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Phase 3: Fresh information for Receiver 2

This phase is similar to Phase 2, with the roles of Transmitter 1 and Transmitter 2, as well as those

of Receiver 1 and Receiver 2, being swapped. The informationmessages are sent by both transmitters

to Receiver 2, and are to be concealed from Receiver 1. More specifically, Transmitter 1 transmits fresh

informationv12 = [v112, . . . , v
N
12]

T to Receiver 2, and Transmitter 2 transmitsv22 = [v122, . . . , v
N
22]

T along

with a linear combination of the channel output received at Receiver 2 during Phase 1, i.e.,

x1 = v12

x2 = v22 +Θ2y
(1)
2

whereΘ2 ∈ CN×N is matrix that is known at all nodes and whose choice will be specified below. The

channel outputs at the receivers during this phase are givenby

y
(3)
1 = H

(3)
11 v21 +H

(3)
12 (v22 +Θ2y

(1)
2 ) (26)

y
(3)
2 = H

(3)
21 v21 +H

(3)
22 (v22 +Θ2y

(1)
2 ) (27)

whereH(3)
ji ∈ CN×N , for i = 1, 2, j = 1, 2, y(3)

1 ∈ CN andy
(3)
2 ∈ CN . At the end of this phase, the

channel output at Receiveri, i = 1, 2, is fed back to Transmitteri. Since Receiver 1 knows the CSI and

the channel outputy(1)2 from Phase 1, it subtracts out the contribution ofy(1)2 from y
(3)
2 and, thus, obtains

N linearly independent equations that relates the2N v21- andv22-symbols. Thus, Receiver 1 requiresN

extra linearly independent equations to successfully decode thev21- and v22-symbols that are intended

to it during this phase. These extra equations will be provided by transmittingy(3)
1 by Transmitter 1 in

Phase 4. Transmitter 1 learnsy(3)1 directly by means of the output feedback from Receiver 1 at the end

of this phase.

Phase 4: Interference alignment and decoding

Recall that, at the end of Phase 3, Receiver 1 knowsy(3)1 and requiresy(2)2 ; and Receiver 2 knowsy(2)2 and

requiresy(3)1 . Also, at the end of this phase, Transmitter 1 has learnedy(3)1 by means of output feedback

from Receiver 1; and Transmitter 2 has learnedy(2)2 by means of output feedback from Receiver 2. The

inputs by the two transmitters during Phase 4 are given by

x1 = Φ2y(3)1

x2 = Φ1y(2)2

whereΦ1 ∈ CN×N andΦ2 ∈ CN×N are matrices that are assumed to be known by all the nodes. At the

end of Phase 4, Receiver 1 getsN equations in2N variables. Since Receiver 1 knowsy(3)1 , as well as
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the CSI, it can subtract out the side information, or interference, equationsy(2)2 that are seen at Receiver

2 during Phase 2. Then, using the pair of output vectors(y
(2)
1 ,y

(2)
2 ), Receiver 1 first subtracts out the

contribution ofy(1)
1 ; and, then, it inverts the resulting2N linearly independent equations relating the

sent2N v11- andv21-symbols. Thus, Receiver 1 successfully decodes thev11- andv21-symbols that are

intended to it. Receiver 2 performs similar operations to successfully decode thev12- and v22-symbols

that are intended to it.

Security analysis

At the end of Phase 4, the channel outputs at the receivers aregiven by

y1 =














H2 H(2)
11 Θ1 0

H(4)
12 Φ1G2 H(4)

12 Φ1H(2)
21 Θ1 H(4)

11 Φ2

0 IN 0

0 0 IN














︸ ︷︷ ︸

Ĥ ∈ C4N×4N









v1

H1u

H3v2 + H(3)
12 Θ2G1u









(28)

y2 =













0 IN 0

0 0 IN

G3 H(3)
22 Θ2 0

H(4)
21 Φ2H3 H(4)

21 Φ2H(3)
12 Θ2 H(4)

22 Φ1













︸ ︷︷ ︸

Ĝ ∈ C4N×4N









v2

G1u

G2v1 + H(2)
21 Θ1H1u









(29)

whereHt = [H(t)
11 H(t)

12 ], Gt = [H(t)
21 H(t)

22 ], for t = 1, . . . , 3, u = [uT
1 uT

2 ]
T , v1 = [vT11 vT21]

T , andv2 =

[vT12 vT22]
T . Similar to in the analysis of the previous case, the information rate to Receiver 1 is given by

the mutual informationI(v1; y1), and can be evaluated as

I(v1; y1) = I(v1,H1u,H3v2 + H(3)
12 Θ2G1u; y1)

−I(H1u,H3v2 + H(3)
12 Θ2G1u; y1|v1)

(a)
= rank(Ĥ). log(2P )− rank














H(2)
11 Θ1 0

H(4)
12 Φ1H(2)

21 Θ1 H(4)
11 Φ2

IN 0

0 IN














. log(2P )
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(b)
= 2N. log(2P ) + rank






H2

H(4)
12 Φ1G2




 . log(2P ) − 2N. log(2P )

= rank






H2

H(4)
12 Φ1G2




 . log(2P )

(c)
= 2N. log(2P ) (30)

where(a) follows from [37, Lemma 2];(b) follows by using the block diagonalization structure ofĤ;

and(c) follows by reasoning as in [37] for the selection ofΦ1 with appropriate rank such that the equality

holds.

Similarly, the information leaked to Receiver 2 can be bounded as

I(v1; y2) ≤ I(G1u,G2v1 + H(2)
21 Θ1H1u; y2|v2)− I(u; y2|G2v1, v2)

(a)
= rank













IN 0

0 IN

H(3)
22 Θ2 0

H(4)
21 Φ2H(3)

12 Θ2 H(4)
22 Φ1













. log(2P )

−rank













G1

H(2)
21 Θ1H1

H(3)
22 Θ2G1

H(4)
21 Φ2H(3)

12 Θ2G1 + H(4)
22 Φ1H(2)

21 Θ1H1













. log(2P )

= 2N. log(2P )− rank






G1

H(2)
21 Θ1H1




 . log(2P )

(b)
= 0 (31)

where(a) follows from [37, Lemma 2]; and(b) follows by choosingΘ1 with the reasoning similar to

[37].

Summarizing, the above shows that2N symbols are transmitted securely to Receiver 1, over a totalof

4 time slots, yieldingd11 + d21 = N
2 sum SDoF. Similar analysis shows that the scheme also offers

d12 + d22 =
N
2 sum SDoF for Receiver 2.

This concludes the proof of the direct part of Theorem 1.
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Remark 3: Investigating the coding scheme of Theorem 1, it can be seen that in the case in which

N ≤M , local output feedback only suffices to achieve the optimum sum SDoF. That is, the transmitters

exploit only the availability of local output feedback, anddo not make use of the available delayed CSI.

V. SDOF OF MIMO X- CHANNEL WITH ONLY OUTPUT FEEDBACK

In this section, we focus on the two-user MIMO X-channel withonly feedback available at transmitters.

We study two special cases of availability of feedback at transmitters, 1) the case in which each receiver

feeds back its channel output to both transmitters, to whichwe will refer asglobal feedback, and 2) the

case in which Receiveri, i = 1, 2, feeds back its output only to Transmitteri, i.e., local feedback. In

both cases, no CSI is provided to the transmitters.

A. MIMO X-channel with global feedback

As we mentioned previously, in this model the output at each receiver is fed back to both transmitters.

The following remark sheds some light on the usefulness of such model in security-oriented contexts.

Remark 4: In realistic wiretap settings, it is not reasonable to assume the availability of any CSI on the

eavesdropper channel at the transmitter side. This is because an eavesdropper is generally not willing to

feed back information about its channel to the transmitter from which it wants to intercept the transmission.

In an X-channel however, each receiver is not merely an eavesdropper for the information sent by the

transmitters to the other receiver; it is also a legitimate receiver intended to get other information messages

from thesametransmitters. This holds since each transmitter sends information messages to both receivers,

not to only one receiver as in interference channels. For example, Receiver 2 acts as an eavesdropper

for the messageW11 transmitted by Transmitter 1 to Receiver 1, but it also gets messageW12 from

Transmitter 1. Although it can possibly diminish its ability to capture messageW11, in its desire that

Transmitter 1 learns better the channel so that it better transmits messageW12, Receiver 2 may find it

useful to feed back information about the CSI on its channel to Transmitter 1, nonetheless. A similar

observation holds for Receiver 1.

The following theorem provides the sum SDoF region of the MIMO X-channel with global feedback.

Theorem 2:The sum SDoF region of the two-user(M,M,N,N)–MIMO X-channel with global

output feedback is given by that of Theorem 1.

Remark 5:The sum SDoF region of the MIMO X-channel with global feedback is same as the sum

SDoF region of the MIMO X-channel with local feedback and delayed CSI. Investigating the coding

scheme of the MIMO X-channel with local feedback and delayedCSI of Theorem 1, it can be seen that the
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delayed CSI is utilized therein to provide each transmitterwith the equations (or, side information) that are

heard at the other receiver, which is unintended. With the availability of global feedback, this information

is readily available at each transmitter; and, thus, there is no need for any CSI at the transmitters in order

to achieve the same sum SDoF as that of Theorem 1.

Proof: The proof of the outer bound can be obtained by reasoning as follows. Let us denote the

two-user MIMO X-channel with global feedback that we study as MIMO-X(0). Consider the MIMO-X

channel obtained by assuming that, in addition to global feedback, i) delayed CSI is provided to both

transmitters and that ii) these transmitters are allowed tocooperate. Denote the obtained MIMO-X channel

as MIMO-X(1). Since the transmitters cooperate in MIMO-X(1), this model is in fact a MIMO BC with

2M antennas at the transmitter andN antennas at each receiver, with delayed CSI as well as output

feedback given to the transmitter. Then, an outer bound on the SDoF of this MIMO-X(1) is given by

[37, Theorem 3]. This holds because the result of [37, Theorem 3] continues to hold if one provides

outputs feedback from the receivers to the transmitter in the two-user MIMO BC with delayed CSI that

is considered in [37]. Next, since delayed CSI at the transmitters and cooperation can only increase the

SDoF, it follows that the obtained outer bound is also an outer bound on the SDoF of MIMO-X(0). Thus,

the region of Theorem 1 is an outer bound on the sum SDoF for theMIMO X-channel in which the

transmitters are provided only with global feedback.

We now provide a brief outline of the coding scheme that we useto establish the sum SDoF region

of Theorem 2. This coding scheme is very similar to that we usefor the proof of Theorem 1, with the

following (rather minor) differences. For the case in which2M ≤ N and that in which2N ≤ 2M , the

coding strategies are exactly same as those that we used for the proof of Theorem 1. For the case in

which N ≤ 2M ≤ 2N , the first three phases are similar to those in the coding scheme of Theorem 1,

but with, at the end of these phases, the receivers feeding back their outputs to both transmitters, instead

of Receiveri, i = 1, 2, feeding back its output together with the delayed CSI to Transmitter i. Note

that, during these phases, each transmitter learns the required side information equationsdirectly from

the global output feedback that it gets from the receivers (see Remark 5). Phase 4 and the decoding

procedures are similar to those in the proof of Theorem 1. This concludes the proof of Theorem 2.

B. MIMO X-channel with only local feedback

We now consider the case in which only local feedback is provided from the receivers to the receivers,

i.e., Receiveri, i = 1, 2, feeds back its output to only Transmitteri.
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For convenience we define the following quantity. Let, for given non-negative(M,N),

dlocal
s (N,N,M) =







0 if M ≤ N

M2(M−N)
2N2+(M−N)(3M−N) if N ≤M ≤ 2N

2N
3 if M ≥ 2N

(32)

The following theorem provides an inner bound on the sum SDoFregion of the two-user MIMO-X

channel with local feedback.

Theorem 3:An inner bound on the sum SDoF region of the two-user(M,M,N,N)–MIMO X-

channel with local feedback is given by the set of all non-negative pairs(d11 + d21, d12 + d22) satisfying

d11 + d21
dlocal
s (N,N, 2M)

+
d12 + d22

min(2M, 2N)
≤ 1

d11 + d21
min(2M, 2N)

+
d12 + d22

dlocal
s (N,N, 2M)

≤ 1 (33)

for 2M ≥ N ; andCsum
SDoF= {(0, 0)} if 2M ≤ N .

Remark 6:Obviously, the region of Theorem 1 is an outer bound on the sumSDoF region of the

MIMO X-channel with local feedback. Also, it is easy to see that the inner bound of Theorem 3 is tight

in the case in whichM ≥ N .

Remark 7:The main reason for which the SDoF of the MIMO X-channel with local feedback is

smaller than that in Theorem 1 for the model with local feedback and delayed CSI can be explained as

follows. Consider the Phase 4 in the coding scheme of Theorem1 in Section IV-B. Each receiver requires

N(2M − N)(2M − N) extra equations to decode the symbols that are intended to itcorrectly. Given

that there are more equations that need to be transmitted to both receivers than the number of available

antennas at the transmitters, some of the equations need to be sent by both transmitters, i.e., some of

the available antennas send sums of two equations, one intended for each receiver. Then, it can be seen

easily that this is only possible if both transmitters know the ensemble of side information equations that

they need to transmit, i.e., not only a subset of them corresponding to one receiver. In the coding scheme

of Theorem 1, this is made possible by means of availability of both local output feedback and delayed

CSI at the transmitters. Similarly, in the coding scheme of Theorem 2, this is made possible by means of

availability of global feedback at the transmitters. For the model with only local feedback, however, this

is not possible; and this explains the loss incurred in the sum SDoF region. More specifically, consider

Phase 2 of the coding scheme of Theorem 1. Recall that, at the beginning of this phase, Transmitter

1 utilizes the fed back CSI(H̃(2)
11 , H̃

(2)
12 ) to learn thev21-symbols that are transmitted by Transmitter 2
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during this phase; and then utilizes the fed back CSI(H̃
(2)
21 , H̃

(2)
22 ) to reconstruct the side information

output vectory(2)2 that is required by Receiver 1 (given by (15b)). Also, Transmitter 2 performs similar

operations to learn the side information output vectory(3)1 that is required by Receiver 2 (given by (17a)).

In the case of only local output feedback given to the transmitters, as we mentioned previously, this is

not possible because of the lack of availability of CSI.

Proof: We now provide an outline of the coding scheme for the MIMO X-channel with local

feedback.

For the case in which2M ≤ N and the case in whichN ≤ M , the achievability follows trivially by

using the coding scheme of Theorem 1 (see Remark 3).

For the case in whichN ≤ 2M ≤ 2N , the proof of achievability follows by a variation of the coding

scheme of Theorem 1 that we outline briefly in what follows. The communication takes place in four

phases.

Phase 1: The transmission scheme in this phase is similar to that in Phase 1 of the coding scheme

of Theorem 1, but with at the end of this phase, Receiveri, i = 1, 2, feeding back only its output to

Transmitteri, instead of feeding back its output together with the delayed CSI to Transmitteri.

Phase 2: The communication takes place inT2 =M(2M−N) channel uses. The transmission scheme is

same as that of Phase 2 of the coding scheme of Theorem 1, with the following modifications. The inputs

(x1, x2) from the transmitters and outputs(y(2)1 , y(2)2 ) at the receivers are again given by (14) and (15),

respectively. At the end of these phases, Receiveri, i = 1, 2, feeds back its output to Transmitteri. At the

end of this phase, Receiver 1 requires(2M −N)T2 extra linearly independent equations to successfully

decode thev11- andv21-symbols that are intended to it during this phase. Letỹ
(2)
2 ∈ C(2M−N)T2 denote

a set of (2M − N)T2 such linearly independent equations, selected among the available NT2 side

information equationsy(2)
2 ∈ CNT2 (recall that2M − N ≤ N in this case). If these equations can be

conveyed to Receiver 1, they will suffice to help it decode thev11- and v21-symbols, since the latter

already knowsy(1)1 . These equations will be transmitted by (only) Transmitter2 in Phase 4. Transmitter

2 learnsy(2)2 , and soỹ(2)
2 , directly by means of the output feedback from Receiver 2 at the end of this

phase.

Phase 3: The communication takes place inT2 =M(2M −N) channel uses. The transmission scheme

is same as that of Phase 3 of the coding scheme of Theorem 1, with the following modifications. The

inputs(x1, x2) from the transmitters and outputs(y(2)1 , y(2)2 ) at the receivers are again given by (16) and

(17), respectively. At the end of this phase, Receiver 2 requires (2M −N)T2 extra linearly independent

equations to successfully decode thev12- andv22-symbols that are intended to it during this phase. Let
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ỹ
(3)
1 ∈ C(2M−N)T2 denote a set of(2M −N)T2 such linearly independent equations, selected among the

availableNT2 side information equationsy(3)
1 ∈ CNT2 (recall that2M − N ≤ N in this case). These

equations will be transmitted by (only) Transmitter 1 in Phase 4. Transmitter 1 learnsy(3)1 , and soỹ(3)
1 ,

directly by means of the output feedback from Receiver 1 at the end of this phase.

Phase 4: Recall that at the end of Phase 3, Receiver 1 requires the sideinformation output vector̃y(2)
2 ,

and Receiver 2 requires the side information output vectorỹ
(3)
1 . In Phase 4, the communication takes

place inT3 = (2M −N)(2M −N) channel uses. During this phase, Transmitter 1 transmitsx1 = Φ2y(3)1

and Transmitter 2 transmitsx2 = Φ1y(2)2 , whereΦ1 ∈ CMT3×NT2 , andΦ2 ∈ CMT3×NT2 , in T3 channel

uses.

Decoding: At the end of Phase 4, Receiver 1 getsNT3 equations in2MT3 variables. Since Receiver

1 knowsy(3)
1 from Phase 3 as well as the CSI, it can subtract out the contribution of ỹ(3)

1 from its

received signal to obtain the side information output vector ỹ(2)
2 . Then, using the pair of output vectors

(y
(2)
1 , ỹ

(2)
2 ), Receiver 1 first subtracts out the contribution ofy

(1)
1 ; and, then, it inverts the resulting

2MT2 linearly independent equations relating the sent2MT2 v11- and v21-symbols. Thus, Receiver

1 successfully decodes thev11- and v21-symbols that are intended to it. Receiver 2 performs similar

operations to successfully decode thev12- andv22-symbols that are intended to it.

The analysis of the sum SDoF that is allowed by the described coding scheme can be obtained by

proceeding as in the proof of Theorem 1, to show that2M2(2M −N) symbols are transmitted securely

to Receiver 1 over a total ofT1 + 2T2 + T3 = 2(4M2 − 3MN + N2) channel uses, thus yielding

d11 + d21 = M2(2M − N)/(4M2 − 3MN +N2) sum SDoF at this receiver. Similar reasoning and

algebra show thatd12 + d22 = M2(2M − N)/(4M2 − 3MN +N2) sum SDoF for Receiver 2. This

concludes the proof of Theorem 3.

The analysis so far reflects the utility of both output feedback and delayed CSI that are provided to

both transmitters in terms of secure degrees of freedom. However, the models that we have considered so

far aresymmetricin the sense that both transmitters see the same degree of output feedback and delayed

CSI from the receivers. The relative importance of output feedback and delayed CSI depends on the

studied configuration. In what follows, it will be shown that, in the symmetric model of Theorem 3 one

can replace the local output feedback that is provided to onetransmitter with delayed CSI given to the

other transmitter without diminishing the achievable sum SDoF region.

Remark 8: Investigating closely the coding scheme of Theorem 3, it canbe seen that the key ingredient

in the achievability proof is that, at the end of the third phase, each of the side information output vector
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W11,W12

W21,W22

Ŵ11, Ŵ21

Ŵ12, Ŵ22

W12 W22

W11 W21

Tx1

Tx2

Rx1

Rx2

M

M

N

N

H

(yn−1
1 ,Hn−1)

x1 y1

x2 y2

Fig. 4. MIMO X-channel with asymmetric local feedback and delayed CSI with security constraints.

ỹ
(2)
2 that is required by Receiver 1 to successfully decode the symbols that are intended to it and the side

information output vector̃y(3)
1 that is required by Receiver 2 to successfully decode the symbols that are

intended to it be learned byexactlyone of the transmitters1. In the coding scheme of Theorem 3, the

side information output vectors̃y(3)
1 and ỹ(2)

2 are learned by distinct transmitters at the end of Phase 3.

However, the above suggests that the lower bound of Theorem 3will also remain achievable if these side

information output vectors are both learned by thesametransmitter. Figure 4 shows a variation model that

is asymmetric in the sense that local output feedback and delayed CSI are provided only to Transmitter

1. In this model, by means of the output feedback and delayed CSI from Receiver 1, Transmitter 1 can

learnboth side information output vectors(ỹ(3)
1 , ỹ

(2)
2 ) (See the analysis of Phase 2 in the coding scheme

of Theorem 1). Taking this into account, it is easy to show that the lower bound of Theorem 3 is also

achievable for the model shown in Figure 4.

1By opposition, in the coding scheme of Theorem 1, both side information output vectors have been learned by both transmitters

at the end of Phase 3, as we mentioned previously.
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Proposition 1: For the model with local output feedback and delayed CSI provided only to Transmitter

1 shown in Figure 4, an inner bound on the sum SDoF region is given by Theorem 3.

VI. MIMO-X C HANNELS WITHOUT SECURITY CONSTRAINTS

In this section, we consider an(M,M,N,N)-X channelwithout security constraints. We show that

the main equivalences that we established in the previous sections continue to hold.

Theorem 4:The sum DoF regionCsum
DoF of the two-user(M,M,N,N)–MIMO X-channel with local

feedback and delayed CSI is given by the set of all non-negative pairs(d11 + d21, d12 + d22) satisfying

d11 + d21
min(2M, 2N)

+
d12 + d22

min(2M,N)
≤ 1

d11 + d21
min(2M,N)

+
d12 + d22

min(2M, 2N)
≤ 1. (34)

Proof: The converse proof follows immediately from the DoF region of a two-user MIMO BC with

delayed CSIT [3, Theorem 2] in which the transmitter is equipped with2M antennas et the receivers are

equipped withM antennas each. The proof of the direct part follows by a coding scheme that can be

obtained by specializing that of Theorem 1 to the setting without security constraints, and that we only

outline briefly here. First, note that the region of Theorem 4is fully characterized by the corner points

(min(2M,N), 0), (0,min(2M,N)) and the pointP defined as the intersection of the lines defining the

equations (34). It is not difficult to see that the corner points (min(2M,N), 0) and (0,min(2M,N))

are achievable without feedback and without delayed CSI, asthe system is equivalent to coding for a

MIMO multiple access channel for which the achievability follows from straightforward results. We now

outline the achievability of the pointP . If 2M ≤ N , the pointP = (M,M) is clearly achievable. If

N ≤ 2M ≤ 2N , the achievability of the pointP = (2NM/(2M+N), 2NM/(2M+N)) can be obtained

by modifying the coding scheme of Theorem 1, essentially by ignoring Phase 1. Note that, at the end of

the transmission,2MN(2M−N) symbols are sent to each receiver over2T2+T4 = (2M−N)(2M+N),

i.e., a sum DoF of2MN/(2M +N) for each. In the case in which2M ≥ 2N , one can use the coding

scheme of the previous case with each transmitter utilizingonly N antennas.

Remark 9:The sum DoF region of Theorem 4 is same as the DoF region of a two-user MIMO BC

in which the transmitter is equipped with2M antennas and each receiver is equipped withN antennas,

and delayed CSIT is provided to the transmitter [3, Theorem 2]. Thus, similar to Theorem 1, Theorem 4

shows that, in the context of no security constraints as well, the distributed nature of the transmitters in

the MIMO X-model with a symmetric antenna configuration doesnot cause any loss in terms of sum
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Fig. 5. Sum SDoF and sum DoF regions of the(M,M,N,N)-X channel with local output feedback and delayed CSI, for

different antennas configurations.

degrees of freedom. This can be seen as a generalization of [12, Theorem 1] in which it is shown that

the loss is zero from a total degrees of freedom perspective.

Remark 10:Like for the setting with secrecy constraints, it can be easily shown that the sum DoF

of the (M,M,N,N)-MIMO X-channel with global output feedback is also given bythat of Theorem 4.

VII. N UMERICAL EXAMPLES

In this section, we illustrate the results of the previous sections (i.e., Theorems 1, 2, 3 and 4)

through some numerical examples. We also include comparisons with some previously known results for

the MIMO-X channel without security constraints and with different degrees of CSI and output feedback.

Figure 5 illustrates the optimal sum SDoF of the(M,M,N,N)-MIMO X-channel with local output

feedback and delayed CSI given by Theorem 1, for different values of the transmit- and receive antennas.

For comparison reasons, Figure 5 also shows the optimal DoF of the same model, i.e.,(M,M,N,N)-

MIMO X-channel with local output feedback and delayed CSI, but without security constraints, as given

by Theorem 1. The gap that is visible in the figure illustratesthe rate loss that is caused asymptotically,

in the signal-to-noise ratio, in by imposing security constraints on the(M,M,N,N)-MIMO X-channel
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Fig. 6. Sum SDoF region of the(M,M,N,N)-X channel with different degrees of output feedback and delayed CSI, for

some antennas configurations.
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with local output feedback and delayed CSI. Thus, it can be interpreted as theprice for secrecyfor the

model that we study.

Figure 6 shows the inner bound of Theorem 3, for different antennas configurations. As we mentioned

previously, although the optimality of the inner bound of Theorem 3 is still to be shown, the loss in terms

of secure degrees of freedom that is visible in the figure forN ≤ 2M ≤ 2N sheds light on the role and

utility of providing delayed CSI to the transmitters from a secrecy viewpoint. ForM ≥ N , however, the

lack of delayed CSI at the transmitters does not cause any loss in terms of secure degrees of freedom in

comparison with the model with output and delayed CSI feedback of Theorem 1.

Figure 7 depicts the evolution of the total secure degrees offreedom of the(M,M,N,N)-MIMO

X-channel with local output feedback and delayed CSI as function of the number of transmit-antennas

M at each transmitter, for a given number of receive-antennasat each receiverN = 4. The figure also

shows the total secure degrees of freedom with only local feedback provided to the transmitters (obtained

from Theorem 3), as well as the total degrees of freedom without security constraints [12, Theorem 1]

(which can also be obtained from Theorem 4). Furthermore, the figure also shows the sum DoF of the

MIMO X-channel with only delayed CSI, no feedback and no security constraints [11].

VIII. C ONCLUDING REMARKS

In this paper, we study the sum secure degrees of freedom (sumSDoF) region of a two-user multi-input

multi-output X-channel withM antennas at each transmitter andN antennas at each receiver. We assume

perfect CSIR, i.e., each receiver has perfect knowledge of its channel. In addition, all the terminals are

assumed to know the past channel states of the channel; and there is a noiseless local output feedback

at the transmitters, i.e., Receiveri, i = 1, 2, feeds back its past channel output to Transmitteri. For

this MIMO X-channel with symmetric antennas configuration,we characterize the optimal sum SDoF

region. We show that the sum SDoF region of this MIMO-X channel with local feedback and delayed

CSI is sameas the SDoF region of the two-user MIMO BC with2M transmit antennas andN antennas

at each receiver. The coding scheme that we use for the proof of the direct part follows through an

appropriate extension of a coding scheme that is developed by Yang et. al. [37] in the context of secure

transmission over MIMO broadcast channels. Furthermore, investigating the role of the delayed CSI at

the transmitters, we also study two MIMO X-channel models with no CSI at the transmitters. In the first

model, the transmitters have no knowledge of the CSI but are provided with noiseless output feedback

from both receivers, i.e.,global feedback. In the second model, the transmitters are provided by only

local feedback. For the model with global output feedback, we show that the sum SDoF is the same

April 8, 2013 DRAFT



32

as that of the MIMO X-channel with local feedback and delayedCSI. For the model with onlylocal

output feedback, we establish an inner bound on the allowed sum SDoF region. Next, we specialize our

results to the setting without security constraints, and show that the sum DoF region of an(M,M,N,N)-

MIMO X-channel with local output feedback and delayed CSI provided to the transmitters is same as

the DoF region of a two-user MIMO BC with2M transmit antennas andN antennas at each receiver.

The established results emphasize the usefulness of outputfeedback and delayed CSI at the transmitters

for transmission over a two-user MIMO X-channel with and without security constraints.
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