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Weak second order multi-revolution composition methods

for highly oscillatory stochastic differential equations

with additive or multiplicative noise

Gilles Vilmart∗

April 15, 2014

Abstract

We introduce a class of numerical methods for highly oscillatory systems of stochas-
tic differential equations with general noncommutative noise. We prove global weak
error bounds of order two uniformly with respect to the stiffness of the oscillations,
which permits to use large time steps. The approach is based on the micro-macro
framework of multi-revolution composition methods recently introduced for determin-
istic problems and inherits its geometric features, in particular to design integrators pre-
serving exactly quadratic first integral. Numerical experiments, including the stochastic
nonlinear Schrödinger equation with space-time multiplicative noise, illustrate the per-
formance and versatility of the approach.

Keywords: highly-oscillatory stochastic differential equation, composition method,
quadratic first integral conservation, multiplicative noise, time-dependent stochastic
Schrödinger equation.
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1 Introduction

Consider a nonlinear system of (Itô1) stochastic differential equations (SDEs) of the form

dX(t) = (ε−1AX(t) + f(X(t)))dt+

m∑

r=1

gr(X(t))dWr(t), 0 ≤ t ≤ T, (1)

where ε > 0 is fixed, A ∈ R
d×d is a constant matrix, f, gr : Rd → R

d are smooth and Lips-
chitz vector fields, X(0) = X0 is the initial condition, andWr, r = 1, . . . ,m are independent
standard Wiener processes. On the highly oscillatory part of the problem, we assume that

exp(A) = I. (2)

This means that the flow of the stiff oscillatory part dX
dt = ε−1AX, given by x 7→ exp(ε−1tA)x,

is periodic with respect to t, with period ε. Thus, multiple oscillatory frequencies in ε−1A

∗Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64, 1211 Genève 4, Switzerland.
On leave from École Normale Supérieure de Rennes, INRIA Rennes, IRMAR, CNRS, UEB, av. Robert
Schuman, F-35170 Bruz, France, Gilles.Vilmart@ens-rennes.fr

1We focus on Itô SDEs to simplify the presentation, but our analysis applies also to Stratonovich SDEs
using the conversion formula.
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are allowed if they are integer multiples of 2π. Such class of problems includes second order
SDEs of the form

Ẍ(t) = −ε−2K2X(t) + a(X(t)) +
m∑

r=1

br(X(t))Ẇr(t) (3)

where K ∈ R
d×d is a constant positive symmetric matrix with eigenvalues in 2πN and

a, br : Rd → R
d are smooth vector fields. An interesting situation is the case where a =

−∇U derives from a potential U : Rd → R and where additive noise is considered, i.e. the
functions gr are constant and there exists a constant matrix B ∈ R

d×m such that

(g1(q), . . . , gm(q)) = B. (4)

Consider the Hamiltonian, which represents the energy of the system (3),

H(p, q) =
1

2

(
pT p+ ε−2qTK2q + U(q)

)
.

A standard application of the Itô formula to (3) yields that the average of Hamiltonian grows
linearly with time due to the additive noise perturbation. Precisely, setting Q(t) = X(t)
and P (t) = Ẋ(t), we have

E(H(P (t), Q(t))) = H(P (0), Q(0)) +
t

2
trace(BBT ) (5)

and this energy is exactly conserved along time only in the deterministic case (B = 0).
The linear growth (5) is not recovered in general by standard explicit integrators, e.g. the
Euler-Maruyama method where a super linear growth can be observed [10, 11].

The class of problems (1) also includes spectral spatial discretizations of the nonlinear
Schrödinger equation with a stochastic space-time noise. Consider for instance

i
∂u(x, t)

∂t
= −∆u(x, t) + εV (x)|u(x, t)|2qu(x, t) +

√
εg(u(x, t))Ẇ (x, t), t ≥ 0, x ∈ (0, 1),

(6)
where we consider periodic boundary conditions in dimension one of space for simplicity.
Here, W (x, t) denotes a real-valued white noise which is white in time and correlated in
space.2 We refer for more details to [15] where numerical simulations of the stochastic
Schrödinger equation are presented to investigate the influence of space-time noise over the
stochastic blow up time of the solutions, and to [13] where the strong and weak convergence
rates of the Euler-Maryama method applied to a class of stochastic nonlinear Schrödinger
equations are shown to be the same as for SDEs in finite dimension (i.e. weak order 1) in
contrast to the parabolic case. In the case of multiplicative noise in the Stratonovitch sense
where g(u) = σu (with σ a constant), we have that the L2 norm

∫ 1
0 |u(x, t)|2dx is a first

integral similarly to the deterministic: it is exactly conserved along time almost surely on
the existence interval of the solution. The Hamiltonian energy is however not conserved
in general in the presence of noise. Considering a pseudo-spectral spatial representation
of the form u(t, x) ≈ ∑ℓ

k=−ℓ+1 ξk(t)e
ikx with a fixed number ℓ of Fourier modes, we then

arrive at the following system of SDEs with Stratonovitch noise for the Fourier modes
ξk(t) ∈ C, −ℓ < k ≤ ℓ,

dξk =
(
− ik2ξk + ε fk(. . . , ξ−1, ξ0, ξ1, . . .)

)
dt+ iσ

√
ε
∑

ℓ<j≤ℓ

ξk−j ◦ dWj , (7)

2Here, the correlation in space arises from the fixed number ℓ of Fourier modes considered in the noise.
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where fk corresponds to the nonlinear term V |u|2qu, Wj (−ℓ < j ≤ ℓ) are independent
standard Wiener processes, and we set ξj±2ℓ = ξj for all j in the above sum (the convolution
product of the solution frequencies and the Wiener processes). The Stratonovitch system
of SDEs (7) can be recast into the format (1) by rescaling time (that is, by rewriting the
system in terms of the new time variable t̂ = 2π

ε t) and using the Stratonovitch to Itô
conversion formula.

For the numerical approximation of highly oscillatory problems of the form (1), standard
SDE integrators require in general a time stepsize of the same magnitude as ε to achieve
stability and accuracy, which can be prohibitively expansive for small values of ε, already
in the deterministic setting (gr = 0, r = 1, . . . ,m in (1)), and thus appropriate integrators
are needed. For the numerical study of highly oscillatory stochastic integrators and not
assuming (2), we mention the recent work [34], where splitting methods for the Langevin
equations are analyzed, and the works [10, 12] where stochastic trigonometric methods are
proposed and analyzed, and further extended to the linear stochastic wave equation [11].
The trigonometric methods are a modification of the classical leap-frog method for (3) where
filter functions are introduced to avoid numerical resonances (see [21, Chap. XIII] in the
context of deterministic problems). A common aspect of the aforementioned works is the
study of the strong convergence (with orders 1/2 or 1), i.e. the error E(|X(tk)−Xk|) (where
tk = kh and h is the stepsize) for approximating individual trajectories X(t) themselves in
the case of additive noise (i.e. (4) holds). In contrast, we consider here the general case of
a general nonlinear noncommutative noise, and we focus on the weak error of convergence,
i.e. the error |E(φ(X(tk)))− E(φ(Xk))| where φ is a smooth test function.

In [7], the class of deterministic multi-revolution composition methods was recently
introduced for systems of the form (1) with gr = 0, r = 1, . . . ,m. Observe that the exact
flow of this problem after one period ε is a smooth perturbation of the identity. The multi-
revolution approach, as first proposed in [23, 27], permits the approximation of the Nth
iterate of a smooth deterministic near identity map ϕε(y) = y+O(ε) from R

d into itself, but
calculating only a few compositions (hence the name multi-revolution). Setting H := Nε,
a example of such composition method is the order two approximation of the Nth iterate
of the map ϕε,

ϕ(H+ε)/2 ◦ ϕ−1
−(H−ε)/2(y) = ϕN

ε (y) +O(H3).

It is shown in [7] that the constant symbolized by O is independent of N ≥ 1 and ε ≤ ε0 if
ϕε(y) is a C3 function of (y, ε). Next, considering for ϕε the flow of an highly oscillatory
system after one highly oscillatory period permits to design large time step geometric in-
tegrators. The aim of this paper is to extend and analyze this approach to the stochastic
context with general nonlinear multi-dimensional drift and diffusion functions.

It is known (see [29] and the recent work [9]) in a deterministic context (gr = 0) that
the solution X(t) of (1) is asymptotically close to an effective nonstiff problem of the form

dX(t)

dt
=
(
a1 + εa2 ++ε2a3 + . . .

)(
X(t)

)
, X(0) = X0 (8)

where

a1(x) =

∫ 1

0
esAf(e−sAx)ds

a2(x) = −1

2

∫ 1

0

∫ s2

0

(
es2Af(e(s1−s2)Af(e−s1Ax))− es1Af(e(s2−s1)Af(e−s2Ax))

)
ds1ds2,
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. . . (9)

at times which are integer multiples of the oscillatory period. Precisely, truncating the
above series (8) (which diverges for general nonlinear problems) after the εp−1 term yields
X(t) = X(t) + O(εp) for all t = kε ≤ T with k ∈ N, and this remainder can be made
exponentially small for analytic data. We observe that the vector field of the effective
problem (8) involving multiple integrals can be difficult to simulate in general. Although
an analogous effective problem can be constructed in some cases (see Remark 3.5 for additive
noise), we highlight that the proposed methods do not involve the pre-calculation of such
an effective problem but applies directly to the original problem (1), with micro and macro
stepsizes in the spirit of the so-called Heterogeneous Multiscale Method [2, 16, 17].

This paper is organized as follows. In Section 2, we introduce the stochastic multi-
revolution composition methods and state our main weak convergence results. In Section
3, we perform the error analysis of the proposed methods for general nonlinear systems of
SDEs. In Section 4, we present several numerical examples and comparisons with other
oscillatory integrators that corroborate the theoretical orders of convergence and illustrate
the good qualitative behavior of the proposed methods for various problems over long times,
including the stochastic nonlinear Schrödinger equation with multiplicative noise.

2 Multi-revolution composition methods for oscillatory SDEs

We first introduce semi-discrete multi-revolution methods involving a macro time stepsize
H which can be possibly much larger than the oscillatory period ε. We next introduce the
fully-discrete methods by coupling the multi-revolution approach with a micro integrator
involving in addition a micro stepsize h. We present weak error estimates with respect to
H,h with error constants independent of ε. The proofs are postponed to Section 3.

2.1 Semi-discrete multi-revolution composition methods

We introduce the following integrator which permits to integrate (1) with oscillatory period
ε on a time interval of size O(1) at a computational cost independent of ε by considering
appropriate auxiliary non-stiff SDE problems.

Algorithm 2.1 (Semi-discrete S-MRCM). For the approximation of the flow after time
H = Nε of (1) where N ∈ N, we consider the scheme Xk 7→ Xk+1 defined by

dKk,1 = (−AKk,1 + αNHf(Kk,1))dt+
√
αNH

m∑

r=1

gr(Kk,1)dWk,r,1, Kk,1(0) = Xk (10)

dKk,2 = (AKk,2 + βNHf(Kk,2))dt+
√
βNH

m∑

r=1

gr(Kk,2)dWk,r,2, Kk,2(0) = Kk,1(1) (11)

Xk+1 = Kk,2(1)

where Wk,r,1,Wk,r,2, r = 1, . . . ,m are independent Wiener processes, and we define

αN :=
1

2
− 1

2N
, βN :=

1

2
+

1

2N
. (12)
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For notational brevity, we shall sometimes drop the dependence on k of Kk,j and Wk,r,j .
The advantage of the above Algorithm 2.1 is that the stiff problem (1) on a time interval
H = Nε including N fast oscillations (due to the term ε−1AX in (1)) is approached by
the resolution of two non-stiff problems posed on the time interval (0, 1) involving each
only one oscillation, and thus more convenient to solve. In other words, in this multi-
revolution approach, N fast oscillations of (1) are approached by only two oscillations
of analogous problems with appropriate coefficients. This is advantageous compared to
standard integrators for large values of N , i.e. for small values of ε.

Remark 2.2. In the context of deterministic oscillatory problems, order conditions for
MRCMs up to arbitrary high order are derived in [7] using the algebraic framework of la-
belled rooted trees, and integrators up to order 4 are exhibited. However, it is known [30, 31]
that a composition method with real coefficients of order strictly larger than 2 necessarily in-
volves negative coefficients, see [4] for an elegant geometric proof. Since stochastic problems
such as (1) are not reversible in time, such high order methods cannot straightforwardly be
applied. A possibility to circumvent this order barrier for non-reversible problems would be
to use complex coefficients, as proposed in [5, 22] in the context of deterministic diffusion
problems. The use of complex coefficients in this context is however beyond the scope of the
present paper.

The next task is to prove accuracy estimates between the exact solution X(t) of (1) and
the approximation Xk from Algorithm 2.1 where t = kH and H = Nε with error constants
independent of H ≤ H0 and ε ≤ ε0. We make the following smoothness assumption of the
data.

(H) The functions f ,gr, r = 1, . . . ,m are C6-functions with all partial derivatives bounded.

This implies that f, gr are Lipschitz continuous (but not necessarily bounded), and thus
the solution of (1) exists and is unique. In order to state our weak error estimates, we
denote Cp

P (R
d,R) the set of functions of class Cp where all the partial derivatives have a

polynomial growth, i.e. for each partial derivative φ up to order p, there exist C > 0 and
r ∈ N such that

|φ(x)| ≤ C(1 + |x|r). (13)

We shall prove in Section 3 the following second order weak error estimate for the
semi-discrete methods.

Theorem 2.3. Let T > 0. Assume (2) and (H). Consider Xk the numerical solution of
Algorithm 2.1 and X(t) the exact solution of (1). Then, for all φ ∈ C6

P (R
d,R), and all

H = Nε with N ∈ N, and k ∈ N with kH ≤ T ,

|E(φ(Xk))− E(φ(X(kH)))| ≤ CH2,

where the constant C is independent of ε,H, k,N .

We highlight that the weak accuracy estimate of Theorem 2.3 holds uniformly with
respect to ε where both ε ≪ 1 and ε ≃ 1 are allowed. Observe in addition that Algorithm
2.1 is exact for N = 1 (i.e. the error is zero) because Kk,1(1) = Xk in (10) and (11) reduces
to a time transformation t̂ = t/ε of (1).
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Remark 2.4. Notice that setting αN = 0, βN = 1 in (12) in the definition of Algorithm
2.1 would yield the following multi-revolution method Xk 7→ Xk+1 of weak order 1,

dKk = (AKk +Hf(Kk))dt+
√
H

m∑

r=1

gr(Kk)dWk,r, Kk(0) = Xk,

Xk+1 = Kk(1).

Indeed, the error estimate of Theorem 2.3 with H2 replaced by H remains valid for the
above scheme for all φ ∈ C4

P (R
d,R) (observe in this case Kk,2(0) = Kk,1(1) = Xk). In this

paper, we shall however focus on the more accurate weak second order methods. The error
analysis of the first order method can be performed analogously.

2.2 Fully-discrete multi-revolution composition methods

Algorithm 2.1 is called semi-discrete because each step requires the resolution of two systems
of SDEs, whose solution is not known in general and needs to be approximated numerically.
It was noted in the deterministic context [7] that in principle, any nonstiff integrator could
be used. However, a natural choice for such approximation is to use a splitting method
where the oscillatory and non oscillatory parts of the problem are solved separately in an
efficient way (sometimes exactly), as proposed and studied recently in [34] in the stochastic
context of the Langevin equation.

We now formulate the fully-discrete multi-revolution stochastic methods for the class
of problems (1). It involves a micro stepsize h and a macro stepsize H where H ≫ ε is
allowed. We highlight again that both H and h are of moderate size, independently of the
smallness of the stiff parameter ε. The approach involves a weak integrator Yk+1 = Φh(Yk)
with stepsize h for the nonstiff SDE problem

dY (t) = f(Y (t))dt+
m∑

r=1

gr(Y (t))dWr(t) (14)

where compared to (1), the stiff term ε−1A has been removed. The integrator Φh can be
the exact solution if computationally available, or an efficient weak approximation.

Algorithm 2.5 (Fully-discrete S-MRCM). Consider a macro stepsize H = Nε and a micro
stepsize h = 1/n with N,n ∈ N

∗. For the approximation of the flow after time H of (1),
we consider the scheme Xk+1 7→ Xk defined by the composition

Xk+1 = (ehA/2 ◦ ΦβNHh ◦ ehA/2)n ◦ (e−hA/2 ◦ ΦαNHh ◦ e−hA/2)n(Xk)

where the micro integrator Φh is a weak integrator for (14) with stepsize h, and αN , βN
are defined in (12). The exponents n indicate that the maps are composed n times with
independent random variables.

Notice that Algorithm 2.5 requires for each time step 2n applications of the nonstiff
integrator Φh, applied with independent random variables, and 2n evaluations of exponen-
tials (using ehA/2 ◦ ehA/2 = ehA). The following theorem with proof postponed to Section
3 states that it has weak second order of accuracy with respect to the micro and macro
stepsizes H,h, uniformly with respect to ε. To this aim, we assume that the integrator Φh

satisfies for all x ∈ R
d, and all h ≤ h0,

|E(Yk+1 − Yk|Yk = x)| ≤ C(1 + |x|)h, |Yk+1 − Yk| ≤Mk(1 + |Yk|)
√
h, (15)
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where C,Mn are independent of h, x and Mk is a random variable with finite moments
of all orders. We further assume the following local weak order two estimate, for all φ ∈
C6
P (R

d,R),
|E(φ(Φh(Y0)))− E(φ(Y (h)))| ≤ C(x)h3, (16)

where C(x) is independent h and has a polynomial growth (13).

Theorem 2.6. Let T > 0. Assume (2) and (H). Consider Xk the numerical solution of
Algorithm 2.5 and X(t) the exact solution of (1). Assume that the integrator Φh for (14)
satisfies (15) and (16). Then, for all φ ∈ C6

P (R
d,R), and all h = 1/n and H = Nε small

enough with n,N, k ∈ N with kH ≤ T ,

|E(φ(Xk))− E(φ(X(kH)))| ≤ C(H2 + h2), (17)

where C is independent of ε,H, n, k,N, h.

The proofs of the above weak convergence estimates (Theorem 2.3 and Theorem 2.6)
are provided in Section 3.

Remark 2.7. We highlight that (15) and (16) are natural assumptions for a weak order
two integrator. Indeed, a classical theorem of Milstein [24] (see [25, Chap. 2.2]) permits
to deduce from the local error (16) the global error |E(φ(Yk)) − E(φ(Y (hk)))| ≤ Ch2 for
all hk ≤ T . Crucial is the assumption (15), which is easily satisfied by any reasonable
integrator for (14), and that automatically yield that Yk has bounded moments of any order
for all kh ≤ T (see [25, Lemma 2.2, p. 102]). Examples of such integrators with additional
favorable geometric properties are presented in Section 4.

We end this section with the following remark, which shown that the multi-revolution
approach has links with weak methods for systems of SDEs with small noise of the form

dZ(s) = a(Z(s))dt+ εb(Z(s))dt+
√
|ε|

m∑

r=1

cr(Z(s))dWr(s), Z(0) = Z0 (18)

as proposed and analyzed in [26] (see also [25, Chap. 3]). Such schemes applied to (18) have
global weak order O(hp + εhq) where p < q on bounded time intervals, using appropriate
smoothness assumptions on the vector fields a, b, cr.

Remark 2.8. Setting a(Z) = AZ, b(Z) = f(Z), σr = gr, Z0 = X0, the system (18) is
equivalent to (1) via the time transformation s = t/ε. In this case, the multi-revolution
approach permits to approximate Z(s) on longer time intervals with s = O(ε−1) with a
computational cost and an accuracy both independent of ε. Indeed, following the lines
of the proof of Theorem 2.6, if Ψh,ε is an integrator for (18) with weak order O(hp +
εhq), then, provided the numerical moments remain uniformly bounded, the multi-revolution
composition scheme

Xk+1 = (Ψh,βNH)n ◦ (Ψ−h,−αNH)n(Xk),

with αN , βN defined in (12) and h = 1/n, can be shown to approximate the solution X(t)
of (1) at time t = kH with H = Nε with global weak error O(H2 + H−1hp + hq) for all
kH ≤ T (equivalently to approximate (18) at time s = kN ≤ ε−1T ), where the constant in
O is independent of H,h, ε.
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3 Weak convergence analysis

A crucial ingredient for the analysis is the variation of constant formula: the solution X(t)
of (1) satisfies

X(t) = etε
−1AX0 +

∫ t

0
e(t−s)ε−1Af(X(s))ds+

∫ t

0
e(t−s)ε−1A

m∑

r=1

gr(X(s))dWr(s). (19)

In other words, considering the change of variables Y (t) = e−ε−1tAX(t), we have that Y (t)
is the solution of the non-autonomous SDE problem

dY (t) = e−ε−1tAf(eε
−1tAY (t))dt+

m∑

r=1

e−ε−1tAgr(eε
−1tAY (t))dWr(t). (20)

A feature of the semi-discrete Algorithm 2.1 is that it is exact in the case of additive noise
(4) and in the absence of the nonlinearity (f = 0), as stated in the following proposition.
This is a consequence of the homogeneity and scaling in time properties of Wiener processes.
Notice in contrast that the stochastic trigonometric methods [10, 12] are not exact in this
case.

Proposition 3.1. Consider the numerical solution of (1) with f = 0 and additive noise (4).
Then, Algorithm 2.1 is exact in the sense that X(t), t = kNε and Xk have the same law
of probability for all ε and all N, k,∈ N.

Proof. The solutions of (10) and (11) can be expressed using the variation of constant
formula (19), which yields, using eA = e−A = I,

X1 = X0 +
√
H

∫ 1

0
e−sABdW̃ (s)

where we notice that W̃ (s) :=
√
αNW1(s)+

√
βNW2(s) is a standardm-dimensional Wiener

process because αN + βN = 1 (recall that W1 and W2 are assumed independent). In
comparison, using (19) and the change of variable ŝ = ε−1s, and the periodicity of t 7→ etA

with period 1, the exact solution of (1) with f = 0 and (4) satisfies

X(H) = X0 +

∫ N

0
e−sABdW (εs) = X0 +

∫ 1

0
e−sAB

N−1∑

k=0

dW (εs+ k).

Using standard homogeneity and scaling in time properties of the Wiener process, we have
that H−1

∑N−1
k=0 (W (εs+ k)−W (k)) is also a standard Wiener process. Using the indepen-

dence of Wk,1,Wk,2, k = 0, 1, 2, . . . in Algorithm 2.1, we obtain that X(H) has the same law
of probability as X1, and we conclude the proof that X(tk) and Xk have the same law of
probability by induction on k. �

Using (2), we observe that for integer multiples of the oscillatory period, the solutions
of (1) and (20) coincide: X(Nε) = Y (Nε) for all N ∈ N and all ε. The advantage of
considering the form (20) compared to (1) is that the drift and diffusion functions (x, t) 7→
e−ε−1tAf(eε

−1tAY (t)) and (x, t) 7→ e−ε−1tAgr(eε
−1tAY (t)) are C6-functions with all partial

derivatives with respect to the spatial variable x bounded uniformly with respect to ε.
Using these regularity, we may recall the following two classical results taken from [33].
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Lemma 3.2. [33, Lemma 1]. Assume (H) and consider the solution Y (t) of (20). Then,
there exist a constant C > 0 and r ∈ N such that for all p ∈ N, t ∈ [0, T ], X0 ∈ R

d,

E(|X(t)|p) ≤ C(1 + |X0|r).

In addition, there exists a version of the process X(t) which is almost surely 6 times con-
tinuously differentiable with respect to the initial condition X(0) = X0, and the derivatives
with respect to the initial condition, (∂kX(t))/(∂Xk

0 ), k = 1, . . . , 6, have bounded moments
uniformly with respect to ε ∈ R, t ∈ [0, T ], X0 ∈ R

d.

Theorem 3.3. [33, Theorem 2.2]. Assume (H) and consider the solution Y (t) of (20).
For all φ ∈ C6

P (R
d,R), the function

u(x, t) := E(φ(Y (t))) (21)

is solution of the partial differential equation

∂u

∂t
= Lε(t)u, u(x, 0) = φ(x), (22)

where the generator Lε(t) of (20) is defined by3

Lε(t)φ(x) = e−ε−1tAf(eε
−1tAx) · ∇φ(x)

+
1

2

m∑

r=1

φ′′(x)
(
e−ε−1tAgr(eε

−1tAx), e−ε−1tAgr(eε
−1tAx)

)
(23)

and the partial derivatives ∂i0t ∂xi1
· · · ∂xik

u(x, t) with 2i0 + k ≤ 6, 1 ≤ ij ≤ d, i0, k ≥ 0,

are continuous with polynomial growth (13) where r, C are independent of ε, x ∈ R
d, and

t ∈ [0, T ].

We deduce from Theorem 3.3 a weak Taylor expansion for u(x,H) = E(φ(X(H))) where
X(t) is the solution of (1).

Proposition 3.4. Assume the hypotheses of Theorem 3.3. Then, u(x, t) defined in (21)
satisfies for all H = Nε, with N ∈ N,

u(x,H) = φ(x) +H

∫ 1

0
L1(s1)φ(x)ds1 +

H2 −Hε

2

∫ 1

0

∫ 1

0
L1(s1)L1(s2)φ(x)ds2ds1

+ Hε

∫ 1

0

∫ s1

0
L1(s1)L1(s2)φ(x)ds2ds1 +O(H3)

where the constant in O(H3) is independent of N, ε with a polynomial growth (13) with
respect to x, and L1 is defined in (23) with ε = 1.

Proof. Iterating “á la Picard” the integral relation u(x, t) = φ(x) +
∫ t
0 Lε(s)u(x, s)ds, we

obtain

u(x, t) = φ(x) +

∫ t

0
Lε(s1)φ(x)ds1 +

∫ t

0

∫ s1

0
Lε(s1)Lε(s2)φ(x)ds2ds1

3We denote ∇φ(x) the gradient with respect to x of φ and φ′′(x)(·, ·) the second derivative of φ, which
is a symmetric bilinear form.
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+

∫ t

0

∫ s1

0

∫ s2

0
Lε(s1)Lε(s2)Lε(s3)u(x, s3)ds3ds2ds1

which yields using Theorem 3.3,

u(x,H) = φ(x) +

∫ H

0
Lε(s1)φ(x)ds1 +

∫ H

0

∫ s1

0
Lε(s1)Lε(s2)φ(x)ds2ds1 +O(H3)

where the constant in O(H3) satisfies the polynomial growth (13) uniformly with respect
to N, ε. Using the change of variable ŝi = ε−1si, we deduce

u(x,H) = φ(x) + ε

∫ N

0
L1(s1)φ(x)ds1 + ε2

∫ N

0

∫ s1

0
L1(s1)L1(s2)φ(x)ds2ds1 +O(H3).

Finally, using the periodicity assumption (2) yields the identities

∫ N

0
L1(s1)φ(x)ds1 = N

∫ 1

0
L1(s1)φ(x)ds1,

∫ N

0

∫ s1

0
L1(s1)L1(s2)φ(x)ds2ds1 =

N(N − 1)

2

∫ 1

0

∫ 1

0
L1(s1)L1(s2)φ(x)ds2ds1

+ N

∫ 1

0

∫ s1

0
L1(s1)L1(s2)φ(x)ds2ds1,

which permits to conclude the proof. �

A consequence of Proposition 3.4 is the following remark, which gives some insight on
a stochastic effective problem in the case of additive noise, analogously to (8).

Remark 3.5. Consider the additive case (4) with dimensions d = m and B = I. It can be
checked that for all tk = kε ≤ T with k ∈ N, and all φ ∈ C6

P (R
d,R),

|E(φ(X(tk)))− E(φ(X(tk)))| ≤ Cε2,

where C is independent of N, ε, where X(t) solves the effective SDE

dX =
(
a1 + ε(a2 + σ2∆b2)

)
(X)dt+ σ(I + εb′2(X))dW (t), X(0) = X0 (24)

where a1, a2 are defined in (9) and

b2(x) =
1

4

∫ 1

0

(
s1e

s1Af(e−s1Ax)−
∫ s1

0
es2Af(e−s2Ax)ds2

)
ds1.

The proof of (24) is deduced showing first the local estimate |E(φ(X(ε))) − E(φ(X(ε)))| ≤
Cε3 (using Proposition 3.4 with N = 1 for X(ε) and analogously a weak Taylor expansion
for X(ε)). Interestingly, the effective SDE (24) has multiplicative noise in general, although
the original SDE (1) with B = I in (4) has additive noise.

We may now derive a local weak error estimate for the semi-discrete S-MRCM.
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Lemma 3.6. Assume (2) and (H). Consider X1 the numerical solution of Algorithm 2.1
after one step and X(t) the exact solution of (1). Then, for all initial condition X0 = x,
all φ ∈ C6

P (R
d,R), and all H = Nε with N ∈ N,

|E(φ(X1))− E(φ(X(H)))| ≤ C(x)H3,

where the constant C(x) is independent of ε,H and has a polynomial growth (13).

Proof. We observe that the SDE (10) has the form (1) by setting ε = −1 and replacing f
by αNHf and gr by

√
αNHg

r. Applying Proposition 3.4 with N = 1, we deduce

E(φ(K1(1))|K1(0) = x) = φ(x) + αNH

∫ 1

0
L−1(s1)φ(x)ds1

+ (αNH)2
∫ 1

0

∫ s1

0
L−1(s1)L−1(s2)φ(x)ds2ds1 +O(H3). (25)

Analogously for the solution K2(t) of (11), we have

E(φ(K2(1))|K2(0) = x) = φ(x) + βNH

∫ 1

0
L1(s1)φ(x)ds1

+ (βNH)2
∫ 1

0

∫ s1

0
L1(s1)L1(s2)φ(x)ds2ds1 +O(H3), (26)

where the constants in the above remainders O(H3) are independent of N, ε and have a
polynomial growth (13) with respect to x.

We next have by the Fubini theorem and using properties of conditional expectancies
(recall that W1,W2 in (10),(11) are independent Wiener processes),

E(φ(X1)|X0 = x) = E
W1

(
E
W2

(
φ(K2(1))|K2(0) = K1(1)

)
|K1(0) = x

)
(27)

where the notations EW1 ,EW2 refers to the expectation with respect to the Wiener process
W1,W2, respectively. Applying (25) with φ replaced by x = K2(0) 7→ E

W2(φ(K2(1))),
which is, by Theorem 3.3, almost surely of class C6 with derivatives of polynomial growth,
we deduce for all X0 = x the estimate4

E(φ(X1)) =
(
I + αNH

∫ 1

0
L−1(s1)ds1 + (αNH)2

∫ 1

0

∫ s1

0
L−1(s1)L−1(s2)ds2ds1

)

◦
(
I + βNH

∫ 1

0
L1(s1)ds1 + (βNH)2

∫ 1

0

∫ s1

0
L1(s1)L1(s2)ds2ds1

)
φ(x) +O(H3)

=
(
I + αNH

∫ 1

0
L−1(s1)ds1 + βNH

∫ 1

0
L1(s1)ds1

+ αNβNH
2

∫ 1

0
L−1(s1)ds1

∫ 1

0
L1(s1)ds1

+ (αNH)2
∫ 1

0

∫ s1

0
L−1(s1)L−1(s2)ds2ds1

4Observe that the ordering of composition is the opposite compared to the ordering (10),(11) in Algorithm
2.5. This effect is known as the “Vertauschungssatz” of Gröbner in the deterministic literature, see e.g. [21,
Sect. III.5.1].
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+ (βNH)2
∫ 1

0

∫ s1

0
L1(s1)L1(s2)ds2ds1

)
φ(x) +O(H3).

A consequence of (2) is
∫ 1
0 L−1(s1)ds1 =

∫ 1
0 L1(s1)ds1 and

∫ 1

0

∫ s1

0
L−1(s1)L−1(s2)ds2ds1 =

∫ 1

0

∫ 1

0
L1(s1)L1(s2)ds2ds1 −

∫ 1

0

∫ s1

0
L1(s1)L1(s2)ds2ds1.

We deduce

E(φ(X1)) =
(
I + (αN + βN )H

∫ 1

0
L1(s1)ds1

+ (αNβN + α2
N )H2

∫ 1

0

∫ 1

0
L1(s1)L1(s2)ds2ds1

+ (β2N − α2
N )H2

∫ 1

0

∫ s1

0
L1(s1)L1(s2)ds2ds1

)
φ(X0) +O(H3).

Using (12), we observe that αN + βN = 1, (αNβN + α2
N )H2 = (H2 − Hε)/2 and (β2N −

α2
N )H2 = Hε. Comparing the above Taylor expansion with the one in Proposition 3.4

permits to conclude the proof. �

Based on the local error estimate of Lemma 3.6, we may now give the proof of Theorem
2.3 for the global order two of convergence in the weak sense. To this aim, the following
lemma, which is shown in the proof of [25, Lemma 2.2, p. 102] is a crucial ingredient.

Lemma 3.7. [25] Consider a discrete process {Yk} (k ∈ N) satisfying (15). Assume further
that Y0 has finite moments of all orders. Then, for all integer p, there exists Cp such that

E(|Yk|p) ≤ eCpkh(E(|Y0|p) + 1)

for all k ∈ N and h ≤ h0.

Proof of Theorem 2.3. We use a well known result of Milstein [24] (see [25, Chap. 2.2])
which permits to deduce automatically the global error estimate of Theorem 2.3 from the
local error estimate of Lemma 3.6. To this aim, we only have to check is that the moments
E(|Xk|2r) of the numerical solution are bounded for all k,H with 0 ≤ kH ≤ T uniformly
with respect to k and H sufficiently small. This is a consequence of Lemma 3.7 applied with
h = H to the discrete process {Yk} defined by Y2k = Xk and Y2k+1 = Kk,1(1) where Kk,1 is
given in (10). Considering the SDEs (10) and (11), the estimates (15) with h = H for the
discrete flows Kk,1(0) 7→ Kk,1(1) and Kk,2(0) 7→ Kk,2(1) are a straightforward consequence
of the Lischitzness of f, gr, r = 1, . . . ,m. This permits to conclude the proof. �

In order to prove Theorem 2.6 for the the global weak accuracy of the fully-discrete
method, we need to check that the numerical solution has uniformly bounded moments of
any order. This is the purpose of the following lemma which shows that the numerical
moments are uniformly bounded in spite of the oscillatory terms e±hA/2 involved in the
scheme.
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Lemma 3.8. Assume the hypotheses of Theorem 2.6 and consider the numerical solution
Xk of Algorithm 2.5. Then, for all p ∈ N, there exists a constant Cp such that for all
H = Nε, k ∈ N with kH ≤ T ,

E(|Xk|p) ≤ Cp.

Proof. We observe that the numerical solution Xk+1 is calculated inductively from Xk using
a composition of 2n stochastic mappings of the form

eδhA/2 ◦ ΦγhH ◦ eδhA/2

where δ = −1, γ = αN or δ = 1, γ = βN . Let {Yκ}, κ = 0, 1, 2, . . . denote the discrete
process arising from this composition (note that Xk = Y2nk). We next define the discrete
process Ỹκ from Yκ by

Ỹ2nk+j = ejhAY2nk+j , Ỹ2nk+n+j = e−jhAY2nk+n+j , , j = 1, . . . , n.

For 1 ≤ j ≤ n, we obtain Ỹ2nk+j+1 = eh(j+1/2)A ◦ΦαNhH ◦e−h(j+1/2)A(Ỹ2nk+j), which yields

Ỹ2nk+j+1 − Ỹ2nk+j = eh(j+1/2)A(ΦαNhH(e−h(j+1/2)AỸ2nk+j)− e−h(j+1/2)AỸ2nk+j).

Analogously, for n + 1 ≤ j ≤ 2n, the above identity holds with A replaced by −A and
αN replaced by βN . Using the estimates (15) on Φh, the inequality |eλAξ| ≤ c|ξ| for all
λ ∈ R, ξ ∈ R

d, and the bounds αN ≤ 1, βN ≤ 1 we deduce for all κ,

|E(Ỹκ+1 − Ỹκ|Ỹκ = x)| ≤ C(1 + |x|)Hh, |Ỹκ+1 − Ỹκ| ≤Mκ(1 + |Ỹκ|)
√
Hh,

where C is independent of N,n,H, h, ε, κ, k. Applying Lemma 3.7 then yields that Ỹκ has
uniformly bounded moments of any order for κHh ≤ 2T . We conclude the proof using
h = 1/n and Xk = Ỹ2nk for all k. �

We shall also need the following result, whose proof follows standard arguments. For
the sake of completeness, a proof is provided in Appendix.

Lemma 3.9. Assume the hypotheses of Theorem 2.6. Let δ = −1, γ = αN (resp. δ =
1, γ = βN ). Then, the integrator

Yk+1 = eδhA/2 ◦ ΦγHh ◦ eδhA/2(Yk),

applied the SDE (10) (respectively (11)) satisfies for all φ ∈ C6
P (R

d,R) and all H,h = 1/n
small enough,

|E(φ(Yn))− E(φ(Kj(1)))| ≤ C(x)h2H,

where j = 1 (resp. j = 2) and C(x) is independent of h,H,N, n, k, ε and satisfies (13).

Proof of Theorem 2.6. Consider the numerical solution denoted X̂k of the semi-discrete
Algorithm 2.1. Applying Lemma 3.9 for (10) and (11), we deduce

|E(φ(X̂1))− E(φ(X1))| ≤ C(x)h2H.

Using Lemma 3.6, we deduce the local error estimate

|E(φ(X1))− E(φ(X(H)))| ≤ C(x)(H3 + h2H). (28)

In addition, by Lemma 3.8, the numerical solution Xk as uniformly bounded moments of
any order, and the Milstein theorem [24] (see [25, Chap. 2.2]) then yields the global error
estimate of Theorem 2.6. �
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4 Numerical experiments

In this final section, we consider four problems to illustrate numerically the weak conver-
gence rates of the proposed methods and the versatility of the approach. We investigate not
only the accuracy of the methods compared to other oscillatory integrators but also their
long time qualitative behavior. We also compare our approach with other known highly
oscillatory integrators.

4.1 An illustrative example: Kubo oscillators

We first focus on the so-called Kubo oscillators. A nonlinear version with multiplicative
Stratonovitch noise, as considered recently in [10], is

dQ(t) = (−ε−1P (t) + Pf(P (t), Q(t)))dt+ σP (t) ◦ dW (t)

dP (t) = (ε−1Q(t)−Qf(P (t), Q(t)))dt− σQ(t) ◦ dW (t) (29)

where P (t), Q(t) ∈ R and the same one-dimensional Wiener process is considered in (29) for
both components. Notice that (29) can be put in the form (1) using the time transformation
t̂ = t/2π and the Stratonovitch to Itô conversion formula. For the nonstiff part of the system
(29), we choose as micro integrator a Strang splitting method

Φh = ΦV
h/2 ◦ ΦW

h ◦ ΦV
h/2, (30)

where, on the one hand, the noise part dQ = σP ◦ dW, dP = −σQ ◦ dW is integrated with

ΦV
h :

(
q
p

)
7→
(
Q
P

)
=

(
cos(σ

√
hξ) sin(σ

√
hξ)

− sin(σ
√
hξ) cos(σ

√
hξ)

)(
q
p

)

where ξ are independent random variables with P(ξ = ±
√
3) = 1/6, P(ξ = 0) = 2/3. Notice

that replacing above
√
hξ by ∆Wk = W ((n + 1)k) −W (nk) would make ΦV

h exact. The
above choice of discrete random variable makes ΦV

h a weak second order integrator (using
E(ξ2) = 1,E(ξ4) = 3). On the other hand, the nonlinear part dQ = σPf(P,Q)dt, dP =
−σQf(P,Q)dt is approximated by the implicit midpoint rule defined as

ΦW
h :

(
q
p

)
7→
(
Q
P

)
=

(
q + hPMf(PM , QM )
p− hQMf(PM , QM )

)

where PM = (p+P )/2, QM = (q+Q)/2. In the implementation of ΦW
h , we use fixed point

iterations until convergence up to round-off errors. Notice that the splitting scheme (30)
has weak second order of accuracy (see Proposition 6.1 in Appendix with ε = 1).

Conservation of quadratic first integrals An interesting feature of (29) is that the
quantity C(p, q) = p2 + q2 is exactly conserved along time for all trajectories. Precisely,
observing that d

(
C(P (t), Q(t))

)
= 0 (as shown for instance in [10, Prop. 3.2]), we have

almost surely
P (t)2 +Q(t)2 = P (0)2 +Q(0)2, for all t > 0. (31)

Since both integrators ΦV
h and ΦW

h exactly conserve the quadratic first integral, we have
that Φh in (30) exactly conserves P (t)2 + Q(t)2, and thus also the corresponding fully-
discrete S-MRCM of Algorithm 2.5: P 2

k + Q2
k = P 2

0 + Q2
0 for all k ∈ N and all numerical

trajectories of the method. Note in contrast that the strong method proposed in [10] does
not conserve exactly this quadratic first integral in general.
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Figure 1: Multi-revolution methods for the Kubo oscillator (29) with nonlinearity f(p, q) =
p3+q5. Error in E(Q(T )2) versus number of macro steps (final time T = 2π). Top pictures:
semi-discrete S-MRCM. Bottom pictures: fully-discrete S-MRCM with n = 8, 16, 32, 64
micro steps per macro step (respectively from top to bottom).

Weak convergence rates Since the scheme exactly conserves the quadratic first integral
P 2+Q2, we have that the weak error bound (17) holds provided that f : R2 → R in (29) is of
class C6 in a neighbourhood of {(p, q) ; p2+q2 = P0+Q0} where we consider a deterministic
initial condition (here Q0 = 1, P0 = 0). We consider the nonlinearity f(p, q) = p3 + q5

(similarly to [10]). For ε = 2−6 ≃ 1.6 · 10−2 (left pictures) and ε = 2−8 ≃ 3.9 · 10−3 (right
pictures), we plot for many different macro steps H the error for the second moment of the
first component E(|Q(T )|2) at the final time T = 2π as a function of the number of macro
steps T/H. The expectation is approximated using the average over M = 107 trajectories
to make the Monte-Carlo error sufficiently small compared to the weak accuracy of the
methods. In the top pictures, we take n = 1024 micro steps in each macro step, so that
the micro discretization can be considered as nearly exact (see semi-discrete Algorithm
2.1). In the bottom pictures, the four lines correspond respectively to n = 8, 16, 32, 64
micro steps per macro step (from top to bottom lines). In the top pictures, we observe
the expected lines of slope 2, as proved in the semi-discrete error analysis of Theorem 2.3.
In the bottom pictures, we observe the expected lines of slope 2 only for a sufficiently
fine micro stepsize, as shown in Theorem 2.6. As a reference solution, we consider here
the standard Strang splitting eε

−1hA/2 ◦ Φh ◦ eε−1hA/2 with Φh defined in (30) with small
stepsize h = 2−15T ≃ 1.9 · 10−4.

4.2 A test problem with non-commutative noise

In some situations (e.g. the stochastic nonlinear Schrödinger model (7) studied in Section
4.4), the exact solution of the non oscillatory system (14) is available and easy to compute.
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Otherwise a weak second order approximation is needed in general. Notice that already for
nonstiff stochastic problems and without structure assumptions (i.e. for a non-commutative
noise), methods with high strong order are generally costly to simulate because they involve

multiple stochastic integrals, such as
∫ h
t0

∫ s2
0 dWq(s1)dWr(s2), which are costly to approxi-

mate strongly for q 6= r. This is however not true for weak methods where such multiple
stochastic integrals can be approximated efficiently in a weak sense using appropriate dis-
crete random variables. The aim of this section is to illustrate that this is again not a
difficulty in our highly oscillatory context. We consider the following nonlinear oscillatory
problem in dimension d = 2, which is a modification of a scalar test SDE from [14], with a
non-commutative Itô noise with m = 10 independent driving Wiener processes,

dQ(t) = −ε−1P (t)dt, Q(0) = 1, (32)

dP (t) = ε−1Q(t)dt+
10∑

j=1

a−1
j

√
P (t)2 +Q(t)2 + b−1

j (1−Q(t))dWj(t), P (0) = 0.

where P (t), Q(t) ∈ R. The values of the constants aj , j = 1, . . . , 10 are respectively 5, 5,
10, 15, 30, 15, 10, 5, 10, 15, and the values of bj , j = 1, . . . , 10 are respectively 4, 3, 5, 2, 1, 2,
4, 5, 10, 10. Considering the averaged oscillatory energy E = E

(
P 2 +Q2

)
, an application

of the Itô formula yields dE(t)
dt =

∑10
j=1 a

−2
j (E(t) + b−1

j (1 − cos(t/ε))), which can be solved
analytically as

E
(
P (t)2 +Q(t)2

)
= eat + b(a+ a3ε2)−1

(
eat + a2ε2 cos(t/ε)− aε sin(t/ε)− a2ε2 − 1

)
,

where a =
∑10

j=1 a
−2
j = 37/225, b =

∑10
j=1 a

−2
j b−1

j = 257/6000. We shall use this formula to
check the accuracy of the fully-discrete S-MRCM (Algorithm 2.5).
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Figure 2: Multi-revolution methods for the test problem (32) with non-commutative noise
with ε = 2−8. Error in the averaged energy E(P (T )2 + Q(T )2) at T = 2π versus number
of micro steps (left picture) or the number of diffusion function evaluations (right picture).
Solid lines: method (33) with weak order 2 for the nonstiff part. Dashed lines: Euler-
Maruyama method with weak order 1 for the nonstiff part. We use in both cases the
multi-revolution parameter N = 128 and N = 256 (from top to bottom).

For the integrator X1 = Φh(X0) needed to integrate the non-stiff part of problem (32),
which has the form (14) with f = 0, we compare two different schemes which fulfil the
assumptions of Theorem 2.6. On the one hand we simply use the Euler-Maruyama method
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of weak order 1,

X1 = X0 +
√
h

m∑

r=1

gr(X0)ξr,

where ξr are independent discrete random variables satisfying P(ξr = ±
√
3) = 1/6, P(ξr =

0) = 2/3. On the other hand, we consider the following Runge-Kutta type scheme of weak
order two, which is a derivative free version of the Milstein-Talay method [32] derived in
[3, Lemma 3.1] using an idea in [28] to make the number of evaluations of each diffusion
function gr, r = 1, . . . ,m independent of the dimensions d,m,

X1 = X0 +
1

2

m∑

r=1

(
gr
(
X0 +

m∑

q=1

gq(X0)Jq,r
)
− gr

(
X0 −

m∑

q=1

gq(X0)Jq,r
))

+

√
h

2

m∑

r=1

(
gr(X0 +

√
h

2

m∑

q=1

gq(X0)χq) + g(X0 −
√
h

2

m∑

q=1

gq(X0)χq)
)
ξr, (33)

where the quantity Jq,r is a weak approximation of the multiple stochastic integral
∫ h
0

∫ s2
0 dWq(s1)dWr(s2)

given by [25, p. 96, eq. (1.25)]

Jq,r =





h(ξrξr − 1)/2, if q = r,
h(ξqξr − χq)/2, if r < q,
h(ξqξr + χr)/2, if r > q,

and χl, ξl, l = 1 . . .m are independent discrete random variables satisfying P(χl = ±1) =
1/2,P(ξl = ±

√
3) = 1/6,P(ξl = 0) = 2/3.

In Figure 2, we consider Algorithm 2.5 applied to problem (32) with final time T = 2π,
and oscillatory frequency ε = 2−8. We plot the error in the averaged energy E(P (T )2 +
Q(T )2) ≃ 3.2816345 as a function of the total number of micro steps (left picture) or as
a function of the number of evaluations of the diffusion functions gr, r = 1, . . . ,m (right
picture), taking into account that method (33) requires 5 diffusion function evaluations per
step in contrast to the Euler-Maruyama method with a single evaluation of the diffusion
functions per step. Since these evaluations dominate the cost of the method for a large
dimensionm, this is a natural measure of the computational cost. The averages are obtained
using 108 independent trajectories. We use successively the multi-revolution parameters
N = 128 and N = 256, and obtain in Figure 2 the expected lines of slope 2 and 1, except
for large numbers of micro steps where the macro error (and also the Monte-Carlo error) is
not negligible compared to the micro error. This confirms the error analysis in Theorem 2.6.
We observe in the right picture of Figure 2 that the S-MRCM using a weak second order
nonstiff method is more efficient than the S-MRCM using the Euler-Maruyama method in
the case where high accuracy is needed (finer than one percent in this example).

4.3 A modification of the Fermi-Pasta-Ulam problem with additive noise

We next consider a problem inspired from [21], which is a single-frequency modification of
the Fermi-Pasta-Ulam problem often used to test methods for highly-oscillatory problems.
It corresponds to a second order Hamiltonian system of the form (3) with d = 6 degrees of
freedom and additive noise (4),

dQ = ∇PH(P,Q)dt, dP = −∇QH(P,Q) + σBdW (t). (34)
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Its Hamiltonian function is defined by

E(p, q) =
1

2

6∑

i=1

p2i +
1

2ε2

6∑

i=4

q2i + V (q), (35)

with the quartic interaction potential

V (q) =
1

4
((q1 − q4)

4 + (q2 − q5 − q1 − q4)
4 + (q3 − q6 − q2 − q5)

4 + (q3 + q6)
4),

where ε > 0 is a small parameter. Again, following [7] in the deterministic setting, this
problem can be put in the form (1) up to a time transformation t̂ = t/2π, where A ∈ R

12×12

is given by

A =




0 0 0 0
0 0 0 2πηI
0 0 0 0
0 −2πη−1I 0 0


 ,

where η = ε is fixed, and 0, I denote respectively zero and identity matrices of size 3 × 3.
This model describes the motion of a chain composed with three soft nonlinear springs
and three stiff linear springs (see [21] in the deterministic context). The components i =
1, 2, 3 are associated to a slow motion, while the components i = 4, 5, 6 oscillate rapidly
at the frequency ε−1. We consider the initial condition Q(0) = (1, 0, 0, ε, 0, 0)T , P (0) =
(1, 0, 0, 1, 0, 0)T , and similarly to [12], we consider an additive noise perturbation (4) in
dimension m = 1 with

B = σ(0, 1, 1/2, 5, 0, 1/100)T . (36)

Remark 4.1. Our stochastic error analysis is performed for simplicity for a constant matrix
A independent of ε. However, analogously to the deterministic case in [7], it can be extended
to the present situation where A depends on η = ε. Indeed, since a, br in (3) are independent
of the highly oscillatory velocities, we have that the unbounded factor η−1 involved in A never
appears in etAf(e−tAy) and etAgr(e−tAy) where f, gr are the vector fields in the formulation
(20) of the problem.

Weak convergence rates We emphasize that our convergence analysis applies only to
Lipschitz vector fields, which is not the case of problem (34)-(35). However, numerical
experiments still exhibit the high weak order two of convergence of the method predicted in
the Lipschitz case. We consider the fully-discrete Algorithm 2.5 where the micro integrator
is defined as a Strang Splitting (30) where ΦV

h integrates exactly the deterministic problem
with Hamiltonian 1

2

∑3
i=1 p

2
i and ΦW

h integrates the position components (see [7] for details
on the implementation). In Figure 3, we plot the convergence curves of the S-MRCM for
average Hamiltonian energy E(E) at final time T = 2π for ε = 2−6 (left picture) and
ε = 2−8 (right picture), respectively. We plot the errors at time T = 2π as a function of the
number of macro steps T/H where the macro stepsize is H = 2πNε (taking into account
the time transformation t̂ = t/(2π)). The 3 curves in each plot correspond respectively to
n = 8, 16, 32 micro steps per macro steps (from top to bottom). We observe convergence
curves with slope 2, which corroborate the fully-discrete error analysis of Theorem 2.6.
The expectations are obtained as the averages over 108 trajectories of the methods, and the
reference solution is computed using a standard Strang splitting with stepsize h = 2−16T ≃
10−4.
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Figure 3: Multi-revolution methods for the FPU like problem (34) with Hamiltonian (35).
Error in the Hamiltonian E(E(P (T ), Q(T ))) (from top to bottom pictures, respectively)
versus the number of macro steps (final time T = 2π). The lines corresponds to the fully-
discrete S-MRCM with n = 8, 16, 32 micro steps per macro step, respectively.

Long time behavior Although our error analysis applies only to bounded time intervals
with respect to ε, we investigate in Figure 4 the long time behavior of the S-MRCM on long
time intervals of size T = 2πε−1 with ε = 1/200. We consider the evolution along time of
the three stiff spring energies

Ij =
1

2
p23+j +

1

2ε2
q23+j , j = 1, 2, 3

the total oscillatory energy I = I1 + I2 + I3 and the Hamiltonian energy in (35). In the
deterministic case, it is classical (see e.g. [21]) that the Hamiltonian of the exact solution
is exactly conserved, while I(t) = I(0) +O(ε) is nearly conserved along time and called an
adiabatic invariant. In addition energy exchanges at the time scale ε−1 can be observed
between the stiff spring energies I1, I2, I3. This can be observed in Figure 4 (left pictures)
for a reference solution (Strang splitting method with small stepsize h = 10−3) and the
MRCM of deterministic order 2 as first proposed in [7].

In the additive noise case (where we take σ = 0.1 in (36)), there is still an average energy
exchange between the stiff springs, as observed in [12], and a linear drift (5) of the average
Hamiltonian energy with slope 1

2‖σB‖2 is expected for the exact solution. We observe an
excellent behavior of the proposed S-MRCM, where the expected energy linear drift with
the expected slope (5) can be observed (compare the S-MRCM and reference solutions in
right pictures). We took the macro parameter N = 10 and n = 8 micro steps per macro
time steps. On the time interval (0, 2πε−1), this corresponds to nN−1ε−2 = 3.2 · 104 forces
evaluations of the potential force ∇V for each numerical trajectory. In comparison, for
the reference solution with h ≃ 10−3 (Strang splitting), we make 2πε−1h−1 ≃ 1.3 · 106
force evaluations to achieve a satisfactory solution. In this experiment, all expectations
are obtained using the averages over 103 trajectories. Notice that for a standard explicit
integrator, such as the Euler-Maruyama method (not represented here), a super linear
growth of the numerical Hamiltonian would be observed (see [12]), yielding a completely
wrong qualitative behavior.

19



0 300 600 900 1200.0

.5

1.0

1.5

2.0

0 300 600 900 12000

50

100

150

0 300 600 900 1200.0

.5

1.0

1.5

2.0

0 300 600 900 12000

50

100

150

I2
I3

I1

Hamiltonian E

I

time

deterministic reference solution (σ = 0)

E(I2)
E(I1)

E(I3)

E(I)E(
E)

ref
ere

nc
e s

lop
e
1
2
‖σB

‖2

time

stochastic reference solution (σ = 0.1)

I2
I3

I1

Hamiltonian E

I

time

deterministic MRCM (σ = 0)

E(I2)
E(I1)

E(I3)

E(I)E(
E)

ref
ere

nc
e s

lop
e
1
2
‖σB

‖2

time

stochastic MRCM (σ = 0.1)

Figure 4: Energy exchanges in the FPU-like problem (34) with ε = 1/200 on the time
interval (0, 2πε−1). Comparison of the S-MRCM (N = 10,n = 8) (bottom pictures) and a
reference solution (Strang splitting with h = 10−3, top pictures). Stochastic case (σ = 0.1):
averages over 103 numerical trajectories.

4.4 The stochastic nonlinear Schrödinger equation

Although our analysis applies only to finite dimensional systems of SDEs, we finally consider
the SPDE model (6) of the nonlinear Schrödinger equation with a multiplicative space-time
noise,

i
∂u(x, t)

∂t
= −∆u(x, t) + εV (x)|u(x, t)|2u(x, t) + σ

√
εu(x, t) ◦ Ẇ (x, t), t > 0, (37)

u(x, 0) = cosx+ sinx,

where V (x) = 2 cos(2x), σ = 10−2 is a constant, and W (x, t) is a space-time noise which
is white in time and meant in the Stratonovitch sense and spatially correlated in space.
Problem (37) is posed for simplicity in dimension one of space on the interval (0, 1) with
periodic boundary conditions. In the deterministic setting (σ = 0) this problem is analyzed
theoretically in [19] and considered in [6, 7] to illustrate highly oscillatory integrators, and
it has a unique global solution in all Sobolev spaces Hs for arbitrary s ≥ 0.

We consider the S-MRCM (Algorithm 2.5) applied to the spectral formulation (7), which
yields to a system of SDEs with a multiplicative noise of Stratonovitch type in dimension
2ℓ. We observe that y(t) = exp

(
− itα|y0|2 − iβW (t)

)
y0 is the the exact solution of the

complex scalar Stratonovitch SDE idy = α|y|2y+βu◦dW, y(0) = y0 for all real parameters
α, β. It is thus natural to define the micro integrator Φh of the S-MRCM algorithm by
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Φh = Fℓ ◦ ψh ◦ Fℓ
−1 where Fℓ denotes the Fast Fourier Transform and ψh is given by

ψh : (uj)−ℓ<j≤ℓ ∈ C
2ℓ 7→

(
exp

(
−ihV (xj)|uj |2 − iσ

√
h√
∆x

χj

)
uj

)

−ℓ<j≤ℓ

where xj = j∆x, ∆x = 1/(2ℓ) and χj are independent random variables with P(χj =
±
√
3) = 1/6, P(χj = 0) = 2/3).
Features of the considered scheme are that it is explicit and the complexity with respect

to the space dimension parameter ℓ reduces to O(ℓ log ℓ) thanks to the Fast Fourier Trans-
form algorithm. In addition, the mass

∑
ℓ<j≤ℓ |ξj(t)|2, which is a quadratic first integral

of (7), is exactly conserved by the numerical scheme (up to round-off errors) because the
method is a composition of mass preserving flows.

Convergence rates For ε = 10−4 and ℓ = 128 spatial Fourier modes we plot in Figure 5
the error in E(|ξ1(T )|2) and E(|ξ3(T )|2) (second moment of the first and third modes) at time
T = 2πε−1 as a function of the number of macro steps, here 1, 2, 4, 8, 16, 20, 40, respectively.
The number of micro steps per macro step is n = 100, and we take the averages over 105

trajectories. Again we observe the expected lines of slope 2. As reference solution, we take
the numerical solution with N = 10, which corresponds to 103 macro steps on the time
interval (0, T ).

Long time behavior Again for ε = 10−4, we plot in Figure 6 the solution of S-MRCMs
with parameter N = 100 for the first Fourier modes |ξj(t)| for |j| = 1, 3, 5, . . . , 9 (notice
that ξj(t) = 0 for even indices j if σ = 0) along time in the interval (0, 10πε−1). In the top
pictures, we consider the deterministic case (σ = 0) for which the Hamiltonian is exactly
conserved by the exact solution (see the top right picture where the Hamiltonian error of
the S-MRCM remains small, of size 10−8). It was shown in [19] that a nonlinear beating
effect occurs for the first mode of the exact solution

|ξ1(t)|2 =
1 + sin(2εt)

2
+O(ε1/8), |ξ−1(t)|2 =

1− sin(2εt)

2
+O(ε1/8), t ≤ ε−9/8.

This behavior of the exact solution is well reproduced by the deterministic MRCM as
reported in [7] (see top left picture). In the stochastic case of a multiplicative space-time
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Figure 5: Stochastic nonlinear Schrödinger problem (37) with ε = 10−4. Error of S-MRCM
at time T = 2πε−1 for E(|ξ1|2) (first mode) and E(|ξ3|2) (third mode) as a function of the
number of macro steps. Number of micro steps per macro step: n = 100.
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Figure 6: Nonlinear Schrödinger problem (37) with ε = 10−4 on the time interval (0, 2πε−1).
Top pictures: deterministic case (σ = 0). Bottom pictures: one sample trajectory in
the stochastic case (σ = 1). Left pictures: Plot of the actions |ξj(t)| along time t, for
j = 1, 3, 5, . . . , 9 (solid lines) and for j = −1,−3,−5, . . . ,−9 (dotted lines) with colors from
red (|j| = 1) to black (|j| = 9). Right pictures: Hamiltonian energy along time (in blue).

noise (σ = 0.1), an analogous beating effect with period π/ε can still be observed in the
first mode (see a sample trajectory in bottom pictures). Notice that in this stochastic
context, the Hamiltonian energy is no longer a conserved quantity for the exact solution
(see a sample trajectory in bottom right picture).

4.5 Comparison with other oscillatory integrators

In this section, we compare the efficiency of the proposed multi-revolution composition
methods with other existing methods for the Kubo oscillator (Section 4.1) and the FPU
type problem (Section 4.3). Precisely, we consider the following five methods:

• s-mrcm2: the multi-revolution methods of weak order two (Algorithm 2.5).

• s-mrcm1: the multi-revolution modification of weak order one discussed in Remark
2.4.

• splt2: the standard Strang splitting method between the highly oscillatory part and
the nonstiff part, of weak order two,

Xk+1 = eε
−1hA/2 ◦ ΦW

h/2 ◦ ΦV
h ◦ ΦW

h/2 ◦ eε
−1hA/2(Xk) (38)
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where ΦV
h integrates the deterministic nonlinear part and ΦW

h integrates the noise, as
described in Sections 4.1 and 4.3 for problems (29), (34), respectively.

• trig: the implicit trigonometric method proposed and studied numerically in [10,
eq. (19)] for the Kubo oscillator (29),

(
Qk+1

Pk+1

)
= eε

−1hA

((
Qk

Pk

)
+
h

2

(
Pkf(Pk, Qk)
−Qkf(Pk, Qk)

)
+
σ

2

(
Pk

−Qk

)
∆Wk

)

+
h

2

(
Pk+1f(Pk+1, Qk+1)
−Qk+1f(Pk+1, Qk+1)

)
+
σ

2

(
Pk+1

−Qk+1

)
∆Wk (39)

where we have the identity eε
−1hA =

(
cos(ε−1h) − sin(ε−1h)
sin(ε−1h) cos(ε−1h)

)
and ∆Wk =W (tk+1)−

W (tk) are independent centred Gaussian random vectors with variance hI.

• trig1: the explicit trigonometric method proposed in [10, 11] for second order SDEs
with additive noise (3)-(4),

(
Qk+1

Pk+1

)
=

(
cos(ε−1hK) h sinc(ε−1hK)

−ε−1K sin(ε−1hK) cos(ε−1hK)

)(
Qk

Pk

)
(40)

+
h

2

(
hΨa(ΦQk)

Ψ0a(ΦQk) + Ψ1a(ΦQk+1)

)
+

(
h sinc(ε−1hK)B∆Wk

cos(ε−1hK)B∆Wk

)

where we denote the position and velocity vectors X = Q and Ẋ = P . Here,
Φ,Ψ,Ψ0,Ψ1 are filter matrices introduced to avoid numerical resonances arising al-
ready in the deterministic setting [21, Chap.XIII] and defined in [10, 11] following [20],

Φ = sinc(ξ), Ψ = sinc3(ξ), Ψ0 = cos(ξ) sinc2(ξ), Ψ1 = sinc2(ξ),

with ξ = ε−1hK where we note that sinc(ξ) = ξ−1 sin(ξ) is defined for possibly
singular matrices ξ. We recall that the scheme (40) does not require the eigenvalues
of the highly oscillatory matrix K to be integer multiples in contrast to the multi-
revolution approach where (2) is assumed. In the analysis [11] of the stiff scheme (40),
it is proved a strong convergence of order one for the position, E(‖Qk−Q(tk)‖2)1/2 ≤
Ch for all kh ≤ T (which implies weak order one) and h ≥ cε, with constants C, c
that are independent of ε, h. A bound E(‖Pk − P (tk)‖2)1/2 ≤ C is proved on the
velocities.

In Figure 7, we consider the Kubo oscillator (29) and the FPU problem (34) as de-
scribed in Sections 4.1 and 4.3 with highly oscillatory frequency ε = 2−8. We plot the
weak errors (in E(Q(T )2) and E(E(T )), respectively) versus the total number of steps for
multi-revolution methods s-mrcm1 and s-mrcm2, the standard Strang splitting method
splt2, and trigonometric methods from [10, 11] (method trig in (39) for the Kubo oscil-
lator and method trig1 in (40) for the FPU problem). For the multi-revolution methods,
the considered number of steps corresponds to the total number of micro-steps, namely
2nT/H for s-mrcm2 and nT/H for s-mrcm1 where T/H is the number of macro steps
(we choose here n = 8 micro steps). Since the most expansive part of all integrators is the
integration of the nonlinearity of the problems, this is a fair measure of the computational
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Figure 7: Precision/work diagrams. Weak errors versus the total number of steps for
multi-revolution methods or orders 1 and 2 (solid lines), standard Strang splitting methods
(38) (dotted lines), and trigonometric methods (dashed lines). Highly oscillatory frequency
ε = 2−8. Left picture: error in E(Q(T )2) (second moment of the first component) for
the Kubo oscillator (29). Right picture: error in E(E(T )) (average energy) for the FPU
problem (34). Fully-discrete S-MRCM with n = 8 micro steps per macro step.

cost of the methods. The expectancies are computed as the averages over 107 independent
trajectories.5

For both problems, we observe that the multi-revolution composition methods s-mrcm1
and s-mrcm2 exhibit lines of slopes 1 and 2 which corroborates the uniformly accurate weak
convergence rates of Theorem 2.6 and Remark 2.4. Thus, any prescribed accuracy at a fixed
time T can be achieved with a computation cost which is independent of the smallness of
ε. In contrast, the standard splitting methods for both problems and the trigonometric
method trig in (39) for the Kubo oscillator require small stepsizes h ≤ Cε for the methods
to converge. This means that these standard schemes have a computation cost which grows
as O(ε−1) as ε → 0 which makes these nonstiff integrators inefficient for highly oscillatory
problems. The stiff trigonometric method trig1 in (40) for the FPU problem has a line
with slope 1 which corroborates the strong convergence analysis in [11] and is efficient for
large time steps. Notice however that the scheme converges only in the regime h ≥ cε.
This is not surprising because this stepsize restriction is needed in the analysis in [11]. We
did not apply the stiff trigonometric method trig1 to the Kubo oscillator because this
scheme is designed for second order SDEs with additive noise and does not generalizes
straightforwardly to the multiplicative noise case.

5 Conclusion

We have presented and analyzed a class of large time step integrators for highly oscillatory
SDEs based on the idea of multi-revolution composition methods originally introduced for
deterministic problems [7]. The versatile micro-macro approach can in principle be coupled
with any micro integrator in the spirit of the Heterogeneous Multiscale Method [2, 16, 17].
This permits to construct methods with favourable geometric properties such as quadratic
first integral preserving methods, as illustrated in the numerical experiments. Since the
multi-revolution methods allow a (macro) stepsize H ≫ ε and have uniform accuracy

5In the results for the Kubo oscillator (left picture in Figure 7), notice that the errors appear bounded
from below for the finer number of steps 1024, 2048. This is due to the Monte-Carlo error, here with size
≃ 5 · 10−4 for 107 trajectories.
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with respect to the oscillatory period ε, the proposed approach could be coupled with the
multilevel Monte-Carlo method for SDEs [18], which permits to significantly speed up the
standard Monte-Carlo method by reducing the variance of the scheme. Indeed, applied to
stiff problems, the multilevel approach requires a scheme allowing both coarse and fine time
steps, as shown recently in [1] in the context of stiff stochastic diffusion problems. Finally,
we mention that the analysis of the multi-revolution approach is studied in [8] for the linear
Schrödinger equation in the deterministic case. The extension to the stochastic case will
be investigated in future works.
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6 Appendix

The proof of Lemma 3.9 used in the proof of the main Theorem 2.6 is an immediate
consequence of the following more general proposition applied with f1 = δA, gr1 = 0,
f2 = f , gr2 = gr, and ε = γH. Although this result on the Strang splitting method is
well known in deterministic contexts (see for instance [21]), it seems not available in the
literature in a stochastic context, and it can be useful by itself also for ε = 1.

Proposition 6.1. For a fixed ε, consider the system of SDEs

dX(t) = (f1 + εf2)(X(t))dt+
m∑

r=1

(gr1 +
√
εgr2)(X(t))dWr(t), X(0) = X0 (41)

where f1, f2, g
r
1, g

r
2 : Rd → R

d, r = 1, . . . ,m are smooth vector fields satisfying (H). Con-
sider the stochastic flows Φ1

h and Φ2
h with time h of the auxiliary SDE problems dX =

f1dt+
∑m

r=1 g
r
1dWr and dX = f2dt+

∑m
r=1 g

r
2dWr, respectively. Then, the integrator

Xk+1 = Φ1
h/2 ◦ Φ2

εh ◦ Φ1
h/2(Xk),

where Φ1
h/2, Φ

2
εh, and Φ1

h/2 are applied with independent Wiener processes, satisfies for all

φ ∈ C6
P (R

d,R) and all hk ≤ T ,

|E(φ(Xk))− E(φ(X(kh)))| ≤ Cεh2,

where C is independent of h, ε and X(t) is the solution of (41). In addition, considering for
Φ2
h a weak second order approximation satisfying (15) and (16), the above error estimates

remains valid.

Proof. We denote by et(L1+εL2)φ(x) and etLjφ(x), j = 1, 2 the solutions at time t of the
backward Kolmogorov equation (22) with Lε replaced by L1+ εL2 and Lj , j = 1, 2, respec-
tively. We have by [33, Thm. 2.2] (see Theorem 3.3 with A = 0),

E(φ(X(h))|X(0) = x) = eh(L1+εL2)φ(x)
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and analogously E(φ(Φj
h(x))) = ehLjφ(x), for j = 1, 2, where the generator Lj is defined by

Ljφ(x) := fj(x) · ∇φ(x) + 1
2

∑m
r=1 φ

′′
(
grj (x), g

r
j (x)

)
and eh(L1+εL2)φ(x) and ehLjφ(x) are

C3 functions with respect to h with derivatives with polynomial growth (13). Analogously
to (27) in the proof of Lemma 3.6, we deduce

E(φ(X1)|X0 = x) = e
h
2
L1 ◦ ehεL2 ◦ eh

2
L1φ(x).

We obtain for all initial condition X0 = x,

e(h) := E(φ(X1))− E(φ(X(h))) = e
h
2
L1 ◦ eεhL2 ◦ eh

2
L1φ(x)− ehL1+εhL2φ(x).

Next, a straightforward Taylor series calculation yields dpe(h)
dhp

∣∣∣
h=0

= 0 for p = 0, 1, 2 (see e.g.

[21, Chap. III.4]). Using [33, Thm. 2.2] (see Theorem 3.3 with A = 0) applied repeatedly

with φ replaced by e
h
2
L1φ and eεhL2 ◦eh

2
L1φ, the quantity e(h) is of class C3 with respect to

h and the third derivative has the polynomial growth (13) with respect to x. In addition,
by the variation of constant formula,

e(h) = ε

∫ h

0
esL1+εsL2L2e

(h−s)L1φds− ε

∫ h

0
ehL1/2eεsL2L2e

hL1/2φds,

which yields that the third derivative of e(h) has size O(ε) for all h. By the Taylor formula,
we deduce for all initial condition X0 = x the local error bound

|e(h)| ≤ C(x)εh3

where C(x) is independent of h, ε and satisfies the polynomial growth (13) with respect to
x. We conclude the proof of the global weak error estimate using the Milstein theorem in
[24] (see Remark 2.7). In the case where Φ2

h a weak second order approximation instead
of the exact flow, the above local error estimate remains valid for all h small enough, and
using Remark 2.7 permits to conclude the proof of Proposition 6.1. �
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[28] A. Rößler. Second order Runge-Kutta methods for Itô stochastic differential equations.
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