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HYPERBOLIC METRICS, MEASURED FOLIATIONS
AND PANTS DECOMPOSITIONS FOR
NON-ORIENTABLE SURFACES

A. PAPADOPOULOS AND R. C. PENNER

ABSTRACT. We provide analogues for non-orientable surfaces with
or without boundary or punctures of several basic theorems in the
setting of the Thurston theory of surfaces which were developed
so far only in the case of orientable surfaces. Namely, we pro-
vide natural analogues for non-orientable surfaces of the Fenchel-
Nielsen theorem on the parametrization of the Teichmiiller space
of the surface, the Dehn-Thurston theorem on the parametrization
of measured foliations in the surface, and the Hatcher-Thurston
theorem, which gives a complete minimal set of moves between
pair of pants decompositions of the surface. For the former two
theorems, one in effect drops the twisting number for any curve
in a pants decomposition which is 1-sided, and for the latter, two
further elementary moves on pants decompositions are added to
the two classical moves.
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1. INTRODUCTION

The study of surfaces together with their associated topological, com-
binatorial and geometric constructs and the action of surface map-
ping class groups on the corresponding spaces has been carried out
essentially in the case of orientable surfaces. Our aim in this paper
is to present three important results from this body of work, namely,
the Fenchel-Nielsen theorem on the parametrization of the Teichmiiller
space’ of the surface, the Dehn-Thurston theorem on the parametriza-
tion of the space of measured foliations in the surface and the Hatcher-
Thurston theorem, which provides a complete minimal set of moves
between pair of pants decompositions of the surface, in the setting of
possibly non-orientable surfaces.

We shall find, in effect, that if P is a pants decomposition of a possi-
bly non-orientable surface S, i.e., each component of S—UP is a pair of
pants, then the hyperbolic lengths (transverse measures respectively) of
all the curves in P together with twisting numbers defined only for the
2-sided curves in P give Fenchel-Nielsen coordinates (Dehn-Thurston
coordinates respectively) on the Teichmiiller space of S (space of mea-
sured foliations in S respectively). The twisting numbers we introduce
here for both orientable and non-orientable surfaces provide a new point
of view on the usual definitions, see, e.g., [24, 25, 16, 23| in the ori-
entable case. In fact, our new incarnations of twisting numbers depend
upon orientations of the curves in a pants decomposition in order to
conveniently specify the right or left sense of the twisting as well as a
basepoint in each pants curve. We shall be more specific on this below.

We shall also find that the four moves on pants decompositions in-
dicated in Figure 1 give a complete minimal set of moves acting tran-
sitively on the set of all pants decompositions of S. Here, as well as
in other figures of this paper, the discs with asterisks drawn within

!The Riemann surface structure in the non-orientable case is given by charts with
transition functions which are either analytic or anti-analytic and can be regarded
as an appropriate class of either complete finite-area hyperbolic or conformal metric
on the underlying smooth manifold. These are sometimes called “Klein surfaces”
[2, 14, 21].
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FiGURE 1. The four elementary moves. In each case,
one or more of the depicted boundary components may
bound a Mobius band both before and after the move. In
Move III, a 1-sided curve is replaced by another 1-sided
curve, and in Move IV, two 1-sided curves are replaced
by a 2-sided curve or conversely.

them represent cross caps; that is, their interiors should be removed
and antipodal points in each resulting boundary component identified,
i.e., the depicted curve containing the asterisk bounds a Mobius band
in the surface.

Though so natural, these new results are however non-existent in
the literature and are apparently and surprisingly heretofore unknown.
In contrast, the existence of a sphere of projective measured foliations
compactifying the Teichmiiller space of a non-orientable surface with-
out boundary to a closed piecewise-linear ball (Theorem B.1) has sev-
eral times been stated without proof in the literature. Moreover, on
the level of homeomorphism classes of pants decompositions required
for 141 dimensional topological quantum field theory with possibly
non-orientable surfaces as cobordisms, the corresponding weaker tran-
sitivity result was proved in [3].

Holes in a surface may either be taken as boundary components or as
punctures, and we treat the former in the body of the text and relegate
the latter to appendix B. We begin by reviewing standard notions and
results for non-orientable surfaces that differ from their analogues in
the orientable case.

First, recall that in a non-orientable surface N there is a distinction
between 1-sided and 2-sided simple closed curves (depending respec-
tively on whether a regular neighborhood of the curve is a Mobius
band or annulus) and a further distinction between primitive and non-
primitive 2-sided curves (as elements of the fundamental group of N).
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Y-homeomorphism Dehn twist on
the curve ¢

A swap

\
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crosscaps
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FicUurE 2. The Y-homeomorphism is supported on a
Klein bottle minus a disk. Note that the 1-sided curve
~ occurs in a neighborhood of the cross cap connecting
antipodal points.

A 2-sided simple closed curve is non-primitive if and only if it bounds a
Mobius band embedded in N, whose core is of course a 1-sided curve.

On the non-orientable surface NN, there is a notion of Dehn twist
along a 2-sided curve ¢ defined as in the orientable setting, up to the
choice of a normal direction along the curve. Namely, if ¢ is a 2-sided
curve in IV, then its annular neighborhood in N supports Dehn twists
as usual; the difference is that we can only determine the sense, right or
left, of the Dehn twist relative to a specified normal direction to N at a
particular point on ¢ and so must draw arrows to indicate the sense of
a Dehn twist. It is easy to see that a Dehn twist along a non-primitive
2-sided curve is isotopic rel boundary to the identity mapping: Indeed,
consider the image of an arc decomposing the corresponding Mobius
band into a rectangle; since this arc is found to be invariant under
the Dehn twist up to proper homotopy, the result then follows from
Alexander’s trick.

In addition to Dehn twists, one must consider yet another class of
basic homeomorphisms [12] in the non-orientable case as follows. Sup-
pose that v is a 1-sided and ¢ a 2-sided curve in N so that v and ¢ meet
transversely in a single point. Let K7 C N be a neighborhood of v U ¢,
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which is homeomorphic to a Klein bottle minus a disk, and let M C K,
denote a neighborhood of 7, which is homeomorphic to a Mébius band.
Finally, define the Y-homeomorphismY =Y, .: N — N to be the re-
sult of pushing M once along v keeping pointwise fixed the boundary
of K; and extending by the identity on N — K7; Figure 2 illustrates the
effect of Y on an arc properly embedded in K;. Put another way, Y
is the composition of the homeomorphism interchanging the two cross
caps followed by the Dehn twist along the curve c as is also illustrated
in the figure. There are thus two Y-homeomorphisms depending on the
sense of the twisting, each one squaring to a distinct Dehn twist along
the 2-sided curve 0Kj.

Lickorish showed in [12] that the mapping class group (i.e., the group
of homotopy classes of self-homeomorphisms?) of a non-orientable sur-
face is not generated by Dehn twists alone, but that any mapping
class is isotopic to a composition of Dehn twists along a set of simple
closed curves followed by a Y-homeomorphism. Chillingworth, im-
proving the result of Lickorish, exhibited a finite set of Dehn twists
and Y-homeomorphisms which suffice [4]. In fact, Chillingworth’s gen-
erators consist of a finite number of Dehn twists and a single additional
Y-homeomorphism. Szepietowski [22] gives a minimal generating set
in the non-orientable case as Humphries [8] had done in the orientable
case.

Scharlemann ([20], Theorem 1.1) showed that on a non-orientable
surface, the set of 1-sided curves is isolated in the space PMF, of
projective measured foliations of compact support. This implies in
particular that simple closed curves are not dense in PMF. Danthony
and Nogeuira showed that in PMF, almost all measured foliations
have a compact leaf which is 1-sided [5]. This contrasts with the case
of orientable surfaces where almost all measured foliations are uniquely
ergodic with dense leaves.

Korkmaz computed the first homology group of a closed non-orientable
surface [9]; his result is analogous to that of Powell for orientable sur-
faces (who showed that for genus at least three the group is trivial)
[19], completed in genus two by Mumford [13].

This paper is organized as follows. Section 2 contains background
material sufficient to precisely state our three main results therein.
Sections 3 and 4 are respectively dedicated to the generalized Fenchel-
Nielsen and Dehn-Thurston Theorems. Section 5 provides an analysis

2In contrast, Lickorish called this the homeotopy group of the surface reserv-
ing the term mapping class group for homotopy classes of orientation-preserving
homeomorphisms in the orientable case.



6 A. PAPADOPOULOS AND R. C. PENNER

of pants decomposition of the Klein bottle minus a disk such as is
necessary to complete the proof of the generalized Hatcher-Thurston
Theorem in section 6. Section 7 finally contains closing remarks.

The proof that the space of projectivized measured foliations in a
non-orientable surface with boundary itself provides a boundary of Te-
ichmiiller space as in the orientable case is sketched in appendix A.
Appendix B treats each boundary component as a puncture in effect
dropping twisting parameters and distinguished points (and for those
in MJF, that have compact support, also dropping the intersection
numbers) for puncture-parallel pants curves.

In our exposition, we shall sometimes be brief in presenting argu-
ments which in the non-orientable case follow closely the proofs in the
orientable case, however, we shall present detailed proofs when there
are significant differences. We shall also give details concerning met-
rics on and measured foliations in surfaces with boundary that are not
usually considered. )

We would like to thank Oykii Yurttas for valuable discussions on this
work. A sequel [15] to this paper is in collaboration with her. Let us
also gratefully acknowledge helpful input from Sergey Natanzon.

2. BACKGROUND AND STATEMENTS OF RESULTS

In this section, we present current generalized versions of results that
are well-known for a connected orientable surface Fj,. Our general-
ization concerns a non-orientable surface N, ,, of genus g > 0 with
r > 0 smooth boundary components where 2 — 2g — r < 0, respec-
tively, 2 — g — r < 0. Recall that the genus of a non-orientable sur-
face is defined, as in the orientable case, as the maximum number of
simple closed curves whose complement is connected; any closed non-
orientable surface of genus g can be obtained as a connected sum of ¢
projective planes, whose Euler characteristic is given by 2 —g¢g. We may
sometimes say simply that a surface is bordered if it has boundary, i.e.,
if r > 1.

A pair of pants is a surface homeomorphic to the sphere with the
interiors of 3 disjoint closed disks removed. A pants decomposition P of
an orientable or non-orientable surface is the (isotopy class) of a fam-
ily of disjointly embedded simple closed curves whose complementary
components are pairs of pants. In particular, each boundary compo-
nent occurs in any pants decomposition. Of course, each pants curve in
an orientable surface is 2-sided, but in a non-orientable surface, some
may be 1-sided. In any case, we set P = P; U Py, where P; is the
set of 1-sided curves and P, is the set of 2-sided curves. We consider
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the boundary curves of the surface as 2-sided (although they only have
“one side” in the surface).

Embedded non-primitive curves never occur in a pants decomposi-
tion since by definition they bound a Md&bius band. Note that in the
orientable case S = F},, we have #P; = 0 with #Py = 39 — 3 + 2r.
In contrast in the non-orientable case S = N, ,, we can achieve a max-
imum of #P; = g with #P, = g + r — 3, and if there is a pants
decomposition P with #P; = p;, for i = 1,2 and p; > 2, then there is
also a pants decomposition with (p; — 2) 1-sided and (py + 1) 2-sided
curves; in particular, if g = 2k is even, we can achieve #P; = 0 in the
non-orientable case as well with #Py =g+ 1+ k — 3.

We shall rely heavily on geodesic representatives of simple closed
curves in hyperbolic surfaces, by which we mean complete, finite-area
metrics with constant Gaussian curvature -1 and geodesic boundary.
For this matter, there are small differences between the orientable and
the non-orientable case. If S = F,, or N, is equipped with a hy-
perbolic structure, then any simple closed curve ¢ on S has a unique
geodesic representative which is simple except in the case where c is
2-sided non-primitive; in that case, its geodesic representative is not
embedded in S, but it traverses two times the geodesic representative
of the core curve of the Mobius band that ¢ bounds. In the orientable
as well as in the non-orientable case, the geodesic representatives of
two disjoint simple closed curves are themselves disjoint except for the
special case that we just described. More generally, if two simple closed
curves ¢; and ¢y on S are such that there is no disk embedded in S
whose boundary consists of the union of an arc contained in ¢; with an
arc contained in ¢y, and if ¢} and ¢, are the geodesics in the homotopy
classes of ¢; and ¢y, respectively, then the union ¢; Ucs is isotopic to the
union ¢; U ¢,. In particular, the intersection number i(cq, ¢2) is equal
to the number of points of intersection between the geodesic curves ¢}
and c.

A fundamental result in low-dimensional topology is the Hatcher-
Thurston Theorem [7] which uses Cerf theory to prove that any two
pants decompositions of an orientable surface are related by a finite
sequence of the the first two elementary moves illustrated in Figure
1 (Moves I and II). Our generalization Theorem 6.3 that includes the
orientable case is:

Theorem 2.1 (Generalized Hatcher-Thurston). Any two pants decom-
positions of a possibly non-orientable and possibly bordered compact
surface are related by a finite sequence of the elementary moves (Moves
I to 1V) illustrated in Figure 1.
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The Fenchel-Nielsen and Dehn-Thurston twisting numbers of curves
in a pants decomposition P of S that we employ in Theorems 2.2
and 2.6 below require us, as in the orientable case, to make choices,
namely, we shall choose an orientation on each pants curve, together
with a distinguished point on that curve, and for each pair of pants
in the decomposition, we shall associate to each boundary component
(equipped with its orientation and its distinguished point) a homo-
topy class of arcs joining the distinguished point on that component to
the distinguished point of another boundary component of the pair of
pants. The definition of the Fenchel-Nielsen and Dehn-Thurston twist-
ing numbers rely on these data. In the case of an oriented surface, we
get a new way of measuring twisting numbers which does not coincide
with the classical one (e.g., the one explained in [23]), but of course it
works as well® for providing twist parameters.

In particular, each boundary component of 95 (if any) of a possibly
non-orientable surface S comes decorated with a distinguished point.
If this boundary 0S is comprised of 2-sided curves 95 = 0 L+ - - L 0y,
equipped with a collection of distinguished points p; € 9;, one in each

component of the boundary, for j = 1,...,m, then we let p'denote the
collection of these points indexed by components j = 1,...,m of the
boundary.

To study hyperbolic structures and measured foliations on surfaces S
with boundary and the mapping class group actions on spaces of equiv-
alence classes of such structures, we must make certain assumptions
about isotopies of homeomorphisms of S. One thing that distinguishes
bordered surfaces is that the isotopies that define the equivalence re-
lations between hyperbolic metrics and between measured foliations,
as well as the homeomorphisms that represent mapping classes, must
fix the distinguished points Up, either setwise in general or pointwise
in the “pure” case. In particular, a Dehn twist along a simple closed
curve parallel to a boundary component of the surface will not be con-
sidered as isotopic to the identity. This will be particularly useful when
the surface is divided into pairs of pants where separate structures in
individual pairs of pants are glued together.

Suppose that p is a hyperbolic metric on S. Each free homotopy class
of closed curve admits a unique p-geodesic, except that, as we already
noted, in the non-orientable case, the geodesic representative of an
embedded non-primitive curve may fail to be embedded. In particular,
any isotopy class of closed curve has its p-geodesic length.

3In fact, Wolpert’s formula for the Weil-Petersson Kéhler two-form in the ori-
entable case also applies here with the new twists according to [25].
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Following [17], the Teichmiiller space T (S) of a possibly bordered
and possibly non-orientable surface S = Fj, or S = Ny, is the quotient
space of all pairs (p, p), where p is a hyperbolic metric on S and p'is
the indexed collection of distinguished points, one in each oriented
boundary component. The quotient is taken by simultaneous push-
forward of metric and distinguished points under diffeomorphisms f :
S — S isotopic to the identity, i.e., (p,p) ~ (fi(p), f(P)), where the
isotopy of f to the identity must fix the boundary pointwise.

The classical Fenchel-Nielsen Theorem [24, 25] extended to bordered
surfaces parametrizes the Teichmiiller space 7 (F') of an orientable sur-
face ' = Fj, by assigning to each curve {cj}?gg”r in a pants de-
composition P = P, of F' the p-length ¢;(p) > 0 of ¢;, where p is a
hyperbolic metric on S, as well as another so-called twisting number
6;(p) € R, whose standard definition [24, 25] is modified in the next
section 3. Our generalization that includes the orientable case is:

Theorem 2.2 (Generalized Fenchel-Nielsen). Fiz a pants decomposi-
tion P = PrUPy of S = F,, or S = N,,, where Py = {by,..., by}
and Py = {c1,...,en}. Given a hyperbolic metric p on S, let p;(p)
denote the p-length of b;, for j = 1,..., M, and {;(p) and 0;(p) as
before, respectively, denote p-lengths and twisting numbers of c;, for
1=1,...,N. Then the mapping

0 T(9) = RY) x (Rsg x R)Y
p = (a(p), - - pae(p), €a(p), 01(p), - - En(p), On(p))
15 a real-analytic homemorphism.

Corollary 2.3. The moduli space M(N) = T(N)/MC(N) of a non-
orientable surface N = N, , is itself non-orientable provided g > 2 and
2—g—r<QO.

Proof. Choose two disjoint 1-sided curves ¢y, co and an embedded arc a
connecting them and let ¢3 be the 2-sided curve isotopic to the bound-
ary of a regular neighborhood of ¢; U ¢co U a. Extend ¢y, co,c3 to a
pants decomposition of N. Thus, ¢3 bounds a Mdbius band minus a
disk containing cp,cy and supports the Y-homeomorphism Y,,, whose
effect on generalized Fenchel-Nielsen coordinates is to interchange the
length coordinates of ¢; and ¢y and to add to the twist coordinate of c3
half its length coordinate leaving all other generalized Fenchel-Nielsen
coordinates unchanged. This transformation evidently reverses the ori-
entation of T(N) as required. U

We define D = D(S) to be the collection of all homotopy classes of
1-submanifolds properly embedded in .S — Up, no curve component of
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which is inessential and no arc component of which is boundary parallel,
modulo ambient isotopy in S pointwise fixing Up. Let IID = IID(S) C
D(S) denote the subset of homotopy classes of primitive elements.

We denote by C (respectively, IIC) the subset of homotopy classes
of connected elements of D (respectively, IID). The elements of C are
homotopy classes of simple closed curves or proper arcs. Finally, we
denote by S (respectively, IIS) the subset of C (respectively, IIC) of
elements which consists of simple closed curves.

There is an inclusion map

(2) T(S) = RZG

sending each hyperbolic structure to the map IIC — R- which assigns
to each homotopy class of simple closed curve or arc the length of
its geodesic representative. As in the case of orientable surfaces, the
topology of T(S) can be induced from that of the space RIS via the
inclusion map (2). By passing to the homothetic quotient of RIS by
multiplication by positive reals, we get a map into the projective space:

(3) T(S) — PRIS.
More precisely, we have the following:

Theorem 2.4. The inclusion map (3) is a homeomorphism onto its
mage.

Theorem 2.4 follows from Theorem 2.2, as in the orientable case, by
encoding the twist parameter along a 2-sided curve in a pants decom-
position by the length parameters of a pair of curves that are contained
in the pants (or pant) adjacent to that curve in the surface.

Let MF(S) denote the space of measured foliations of S modulo
isotopy rel Up"and Whitehead moves, cf. [6]. As is well-known in the
orientable case F' = F,,, we may regard S(F) = IIS(F') C MF(F)
by “enlarging” curves and arcs with counting measure to measured
foliations. In contrast, in the non-orientable case, the core and the
boundary of an embedded Mobius band have the same enlargements, so
it is only the primitive curves that embed for N = N, i.e., IIS(N) C
MF(N).

Theorem 2.5 (Dehn-Thurston [16, 18]). Fiz a pants decomposition
P =P, ={c1,....cn} of F = F,,, where N = 3g — 3 + 2r. Given
a measured foliation F on F, let m;(F) > 0 denote the F-transverse
measure, which is also called the intersection number, of ¢;, for i =
1,...,N. Further define real twisting numbers t;(F) > 0, for i =
L,...,N, cf [16, 18], where t;(F) > 0 if m;(F) = 0. We shall recall
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the definition of these parameters in section 4 below. Then the mapping
MEF(F) = (Rsg x R)U ({0} x Rx))Y
F = (my(F), ti(F),...,mn(F), ty(F))
15 a bijection.

The condition ¢;(F) > 0 if m;(F) = 0 is explained when we present
the generalized Dehn-Thurston theorem in §4 below.

Theorem 2.6 (Generalized Dehn-Thurston). Fiz a pants decomposi-
tion P =PrUPy of S = F,, or S = N,,, where Py = {by,..., by}
and Py = {cy,...,en}. Given a measured foliation F in F, define real
parameters n;(F) as follows: if the F-transverse measure of b; is posi-
tive, then n;j(F) > 0 agrees with this intersection number; if F contains
a closed leaf isotopic to bj, then nj(F) < 0 is taken to be the negative
of the mazximum width of the band of leaves foliating a Mdbius band
neighborhood of b;, for j =1,..., M. Let m;(F) and t;(F) denote the
intersection and twisting numbers of F on ¢;, fori =1,...,N as in
Theorem 2.5, and which we recall in §4 below. Then the mapping

T MF(S) = RY x (Rso x R) U ({0} x Rx))™
F = (ni(F),...,nn(F),mi(F), ti(F),...,mn(F), ty(F))
s a bijection.

We use the bijection in Theorem 2.6 to define the topology of MF,
and to do so we must be more precise on how the two spaces F; =
R.g xR and Fy = {0} x R in the above set-theoretic union are glued
together. For this, we extend the space I} = Ryg xR to 7 =R5o xR
by adding a copy of R, and we glue that copy of R to the first factor
of the product R x Fj by the identity map; this has the effect that the
asymptotes for right and left twisting coincide.

Theorem 2.7 (Generalized Thurston Boundary for possibly bordered
surfaces). Fiz a pants decomposition P of a possibly non-orientable
and possibly bordered surface S. Dehn-Thurston coordinates with re-
spect to P establish a homeomorphism MF(S) ~ RFEPLH2#P2) - The
corresponding projectivized space PF(S) is thus a sphere of dimen-
sion #Py + 24#Py — 1, which has a natural piecewise-linear struc-
ture independent of the pants decomposition and provides a boundary
T(S) = T(S)UPF(S) to the open ball that is Teichmiiller space T (S)
s0 as to form a closed ball T(S). The usual action of the mapping class
group of S on T (S) extends continuously to T (S) by its natural action
on PF(S).
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Proof. As just discussed, each 2-sided curve in a pants decomposition
accounts for a factor R? in MF, and in fact, MF(S) ~ R#P1+2#72)
since each element of P; likewise contributes a factor R according to
the generalized Dehn-Thurston Theorem. It thus follows as a corollary
that PF(9S) is a sphere of the asserted dimension from the generalized
Dehn-Thurston Theorem. The argument that this sphere provides a
boundary compactifying 7 (.5) to a closed ball with the asserted map-
ping class properties is given in appendix A and is thus separated from
the discussion here only because of its very substantial reliance on the
classical theory. The proof that the piecewise-linear structure of the
sphere PF(S) is well-defined is lengthy but follows the same lines as
the corresponding result [16] for orientable surfaces. u

In the proof of Theorem 2.7, mimicking the orientable case, we must
study the inclusion map

(4) MUEF(S) — RS

sending each measured foliation to the map IIC — R which assigns to
each homotopy class of simple closed curve or proper arc its intersection
number with the given foliation. As in the case of orientable surfaces,
the topology of MF(S) in the non-orientable case can be induced from
that of the space RS via the inclusion map (4).

Taking quotients by homothety throughout, we get maps between
projective spaces

(5) PF(S) — PRYS

and have the following theorem, the analogue for measured foliations
of Theorem 2.4 for hyperbolic structures.

Theorem 2.8. The inclusion map (5) is a homeomorphism onto its
1mage.

The proof also follows the same lines as the proof of the analogous
result in the orientable case. It makes use of Theorem 2.6, by encoding
the twist parameter of a foliation along a 2-sided curve in a pants
decomposition by the transverse measure parameters of a pair of curves
that are contained in the pants (or pant) adjacent to that curve in the
surface. (Recall that there are no twist parameters along a 1-sided
curve. )

3. GENERALIZED FENCHEL-NIELSEN THEOREM

Recall that we have chosen a collection of distinguished points p; one
such point lying in each boundary component, as well as specifying an
orientation on each component of the boundary.
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Let P = P; UP; be a pants decomposition of S = F, or § = N,

where P; = {by,...,by} and Py = {cq,...,cn} are as in the statement
of Theorem 2.2. For each hyperbolic metric p on S, each of the curves
{b1,..., by} and {cy,...,cy} has a unique p-geodesic representative.

To spare notation, we use the same letter S for the surface S equipped
with a hyperbolic structure p, and b; and ¢; for the p-geodesic curves
in the homotopy classes b; and ¢;. A geodesic curve C' = b; or ¢
thus has a well-defined length parameter (c(p) € R-o. It also has a
twist parameter 0c(p) € R, which is defined modulo conventions that
we shall state precisely, and which measures the relative twist amount
along C' between the two pairs of pants that have this geodesic in
common (where the two pairs of pants may coincide).

In the classical setting, the definition of the twist parameter is usually
given in the case when the curve C' is not a boundary curve of the
surface, see, e.g., [23, Theorem 4.6.23], but we shall need to define
the twist parameter on C' including the case where C' is a boundary
geodesic of the surface, and we begin with the definition in this case.

Let us equip each curve in P with an orientation and with a distin-
guished point; if the curve is a boundary component of the surface S,
then these data are the ones we have already specified including p.

If C'is a boundary curve of the surface, we choose an isotopy class
rel boundary of an arc o connecting the distinguished point from Up'in
C to the distinguished point boundary component of another chosen
component of the pair of pants. Now, when the pants decomposition
is made geodesic, there is an isotopy moving the boundary that carries
a to a geodesic arc perpendicular to the two boundary components
that it connects. During this isotopy, the endpoint of o in C' passes a
certain number n of times through the distinguished point p it contains;
n comes with a sign, where a “positive crossing” corresponds to the
specified orientation on C'. We let ¢ denote the hyperbolic length of
C and 7 the hyperbolic length along C' from p to the endpoint of the
perpendicular arc in the specified orientation. The twisting number of
the configuration (p, ) is defined to be t(p, a) = 7 + nl.

Let C now be an interior 2-sided pants curve. We choose, as for the
case where C' is a boundary curve of the surface, an isotopy class rel
boundary of an arc « connecting the distinguished point on C' to the
one of another boundary component of the pair of pants. Again, when
the pants decomposition is made geodesic, there is an isotopy moving
the boundary that carries o to a geodesic arc perpendicular to the two
boundary components that it connects, and during this isotopy, the
endpoint of a in C' passes a certain number n of times through the dis-
tinguished point it contains; the integer n comes with a sign, where a
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“positive crossing” corresponds to the specified orientation on C. Let-
ting as before ¢ denote the hyperbolic length of C' and 7 the hyperbolic
length along C' from the distinguished point to the endpoint of the
perpendicular arc in the specified orientation, the pre-twisting number
of the distinguished point in C' is defined to be t(p, ) = 7 + nl. Note
that the sign of 7, like that of n, is positive or negative according to
whether the motion is in the sense of the orientation of the curve or in
the opposite sense. The twisting number of the configuration is the dif-
ference of the two pre-twisting numbers coming from adjacent pairs of
pants; the determination of which side occurs with which sign in taking
the difference can be made from an orientation on a neighborhood of
C'in S (as induced by inclusion when S is oriented) together with the
orientation on C' itself.

Now we prove Theorem 2.2.

We cut the surface S along the geodesic curves in the pants decom-
position P to obtain a collection {P;} of hyperbolic pairs of pants with
geodesic boundary. The isometry type of the hyperbolic structure on
each of the pairs of pants is completely determined by the lengths of its
boundary components, and there is an isometric identification between
boundary components of these pairs of pants which is determined by
the fact that they come from the hyperbolic structure p on S. In this
correspondence, each curve arising from the set P, is identified with
another curve arising from the same set, and each curve arising from a
curve in Pj is identified to itself. More precisely, the surface S can be
recovered from the collection {F;} in the following way:

e For each boundary component of a hyperbolic pair of pants P
which is in Py, glue it to itself by sending each point to its diametrically
opposite point, with respect to any parametrization of this component
by arc length.

e For each boundary component of a hyperbolic pair of pants P
which is in P, glue it to the corresponding boundary component using
the twist parameter determined by the hyperbolic structure p and the
convention used to measure the twists.

For any hyperbolic metric p on S and for any element b; of P;, we
denote by 11;(p) the p-length of b;, for j =1,..., M. For an element ¢;
in Py, we denote by ¢;(p) and 6;(p) the p-lengths and twisting numbers
of ¢;, for i =1,..., N. We show that the mapping

T(S) = RY x (Rog x R)Y

O o) mae(0), 60, 6100, - Ex0), ()

is injective.
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Let p and ¢ be two hyperbolic metrics on S. If p and o assign
different lengths to any one of the 1-sided or 2-sided curves in P, then
the two metrics cannot be isotopic, by the uniqueness of the geodesic
length in each homotopy class of simple closed curves on S.

Assume now the length parameters are all equal, and assume that
the p- and o-twist parameters along some 2-sided curve are different.
Consider the two pairs of pants (which can be the same) which are
adjacent to this curve. Since the curve is 2-sided, the situation is the
same as the one studied in [6], and we can find a simple closed curve in
the union of these two pairs of pants whose p- and o-length parameters
are distinct, showing that the metrics o and p are not homotopic.

This shows that the map (6) is injective. It is also clearly surjective
since the length and twist parameters uniquely determine the hyper-
bolic structures on the pairs of pants and the gluing homeomorphisms
between adjacent ones. The topology of T(S) can be defined using
these injective maps associated to pairs of pants. The fact that they
are real-analytic is seen as in the classical case (cf. [1]).

4. GENERALIZED DEHN-THURSTON THEOREM

The Dehn-Thurston theorem provides a global parametrization of the
space of homotopy classes of measured foliations, and it is used to give
the topological type of this space. The proof involves the classification
of measured foliations on pairs of pants with the twist parameters used
to glue foliations on adjacent pairs of pants.

We start with facts on measured foliations on surfaces with boundary.
The local models of the singular points for measured foliations on non-
orientable surfaces are the same as those on orientable surfaces. For
points in the interior of the surface, these are generalized saddles (n-
prong singularities, n > 3, see Figure 3.) By definition, the model of
a singular point on the boundary is such that if we double the surface
along the boundary component that contains that boundary point then
we have the usual model of a singular point at an interior point (see
Figure 4).

Lemma 4.1. A measured foliation of a Mobius band is of one of the
following two types:

(1) all the leaves are simple closed curves, and one of them (the
“core curve”) is 1-sided while the others are homotopically dou-
ble covers of this 1-sided curve;

(2) all the leaves are arcs joining the boundary to itself.
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F1GURE 3. The local models for a singular point at an
interior point of the surface.

7

FIGURE 4. The model for a singular point on the bound-
ary is such that it becomes a model for an interior singu-
lar point when we double the surface along that boundary
component.

Proof. Consider an annulus which double covers the Mobius band,
equipped with the measured foliation induced from that covering. There
are two cases:

Assume first that the boundary component of the annulus is a leaf.
Doubling the annulus along its two boundary components, we get a
torus equipped with measured foliation that has a closed leaf. There-
fore, all the leaves of that foliation are closed and homotopic to each
other. This shows that we are in case (1) of the statement.

Assume now that the boundary component of the Mdébius band is
not a leaf. By taking an annular double cover and then a torus double
again, we obtain a foliation of the torus. Such a foliation cannot have
singular points. Therefore, the foliation on the annulus is transverse
to boundary curves of the annulus, and any leaf is an arc joining a
boundary component to the other one (this follows from the “stability
lemma” (see [6] Lemma I1.4 of Exposé 5). From this, it is easy to see
that we are in case (2) of the statement.

t

To define the intersection and twisting coordinates for the 2-sided
curves that appear in the statement of Theorem 2.6, we need first
recall the classification of equivalence classes of measured foliations on
pairs of pants (see [6], Exposé 6, §2).
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Let P be a pair of pants with boundary components 0; (i = 1,2, 3)
equipped with a measured foliation F. It also follows from the clas-
sification of measured foliations on pairs of pants ([6] Exposé 6) that
a boundary component of P is then either transverse to F or it is a
(perhaps singular) leaf; that is, there are no mixed cases as in Figure
4. In the latter case (that is, when F is not transverse to a boundary
component), then we say that F is “tangent” to the given boundary
component.

If F meets each boundary component of the pair of pants P trans-
versely, then the equivalence class of F is determined by the three
positive numbers i(F,0;). In the case where F is tangent to some
boundary component 0;, there is a maximal annulus having J; as a
boundary component and foliated by leaves which are homotopic to 0;.
(The annulus may be degenerate, that is, reduced to a single curve,
and in this case, the curve necessarily contains a singular point). We
shall call the transverse measure of an arc joining the two boundary
components of that annulus the twisting number of that boundary com-
ponent, for reasons that will become apparent below. In any case, the
equivalence class of a measured foliation F on the pair of pants P is de-
termined by three nonnegative numbers, one number attached to each
of the three boundary components, and this number is either a trans-
verse measure (and in this case is positive) or it is a twisting number
(and in the latter case is either positive or zero).

Let us fix a pants decomposition P of ' = F,, of N,,. It follows
from [6], Exposé 6 §2 (and the proof carries over to the non-orientable
case) that any equivalence class of measured foliation F on F' has a
representative which is in good position with respect to P, that is, this
representative is a measured foliation (which we also denote by F)
such that each pants curve is either transverse to F or is a (perhaps
singular) leaf of F. In particular, F induces on each pair of pants a
measured foliation in the usual sense, and the above classification and
parameters of foliations on pairs of pants are available.

We now prove Theorem 2.6.

Let P = P; UP; be a pants decomposition of S = F, or § = N,
where Py = {by,...,by} and Py = {c1,...,cy} are, as before, the 1-
sided and the 2-sided curves respectively. Given an (equivalence class
of) measured foliation F, we can assume that it is in good position with
respect to P. For such a measured foliation, the intersection number
i(F,C) of each pants curve C' = b; or ¢; is equal to the actual transverse
F-measure of C.

Let us now define the intersection parameters of C'. In the case where
C' = b; is 1-sided, the intersection number n;(F) € R is defined as in the
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statement of Theorem 2.6, that is, if the foliation contains a closed leaf
isotopic to b;, then n;(F) is taken to be the negative of the maximum
width of the band of leaves foliating a Mobius band neighborhood of
b;, while n;(F) is positive if and only if it agrees with i(F,b;) # 0.
There is no twisting number defined in this case. In the case where
C = ¢; is 2-sided, the intersection number m;(F) = i(F,C) > 0 is
the F-measure of C'. We now define the twisting number ¢;(F). First
assume that i(F, ¢;) = 0. Since F is good position with respect to P,
¢j is a (perhaps singular) leaf of F. The twisting number t;(F) of F
with respect to P is then the transverse measure of a transverse arc
joining the two boundary components of the maximal foliated annulus
in S parallel to ¢;. (The maximal annulus might be reduced to the
curve ¢; itself, and in this case the transverse measure is zero.)

In the case where i(F,¢;) > 0, the twisting parameter is defined in a
way analogous to the twisting number in the case of the Fenchel-Nielsen
parameters: We equip, as in the case of the twisting parameters for hy-
perbolic structures, the 2-sided pants curve ¢; with an orientation and
with a distinguished point. As before, if the curve is a boundary com-
ponent of the surface S, then the distinguished point and orientations
are the ones that we already have specified. Again, for each pants curve
¢;j, we choose an isotopy class rel boundary of arc a connecting ¢; to
another chosen boundary component of each pair of pants to which it
belongs. We can now define the twisting parameter on the pants curve
Cj.

We first consider the case where ¢; is a boundary component of F'.
Since we assumed the measured foliation F to be in good position with
respect to the pair of pants decomposition P and since i(F,c;) > 0,
it must be that ¢; is transverse to F and there is an isotopy moving
the points on this pants curve that carries a to an arc joining the
two boundary components of the given pair of pants that it connects
and which is in minimal position with respect to F. Note that this
arc necessarily arrives at each boundary point of the pair of pants
along a leaf of . During this isotopy, the endpoint of « in ¢; passes a
certain number n of times through the distinguished point p it contains
and n comes with a sign, where a “positive crossing” corresponds to
the specified orientation on ¢;. Denoting by m(c;) the F-transverse
measure of ¢; and 7(c;) the transverse measure along ¢; from p to the
endpoint of the perpendicular arc in the specified orientation, the pre-
twisting number of the configuration (p, ) is defined to be t(p,a) =
7(¢;) +nm(c;). As usual, the twisting number ¢;(F) for the boundary
curve ¢; arises by comparing the sense of the pre-twisting with that of
the orientation of a neighborhood of the curve.
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If C' = ¢; is now an interior pants curve, then with the above con-
struction, there are two arcs a and [ with endpoints in C' and two
pre-twisting numbers, one from each side of C. The twisting number
of the distinguished point in C' is then defined as the difference of the
two pre-twisting numbers on C' (again, after a choice made by orienta-
tions of which pre-twisting number is subtracted from the other).

We now show that the map J in the statement of Theorem 2.6 is
a bijection. Let F and G be two elements in F that have the same
image under J. If the intersection numbers of F and G with one of
the curves in P are different, then it follows from the definition of the
equivalence relation between measured foliations that the elements F
and G are distinct.

Assume now that the intersection number of any curve in P with F
is equal to its intersection number with G. If F # G, then the twist
parameters of F and G with respect to some curve in P are not the
same.

We treat the following two cases separately:

Case 1.— Suppose first that this curve is a 1-sided curve b; € P;.
By assumption, i(b;, F) = i(b;,G), so the two parameters n;(F) and
n;(G) are both nonpositive. This means that there is a foliation of a
maximal Mobius band in F and in G whose core curve is b; and all
whose leaves are double covers of this core curve, and such that the
transverse measure of a complete transversal is not the same for F and
for G. (One of these two transverse measures might be zero.) We take
such a maximal foliated Mdbius band in F and in G and we denote
it by M; and M, respectively. (To spare notation, we shall denote
by the same letters, M; and M, the measured foliations supported
on the Mébius bands M; and M,.) Now the foliation induced by F
(respectively G) on P is the union of M; (respectively M) with a
collection of leaves that are in the complement of M (respectively M)

Let v be the closed curve represented in Figure 5. In the pair of

aEB=0 (@3)

FIGURE 5

pants P, « restricts to an arc joining b; to itself. In one of the cases
represented in the figure, F or G (or, equivalently, both of them) has
zero intersection number with the two other bondary components of S.
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In this case, the intersection of v with F (respectively G) is equal to
i(y, My) + my (respectively i(y, My) + mgy) where m; and msy are the
intersection numbers of F and G respectively with the foliation induced
on the pair of pants P by F and G. Note that all the leaves of the
induced foliation are arcs that go from the two boundary components
of P that are not b;. Let a be either of the two boundary components
of P that is distinct from b;. Thus, my; = i(F,a) and ms = (G, a).
However, by assumption m; = ny, so i(y,F) # i(v,G). This shows
that F # G. In the other case represented in Figure 5, both F and G
have zero intersection number with the two boundary components of
P that are distinct from b;. In this case, we have i(y, F) = i(y, M)
and i(vy, G) = i(y, My) which also gives i(~, F) # i(vy,G), so F # G.

Case 2.— Assume now that the curve in P on which the twist
parameters are not the same for F and G is a 2-sided curve ¢;. If
i(F,c;) = i(F,c;) = 0 (recall that we are under the assumption that
the two intersection numbers are the same), then there are two maxi-
mal foliated annuli parallel to ¢; whose total F-width and G-width are
different. This shows that F and G are not equivalent.

The case where i(F,¢;) = i(F,¢;) # 0 and the twisting parameters
are different is treated in the same way as the classical (orientable)
case, see [6], Exposé 6, §2. On each side of the curve there is a pair of
pants (which could be the same for the two sides), and in the union of
these pair of pants (respectively in this pair of pants) it is possible to
find a simple closed curve whose transverse measures with respect to F
and G are different. Thus, the foliations are not equivalent, completing
the proof of the theorem.

To close the section, we comment on the case where the parameters
are integers, that is, where the measured foliations are obtained by
“enlargement” of simple closed curves and proper arcs. This will lead
us to a parametrization a la Dehn of the set of simple closed curves
and proper arcs in S.

We first consider the case of an orientable surface F'.

There is an enlargement operation (see [6] Exposé 5 §3) which em-
beds the set S of homotopy classes of essential simple closed curves in
F into MF(F). Likewise, we need to define an embedding of the set
of arcs. To this end, let a be an essential arc joining two boundary
components d; and 0y of F' and let r be a positive number. Let N(a)
be a regular neighborhood of a in F', so N(a) has the natural struc-
ture of a quadrilateral having two opposite sides s; and s, contained
in 0; and 0, respectively, the other opposite sides being homotopic rel
boundary to the arc a. We equip the quadrilateral N(a) by a foliation
with leaves homotopic rel boundary to the curve a, and we equip this
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foliation with a transverse measure such that the total measure of each
of the two arcs s; and sy is equal to r. We then collapse the surface
with boundary F" = F'\ N(a) onto a one-dimensional spine in such a
way that the image of each piece of N(a) which is in the boundary of
F' injects into the spine. We get a measured foliation all of whose non-
singular leaves are arcs in the same homotopy class. The new surface
is equipped with a canonical homotopy class of maps onto F' which
sends the homotopy class of the nonsingular leaves to the homotopy
class of the arc a. Taking the image of this foliation by one such map
gives a well-defined equivalence class of measured foliations on F' with
all non-singular leaves in the homotopy class a. This defines a map
from the set of equivalence classes of weighted arcs on F' into the set
of equivalence classes of measured foliations on F'.

This map is injective. To see this, we use the well-known fact [6] that
in the case of closed surfaces, the enlargement operation from the set of
weighted simple closed curves to measured foliation space is injective.
It suffices to double the surface F' along its boundary components, ob-
taining a surface without boundary F¢. The operation of enlargement
of arcs in F' gives, in the double, an operation of enlargement of curves
(the double of the arcs). The fact that the enlargement of curves op-
eration gives an injection from the space Rsy x S(F?) into the space
MF(F?) implies that the enlargement of arcs in F' gives an injection
from the space R5¢ x C(F') into the space MF(F'). It is also clear that
the image of the homotopy class of an arc in measured foliation space
cannot coincide with the image of a homotopy class of a curve since the
measured foliation associated to an arc has leaves which are transverse
to the boundary, unlike the case of a measured foliation associated to
a curve.

In the case of a non-orientable surface N, the theory works in the
same way except that the injectivity fails only at the level of the non-
primitive 2-sided closed curves, whose enlargement coincides with the
enlargement of the 1-sided curve which they double-cover. This is the
principal reason for which we introduce the set IIS(S) versus the set
S(S). Thus, we have a natural embedding

(7) T1S(S) < MF(S).

The fact that measured foliations can be put in normal position
with respect any pants decomposition implies (using the enlargement
operation) a similar statement for elements of D (curves and arcs),
where in each pair of pants, such an element induces a system of arcs
(perhaps empty) joining a boundary component to itself or two different
boundary components, together with a system of curves parallel to
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boundary components. Theorem 2.6 gives the following for curves and
arcs:

Theorem 4.2 (Generalized Dehn Theorem for curves and arcs). Fiz
a pants decomposition P = Py U Py of S = F, or S = Ng,, where
Py ={b1,...,bp} and Py = {cy,...,cn}. Given an element d in D(S)
(that is, an isotopy class of a not necessarily connected 1-dimensional
manifold of S whose components are essential and non-boundary par-
allel) for each b;, j = 1,..., M, define an integer parameter n;(d) as
follows:

o if the intersection number of d with b; is positive, then n;(d) > 0
agrees with this intersection number;

e if d contains a closed leaf isotopic to b; (and in that case, the
intersection number of d with b; is zero), then n;(d) < 0 is given
by —2k if d consists of k disjoint copies of the 2-sided double
cover of b; and by —2k — 1 if d consists of k disjoint copies of
the double cover of b; plus a copy of b; itself.

For an element c; of Pa, we let m;(d) and t;(d) denote the intersection
and twisting numbers of d with c;, for j = 1,..., N, computed as in
Theorem 2.6 for measured foliations. Then the mapping

K :D(S) = ZM x ((Nsg x Z) U ({0} x Z))N
F = (ni(D),....,nu(D),mi(D),t1(D),...,mn(D),tn(D))
s a bijection.
The proof of the theorem follows from that of Theorem 2.6, using
the injectivity of enlargement map that we already described.

5. THE KLEIN BOTTLE MINUS A DISK

Let K; = Ny, denote the Klein bottle minus an open disk and let
M, = N, 5 denote the Mobius band minus an open disk.

Lemma 5.1. Up to isotopy, there are exactly two essential and non-
peripheral (i.e., mon-boundary parallel) simple closed curves in Mj.
FEach such curve is 1-sided, and these are exactly (up to isotopy) the
two possible pants decompositions of this surface.

Proof. The Mobius band M itself contains a unique (up to isotopy)
essential simple closed curve which is not boundary parallel, namely,
its core ¢, so any pants curve in M is isotopic to ¢ in M. Such a curve
in M; can run either below or above the boundary of the removed disk
(referring to Figure 6). There is a unique such isotopy class in M; in
each case, and these two curves provide the two pants decompositions
of M;. Notice that these curves meet transversely in a single point. [
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FIGURE 6. The two essential simple closed curves which
are not boundary-parallel in M7, the Mo6bius band minus

a disk.

Lemma 5.2. For each embedded 1-sided curve d in K, there are ex-
actly two embedded 1-sided curves c, e disjoint from d, and furthermore,
¢ and e have geometric intersection one.

Proof. Cut K; on d to produce a Mobius band minus a disk M7, which
contains exactly two embedded 1-sided curves by the previous lemma,
namely, the core of the M6bius band running either above or below the
missing disk. These two curves meet transversely in a single point and
upon regluling along d give the required curves ¢, e in Kj. O

Lemma 5.3. K, contains exactly one primitive non-peripheral 2-sided
curve we shall denote cs.

Proof. Remove a regular neighborhood of two disjoint 1-sided curves
in K to produce a pair of pants P, one boundary component of which
arises from the boundary of K7 and the other two of which are non-
primitive in K;. By the Dehn-Thurston Theorem 2.6, any primitive
non-peripheral 2-sided curve ¢ in K; restricts to standard position in
P comprised of p arcs connecting different boundary components and
q arcs connecting one boundary component to itself (and disjoint from
the third boundary component of P arising from the boundary of K).
Since c is 2-sided, p must be even, and p = 2, ¢ = 0 gives the unique
2-sided curve meeting exactly once each of the two 1-sided curves in
K5 whose neighborhood we remove. Furthermore, if ¢ = 0 and p > 2,
then the resulting one-manifold in K7 is not connected.

Thus, we may suppose that ¢ # 0. 2-sidedness implies that p + ¢ is
even, so ¢ is even since p is. We may thus pair up consecutive parallel
arcs from ¢ and build a new arc family in P where there is one new
arc between each such pair of original consecutive parallel arcs. Upon
regluing to get K, the new arc family gives rise to an embedded closed
1-submanifold of K; that is twice covered by c. See Figure 7 for an
example. In particular, the resulting 1-submanifold is connected since
c is, and this contradicts primitivity.

t
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FiGurg 7. Construction of a 1-sided curve from a non
primitive 2-sided curve ¢ in K; when both p and ¢ are
even.

The set of isotopy classes of 1-sided curves in K is the set of vertices
of a simplicial graph called the graph of 1-sided curves, where an edge
joins two vertices if and only if the vertices can be represented by
disjoint curves.

Corollary 5.4. The graph of 1-sided curves in K1 is isomorphic as a
simplicial complex to the real line with vertices given by the integers,
and the Dehn twist on the unique primitive non-peripheral 2-sided curve
¢y (see Lemma 5.3) acts by translation by one on this graph.

Proof. The first part follows immediately from Lemma 5.2, and the last
part is illustrated in Figure 8. U

Proposition 5.5. Finite compositions of the two moves III and IV
depicted in Figure 1 act transitively on pants decompositions of K.

Proof. A pants decomposition comprised of two 1-sided curves corre-
sponds precisely to a 1-simplex in the graph of 1-sided curves in K;
and is described in Corollary 5.4. As already depicted in Figure 8,
translation by one in this 1-sided curve complex is achieved by two
consecutive moves of type III, so finite compositions of moves of type
IIT indeed act transitively on pants decompositions in K; comprised of
1-sided curves. According to Lemma 5.3, the move IV applied to any
such pants decomposition produces the curve ¢, namely, the unique
pants decomposition containing a 2-sided curve. O

One of our basic inductive tools is provided by:

Lemma 5.6. Given three distinct 1-sided curves c,d, e in Ky, where c
and d are disjoint and e meets cUd minimally, there is a closed sub-arc
of e whose interior is disjoint from c U d and whose endpoints lie on a
common component ¢ or d.
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FicurRE 8. The effect on ¢ of the right and left Dehn
twists along ¢y in K;. One twist produces d whereas the
other arises from move IV replacing d by the illustrated
curve.

Proof. As in the proof of Lemma 5.3, remove a regular neighborhood
of ¢ U d to produce a pair of pants and consider the restriction of e
to this pair of pants in its standard position comprised of p > 0 arcs
connecting ¢ to d and ¢ > 0 arcs running from one component ¢ or d
back to itself. We must show ¢ # 0, and in the contrary case, p must
be even since e is a closed curve while p must be odd in order that e is
1-sided. This contradiction establishes ¢ # 0 as required. U

6. GENERALIZED HATCHER-THURSTON THEOREM

Throughout this section, S will denote a compact possibly non-
orientable surface of negative Euler characteristic. Consider the four
combinatorial moves on pants decompositions illustrated in Figure 1.
In each case, each of the boundary curves might bound a Mobius band
(e.g., graphically, may perhaps be drawn containing an asterisk) and
must retain this attribute before and after the move. The moves are
to be applied on any subsurface of S bounded by pants curves.

Recall that P; denotes the set of 1-sided curves in the pants decom-
position P of S. The pants decomposition P is said to be orientable if
S — UP; is an orientable surface.
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Lemma 6.1. For any pants decomposition of a possibly non-orientable
surface, there is a finite sequence of moves -1V resulting in an ori-
entable pants decomposition.

Proof. Given a pants decomposition P of S, let us build the usual
corresponding “dual” graph (i.e., 1-dimensional CW complex) G =
G(P) with one trivalent vertex for each complementary pair of pants
and one edge for each pants curve connecting vertices corresponding to
pairs of pants on the two sides of a 2-sided pants curve. In our case,
a boundary component gives rise to a univalent vertex, and a 1-sided
curve gives rise to a univalent vertex marked with an X; see Figure 9
for an example.

G(P)

FIGURE 9. Example of a graph G(P) associated to a
pants decomposition P of Njs.

Choose a maximal tree T in G and choose an orientation on the
associated open subsurface determined as the complement of the edges
(i.e., pants curves) E of G that are not in 7. Each e € E determines
a vertex in GG which is represented by a curve in S which may be 1-
or 2-sided, and in the latter case, we may add e to T" and preserve
orientability of the corresponding surface.

Thus, the connected subsurface > C S complementary to a neigh-
borhood of the pants curves in {e € E : I, is 1 —sided} U Py is ori-
entable. The boundary components of 3 are either cross caps (duals
marked with an X), boundary components of S itself, or occur in pairs
{¢,d} which are identified so as to reverse the orientation on 3. By
the Hatcher-Thurston Theorem in the orientable surface ¥, we may ar-
range using moves I and II that there is a complementary pair of pants
bounded by ¢,d C 9% and another pants curve e, which thus separates
off a subsurface K7 = Ny;. Applying the move IV in this surface K,
replaces one 2-sided curve in P by two 1-sided curves in a new pants
decomposition P’ with P; = P; + 2. There is an upper bound of g
to the number of cross caps on a surface IV, ,, and this procedure thus
terminates with an orientable pants decomposition. U
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Lemma 6.2. For any pants decomposition of a possibly non-orientable
surface, there is a finite sequence of moves I-1V producing an orientable
one P with #P, < 2.

Proof. By Lemma 6.1, we may assume that the surface S — UP; is
oriented, and certain of its boundary components (all of them if S is
closed) correspond to the 1l-sided curves. By the classical Hatcher-
Thurston Theorem, the usual moves I-II act transitively to bring to-
gether any triples of these 1-sided curve boundary components into
a subsurface homeomorphic to N3; whose boundary is a pants curve
containing furthermore another pants curves separating two of the 1-
sided curve boundary components. The sequence of moves supported
on Ns; illustrated in Figure 10 shows how to reduce the number of
1-sided curves by two, as required. The unique exception is the surface
N3 o, where the sequence of moves illustrated in Figure 11 accomplishes
the required task. 0

Notice that if P, Q are pants decompositions of S with #P;, #Q; <
2, then #P; = #Q; is a topological property of the surface S, i.e., the
parity of #P; is an invariant for non-orientable surfaces.

FIGURE 10. A sequence of moves in N3, preserving ori-
entability and replacing three 1-sided pants curves and
one 2-sided one by one 1-sided curve and two 2-sided
curves.

Given a pants decomposition P and a simple closed curve ¢, we set
i(c,P') = Y uep ilc, ). Given two pants decomposition P, P’ of S,
we define a relative pre-complexity

Al (P7 7),) = infCE'PJ(C? Pl)’
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FIGURE 11. A sequence of moves in N3 preserving ori-
entability and replacing three 1-sided pants curves by one
1-sided curve and one 2-sided curve.

where i(+, ) denotes the geometric intersection number and ~; (P, P’)
is taken to be infinite if P; is empty. The symmetrization

(P, P) = inf{y (P, P), (P, P)}

is the complexity upon which we shall induct.

Taking Dehn-Thurston coordinates from Theorem 2.6 with respect
to P’, it follows that if v(P,P") = 0, then P; N'P; # (). Furthermore
with the previous lemma in mind for #P,#P" < 2, if P; = {c¢} and
P ={c}, then v(P,P") = inf{i(c,P"),i(c',P)} whereas if P; = {c,d}
and P’ = {c,d'}, then

Y(P,P') = inf{inf{i(c', P),i(d, P}, inf{i(c,P'),i(d, P")} }

Theorem 6.3 (Generalized Hatcher-Thurston Theorem). Finite com-

positions of moves I-1V act transitively on pants decompositions of sur-
faces S = F,, or S = N,

Proof. We proceed by induction on the Euler characteristic x(S) of
S, and the basis step x(S) = —1 is covered by S = Fy3 or S =
Ny, for g +r = 3. There is the unique pants decomposition (by
boundary curves) in the oriented case. Lemma 5.2 treats S = Nj o,
and Proposition 5.5 covers S = Nj;. We shall postpone the special
discussion of S = N3, namely, the connected sum of three projective
planes and no boundary, until the end. (Since the inductive step in
all other cases devolves to a surface with boundary, it is legitimate
to separately treat this case in this way.) Within the induction over
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X(S) < =2, we shall further induct upon the complexity. Furthermore,
if S is orientable, then the classical Hatcher-Thurston theorem applies.

Given two pants decompositions P, P’ of S, we apply Lemma 6.2 to
without loss of generality assume that P, P’ are oriented with #P; =
#P; =1 or #P; = #P; = 2. Now induct over the complexity v =
v(P,P’). As noted before, if v = 0, then there is a 1-sided curve ¢
common to P and P’ by the Generalized Dehn-Thurston Theorem,
and we may cut on c to decrease the Euler characteristic and apply the
inductive hypothesis.

Let us suppose now that v > 0 and consider separately the two cases
#Py = #P; =1 or 2. A convenient notation here and throughout is to
write simply P — Q if the pants decompositions P and O are related
by moves I-IV. This binary relation is in fact an equivalence relation
by definition.

In the former case, again Py = {c} and P} = {¢'}, where cnN¢ # 0
since P’ is orientable. First, consider the case that i(c,c’) = 1, in
which case a regular nelghborhood N = N(cud) of cUc in S is
homeomorphic to Ny » with ¢, ¢ providing the two pants decompositions
discussed before. Extend {ON,c} to a pants decomposition P” of S.
Since ¢ € P N P”, we may cut on ¢ and conclude that P — P” by
the inductive hypothesis on Euler characteristic. Likewise, we have

e ((P" = {c}) U{d}) NP, soalso P — P’ and it follows by
transitivity that P — P’. Thus, we may henceforth suppose that
i(c,d) > 1.

¢’ petal 7

!

P2 antipodal

c N

>

F1GURE 12. Construction of the curve ¢’ from a petal of ¢.

For the purposes of the proof, a component of ¢ — ¢ is called a
“petal”; equivalently, a petal is one of the subarcs of ¢’ arising between
two points of ¢ consecutive along . Choose such a petal and let ¢’ be
the simple closed curve formed by connecting the petal endpoints with
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a small subarc of ¢ as illustrated in Figure 12. Thus,
i(d", P <i(e, P).

Equality holds here only if the endpoints of the petal are also consec-
utive along c. In this case, there is a simple cycle a in S comprised of
the petal from ¢’ together with this subarc of ¢ (which is itself a petal
for ¢). Extend {a,c} to a pants decomposition P” and {a, '} to Q".
As before, induction on Euler characteristic shows that ¢ € PN P”
implies P — P, ¢ € P'N Q" implies P’ — Q”, and a € P’ N Q" im-
plies P — Q" whence P — P’ as required. Thus, we may henceforth
assume strict inequality i(c”, P") < i(c, P').

Now build new pants decomposition P” and Q" (using this same
notation from above for variable pants decompositions now), where P”
contains {¢’, 0N} and Q" contains {¢,ON} with N = N(cU"). It
follows by induction on Euler characteristic that P — Q”, and in fact
also P — P since P” and Q" differ by a move III in N by construction.
Furthermore, we have

VP P") < (P, P) <i(d", P) <i(e, P') = n(P.P'),

where the first inequality follows from the fact that ~ is also defined as
an infimum, the second since 7; is defined as an infimum, the third
(strict) inequality as already discussed, and the last equality since
Py = {c} in the case we are considering. Thus, v(P’,P") < v1(P,P’)
with P — P”, and interchanging the roles of P and P’ provides the
analogous (P, Q") < v (P',P) with P’ — Q".

Since (P, P’) is defined as the infimum of (P, P") and ~, (P’, P),
it follows that either v(P’, P") < v(P,P") with P — P" or v(P, Q") <
v(P,P") with P — Q" so in any case, P — P’ by induction on
complexity as required in the first case.

In the latter case, let P; = {c,d} and P = {¢,d’'} and define a petal
of ¢ or d’ to be component of ¢ — (cUd) or d' — (cUd), respectively,
whose endpoints lie on a common component of ¢ U d. We claim that
there must be a petal of ¢ with both endpoints either on ¢ or on d, for
otherwise, all consecutive subarcs of ¢ with endpoints on ¢ U d must
have one endpoint on ¢ and one on d, say for a total of m such arcs;
however, m must be even since ¢ is closed, and yet m must be odd since
c is 1-sided. Thus, there indeed must be a petal of ¢ with endpoints
on the same pants curve c or d and likewise for d’. Up to relabeling the
pants curves, there are two possible scenarios: either there are petals of
both ¢ and d’ with endpoints on ¢, or ¢ has a petal with endpoints on
c and d' has a petal with endpoints on d. Build new curves ¢’ and d” as
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F1GURE 13. Construction of curves ¢, d” from petals of ¢, d'.

before as illustrated in Figure 13 in the two scenarios, where perhaps
"N d" # () in either case.

Construct pants decompositions P” O {d,ON(cU ")} and Q" D
{d,0ON(cUd")} in the former scenario and Q" D {d,IN(dUd")} in the
latter. Thus, P — P” — Q" since d € PN'P" N Q”. By construction,
we have

(8) i(d", P <i(e,P") and i(d", P") <i(d, P"),
SO
7(7)”7 Pl) < M1 (73//’ Pl) < i(cllv Pl) < Z.(Cv Pl)a
f}/(Q//a Pl) < 71<Q”77D/) < i(dlla P/) < Z<d7 7)/)7
where the two leftmost inequalitites hold since v and 7, are defined
as infima. Thus, inf{(v(P",P"),v(Q",P")} < n(P,P’) with P — P”
and P — Q”. Moreover by construction, we also have
(9) i(c",P) <i(d,P) and i(d", P) < i(d, P),
SO
7(7)//7 P) < 71(7)//7 P) < i(clla P) < i(C, P)u
’Y(Q”v P) < vl(Q”v P) < i(dllv P) < Z(da P)a
and so inf {(y(P",P),v(Q",P)} < m(P',P) with P = P" and P —
Q". Again, if strict inequalities hold in equations (8) and (9), then
the desired result P — P’ follows by induction on complexity, and it
remains only to analyze the extreme cases of equality in equations (8)

and (9).
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If the equality i(¢”, P") = i(c,P’) holds, then again the endpoints of
the petal of ¢ must be consecutive along ¢, and there is an essential
simple cycle a disjoint from ¢ and ¢. Thus, P — P’ as required by
induction on Euler characteristic as before with a similar argument
for the equality i(d",P") = i(d,P"). If ¢ intersects UP at a point
not in the ¢ petal, then i(¢”,P) < i(¢,P). In particular, i(c",P) =
i(c,P) implies that i(¢,d) = 0. Let P” be a pants decomposition
containing {¢, d} so that P — P” and P’ — P” by induction on Euler
characteristic, whence P — P’ as required.

It remains only to consider the special surface S = N3 . The surface
S is filled by triples of disjoint 1-sided curves, and we choose a particular
one represented as three cross caps on the sphere, thus making a choice
of pants decomposition P of S, and label the cross caps a,b,c. Now
consider any other pants decomposition P’ of S, which must have at
least one (either one or three) 1-sided curves, and choose a curve ¢ €
P;. If there is a component of ¢ — (aUbUc) which has its endpoints on
the same component of a UbU ¢, then the previous argument based on
petals applies to conclude that P — P’. In the contrary case, suppose
there are p complementary components of ¢ —(aUbUc) connecting a and
b, q connecting b and ¢, and r connecting ¢ and a. Each of p+¢q, ¢+r and
r+q must be even, so one of p, ¢, r is even if and only if all three are even.
If all three are even, then the curve described by p, q,r is comprised
of two parallel copies, which is absurd since ¢’ is connected. Thus,
each of p,q,r is odd. It follows that ¢’ contains the curve described
by p = ¢ = r = 1, and again since ¢’ is connected, it coincides with
this curve. Cutting S on ¢ produces a torus minus a disk, and finite
iterations of the move I act transitively on pants decompositions of this
surface by the classical Hatcher-Thurston theorem. It follows that finite

compositions of moves [-IV act transitively on pants decompositions of
S = N3 as well. O

7. APPLICATIONS AND PERSPECTIVES

In a companion paper [15], we give an explicit description in coor-
dinates of the action of the mapping class group on arcs and curves
in the spirit and sense of [16] using the coordinates we provide in sec-
tion 4. It seems clear that both systems of generalized Fenchel-Nielsen
and Dehn-Thurston coordinates should be generally useful. Other in-
triguing questions include what vestige of the Weil-Petersson metric
or its Kahler two-form might remain in the non-orientable case and
the related question of how one might go about quantizing Teichmiiller
theory in this case.
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APPENDIX A. THURSTON’S BOUNDARY FOR TEICHMULLER SPACE

Let S denote a possibly non-orientable and possibly bordered com-
pact surface S. The closure 7 (S) of the image of the map T(S) —
PRES(S) (recalled in §2) is compact and the boundary 7(S) \ 7(S) is
the image of the map PF(S) — PRES(S) (also recalled in §2). One
gets local charts near a point of the boundary by fixing a pair of pants
decomposition P and associating to each hyperbolic structure p on S a
canonical foliation F(p) obtained by taking pieces of equidistant curves
to some geodesic curves in the pairs of pants as in [6], Exposé 8. This
gives a homeomorphism between MF(S) and a subset of MF(S) con-
sisting of measured foliations transverse to each curve in P. There is a
“fundamental inequality” which compares the lengths of any element
of TIS(S) to the intersection number of this curve with the foliation
F(p), and using this inequality, one defines charts near the boundary
points of the union 7(S) U PF(S). The proof imitates that given in
(6] (Exposé 8) for the case of an orientable surface.

APPENDIX B. PUNCTURED SURFACES

In contrast to the bordered surfaces considered in the main text,
we discuss surfaces with punctures in this appendix, that is, we study
a surface S that is either the orientable surface F; or non-orientable
surface N, of genus g > 0 with s > 0 punctures or distinguished
points and no boundary. The definition of a pants decomposition P
of S is exactly as before, namely, complementary regions to P in
are homeomorphic to the interior of a pair of pants including now the
possibility that a complementary region might be a once- or twice-
punctured disk or a thrice-punctured sphere, where we can imagine
each boundary component in a bordered surface collapsed to a distinct
puncture.

The elementary moves of Figure 1 are likewise interpreted: any
depicted boundary component might instead represent a puncture, a
boundary component or a cross-cap both before and after the move.
The statement and proof of the generalized Hatcher-Thurston Theorem
for punctured surfaces follows verbatim the earlier discussion.

The statement and proof of the generalized Fenchel-Nielsen Theorem
for punctured surfaces is also literally unchanged for a possibly non-
orientable and possibly punctured surface S. In effect, any boundary
component is replaced by a puncture in S, and both parameters for a
boundary component of a bordered surface are simply dropped. (In-
deed, it is natural to imagine the length parameters as vanishing with
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twists undefined.) There are still moduli that determine the locations
of the punctures within the surface, but the parameters for the pants
curves in 95 themselves are dropped.

The generalized Dehn-Thurston Theorem also pertains essentially
without change, again dropping intersection and twisting numbers for
pants curves representing punctures. Yet another variant we shall not
further discuss here drops only the twisting numbers but keeps the
intersection numbers of the vestigial boundary components; this version
importantly includes arc complexes of punctured surfaces.

However, there is more to explain in the context of Thurston’s bound-
ary for the Teichmiiller space T(S) of S defined exactly as before
(but now absent any boundary constraints on isotopies). Namely,
a measured foliation of S is said to have “compact support” if it
has no peripheral leaves and no leaf asymptotic to a puncture. Let
MFy(S) € MF(S) denote the subspace of measured foliations of
compact support with corresponding projective space PFo(S).

Theorem B.1 (Generalized Thurston Boundary for possibly punc-

tured surfaces). Fiz a pants decomposition P of a possibly non-orientable
and possibly punctured surface S. Then PFo(S) is thus a sphere of
dimension #P1+24# Py — 1, which has a natural piecewise-linear struc-

ture independent of the pants decomposition and provides a boundary

T(S) = T(S)UPFy(S) to the open ball that is Teichmiiller space T (S)

s0 as to form a closed ball T(S). The usual action of the mapping class

group of S on T (S) extends continuously to T (S) by its natural action

on PFo(S).

Let us also emphasize that there is a hybrid theory that includes
both punctures and boundary components, each of the latter oriented
and containing a distinguished point.
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