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Abstract This paper studies the initiation of cohesive

cracks in the thermal shock problem through a vari-

ational analysis. A two-dimensional semi-infinite slab

with an imposed temperature drop on its free surface is

considered. Assuming that cracks are periodically dis-

tributed and orthogonal to the surface, at short times

we show that the optimum is a distribution of infinitely

close cohesive cracks. This leads us to introduce a ho-

mogenized effective behavior which reveals to be stable

for small times, thanks to the irreversibility. At a given

loading cracks with a non-cohesive part nucleate. We

characterize the periodic array of these macro-cracks

between which the micro-cracks remain. Finally, for

longer times, the cohesive behavior converges towards

that from Griffith’s evolution law. Numerical investiga-

tions complete and quantify the analytical results.

Keywords Thermal Shock · Cohesive Surface Energy ·
Crack Initiation · Micro-cracks · Stability

1 Introduction

Specific topology of crack patterns arise in a various

of situation and are often characteristic of the mate-

rial, the loading and the structure. The nucleation of

these specific topologies, especially away from singu-

larities remains a difficult task for fracture mechan-
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ics. In particular, Griffith’s theory of fracture (Grif-

fith, 1920), until now the most used, is unable to ac-

count for crack initiation in a sound elastic body. The

predictive understanding of crack nucleation is still an

elusive goal. Short of introducing initial flaws at the

structural scale (Bahr et al., 1986), prescribing ad-hoc

stress criteria (Jagla, 2002), or accepting global energy

minimization arguments whose physical relevance is de-

bated (Marigo, 2010).

A typical situation of crack nucleation is that of an

array of parallel cracks after shrinkage. In this paper, we

focus on the thermal shock problem of a brittle slab, for

which experimental results are reported in Geyer and

Nemat-Nasser (1982); Jiang et al. (2012). The speci-

men is a thin slab, free at the boundary, composed of

a homogeneous material without prestress in its initial

configuration. It is uniformly heated and then quenched

in a cold bath inducing a thermal shock on the exposed

surfaces. A first mechanism of selection of materials to-

wards thermal shock based on their surface energy was

introduced by Hasselman (1963). The crack selective

arrest has been explained by Bazant et al. (1979) using

a bifurcation analysis based on the change of sign of the

second derivative of the strain energy with respect to

the crack penetration. More recently, the spacing and

initiation by global minimization of the Griffith energy

are derived by Jenkins (2005). Bahr et al. (2010) de-

rive a scale law relating the space between non cohesive

cracks and their penetration.

The prediction of nucleation of cracks with only

Griffith’s evolution law, leads necessarily to the initi-

ation of cracks of finite length. In this sens it is not

satisfactory. The introduction of a critical stress either

with in the cohesive setting or with gradient damage

models Sicsic et al. (2013) is required. In a setting close

to the thermal shock, i.e. the cooling of a concrete af-
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ter hydration, Bazant et al. (2003) use cohesive surface

energies to link the crack opening to the crack spacing.

The variational approach to fracture, in the spirit

of Francfort and Marigo (1998) is based on the defini-

tion of an energy and a stability principle (see Bour-

din et al., 2008, for a broad description of the develop-

ments). Cohesive surface energies introduced by Dug-

dale (1960); Barenblatt (1962) have been reformulate

into a full evolution law by Charlotte et al. (2000);

Marigo and Truskinovsky (2004); Charlotte et al. (2006);

Ferdjani et al. (2007).

The aim of this paper is to give further insight on

the initiation phenomenon in thermal shock fracture.

By doing this one provides a non-trivial example of

the study of the evolution and bifurcation problem of

cohesive models; which reveals a micro-layer behavior.

The terminology of microcracking can cover many sit-

uations. Here, we do not refer to a process zone nor the

weakening effect of micro-cracks ahead of a main crack

Ortiz (1988). Rather we will accouter micro-cracks as

a constitutive behavior of the material. In this spirit,

Pichler and Dormieux (2009) study the stability of a set

of cracks in a representative element volume. We focus

on the thermal shock problem for a two-dimensional

slab, in a quasi-static setting. By assuming a perfect

conductivity at the surface of the thermal shock, we

consider a Dirichlet boundary condition on the temper-

ature and use the analytically calculated temperature

field, function of space and time, to evaluate the me-

chanical loading in the form of thermally induced in-

elastic strains.

In view of the experimental results (Jiang et al.,

2012) only cracks which are orthogonal to the exposed

surface are considered. A cohesive surface energy den-

sity κ of Barenblatt-type is introduced. The variational

formulation in the wake of Bourdin et al. (2008) based

on this surface energy and a directional stability princi-

ple. If the thermal loading is not sufficiently severe the

elastic response is stable at any time. Otherwise cracks

nucleate as soon as the loading begins. In the sequel the

focus is set on the latter case. Assuming furthermore

that all cracks have the same length and are periodi-

cally distributed. In order to study the singularity due

to the thermal shock and to simplify the presentation

a dimensionless setting is introduced. The problem is

thus governed by a single parameter η, ratio between

the materials critical stress and the maximal stress in-

duced by the thermal loading.

This total dimensionless energy is first minimized

at short times, which gives rise to a “limit” which can

be seen as a distribution of infinitely close cohesive

cracks. This type of microstructuration is well known

in phase transform problems where the energy is not

convex (Ball and James, 1989; Bhattacharya and Dolz-

mann, 2001). Thus, a homogenized (effective) behavior

ψr associated with this optimal microcracking struc-

turation is established. This solution is then confirmed

by computer simulations. The irreversibility in the co-

hesive case is a real issue for the definition of the effec-

tive behavior. The effective behaviors resembles that of

a perfectly plastic material (Fig. 7) but with no unload-

ing part due to the irreversibility constraint. Then the

stability of this micro-cracked layer is studied. Due to

the irreversivility the lost of the stability always arises

at a finite time tc (Property 2) except for Dugdale’s

cohesive model, when the micro-layer is always stable.

The lost of stability arises for a single crack in the

center of the domain. Keeping the hypothesis of peri-

odicity spacing we search for a periodic array of macro-

cracks whose optimal periodicity dopt is characterized

numerically. This numerical investigation is carried on

to reveal the crack selection mechanism where every

other crack stops as in the Griffith case.

Specifically the paper is organized as follows. In the

following section the problem statement is given, as well

as a precise description of the cohesive crack model (sur-

face energy and evolution principle). The elastic solu-

tion is given and its stability studied. Then the mini-

mization of a parallel array of cracks is introduced (Sec-

tion 4). In Section 4, the initiation of cracks for short

times is studied. This allows us to construct the homog-

enized behavior of this microcrack state. Section 4.3

the stability of these homogenized micro-layer is estab-

lished. Section 5 tackles the issue of the evolution of the

non-cohesive cracks.

From the technical standpoint, we essentially use

basic tools of the Calculus of Variations (Dacorogna,

1989). Table 1 summarizes the main nomenclature used

in this article. Vectors and second order tensors are de-

noted by boldface letters, e.g., u for the displacement

and σ for the stress. Their components are denoted by

the respective non-boldface letters by lower indices like

u1 or σ11. The absolute value of a vector is denoted by

the respective non-boldface letter without index, e.g., u.

The inner product between two vectors or two tensors

of the same order is indicated by a dot. The identity

tensor is denoted I.

2 Problem statement

2.1 Geometry, thermoelastic behavior and thermal

shock

We consider the plane domain Ω = (−L,+L) × R+

with homogeneous initial temperature θ(x) = θ0 at

time t < 0. At t = 0 the thermal shock θ0 − ϑ with
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Material and geometric constants
E, ν Young modulus and Poisson ratio
a, k Thermal expansion and thermal dif-

fusivity
ψ Elastic strain energy density (1)
κ Cohesive surface energy density
σc = κ′(0) Critical stress (3)
δc Material characteristic length (3)
Gc = κ(+∞) Material toughness
ω Parameter of the cohesive families
L Half-width of the slab

Space and time variables
x = (x1, x2) Space variables in the physical space
t Physical time variable
Yd Periodic cell
Γ0, Γd Sides of the periodic cell
Sv Jump set of v

y = x/2
√
kt Rescaled space variable adapted to

the diffusion process
t̄ = 2

√
kt aϑ/δc Rescaled time

·̄ Rescaled space quantities
Thermal Loading
θ0 Initial homogeneous temperature
ϑ Temperature drop at the surface
fc Complementary error function
η = σc/(Eaϑ) Thermal shock mildness parameter
εtht Thermal strain field
εe Elastic strain field

Micro-Layer Effective behavior
¯̀c = fc

−1(η) Penetration of the microlayer in the
rescaled space

`t = ¯̀c
√

2kt Depth of the microlayer
ψr Effective stress energy (21) r for re-

laxed
δ Total dimensionless opening
∆ Cumulated opening
Ωc

`t
, Ωe

`t
Micro-crack layer and uncracked
body

R(λ) Infimum of the Rayleigh ratio mini-
mization (33)

dc = Eδc/(ωσc) Characteristic length of the material
λ = `t/L Slenderness of the microlayer

Table 1 Main nomenclature

ϑ > 0 is imposed on its boundary x2 = 0 (Fig. 1)

whereas the lateral sides x1 = ±L are thermally in-

sulated, i.e. ∂θ/∂x1 = 0 on x1 = ±L. From the me-

chanical viewpoint, the upper side x2 = 0 is force free

whereas the lateral sides are shear free and their nor-

mal displacement is blocked. Thus, for all t > 0, the

boundary conditions read as

θ = θ0 − ϑ, σ12 = σ22 = 0 on x2 = 0,

∂θ

∂x1
= 0, u1 = 0, σ21 = 0 on x1 = ±L.

The domain is composed of an isotropic brittle material

with Young’s modulus E, Poisson ratio ν = 0, thermal

expansion coefficient a and thermal diffusivity k. The

change of temperature is taken into account through

the isotropic thermal strain field

εtht (x) = a(θt(x)− θ0)I.

To calculate εtht (x) one first needs to know the solution

for the temperature field in space and time. Considering

that the heat diffusion is not influenced by the possible

presence of cracks, the solution of the heat equation

gives the temperature field

θt(x) = θ0 − ϑfc
(

x2

2
√
kt

)
where fc denotes the complementary error function

fc(y2) = 1− erf(y2) = 1− 2√
π

∫ y2

0

e−ξ
2

dξ.

Note that fc is monotonically decreasing with fc(0) =

1, fc
′(0) = −2/

√
π and fc(+∞) = 0. Recalling that

the Poisson ratio is taken equal to 0, the thermoelastic

energy density is given by

ψ(εe) := 1
2 E(εe11)2 + E(εe12)2 + 1

2 E(εe22)2 (1)

where the elastic strain εe is related to the total strain

ε and the thermal strain εth by

εe = ε− εth.

The total strain field ε is related to the displacement

field by ε = ε(u) := 1
2 (∇u + ∇Tu), i.e. , ε is the

symmetrized linearized gradient of u, while the thermal

strain is given by

εtht (x) = −aϑfc
(

x2

2
√
kt

)
I. (2)

Accordingly, the stress-strain relation reads as

σ = Eεe.

2.2 The elastic response

In absence of any crack, the elastic response of the body

is such that the displacement field at time t takes the

form

uelt (x) = U

(
x2

2
√
kt

)
e2

and its unique non null component U is such that σ22 =

0 everywhere and at every positive time. Therefore

U(y2) =

∫ +∞

y2

fc(ξ)dξ

and the stress fied is given by

σelt (x) = Eaϑfc

(
x2

2
√
kt

)
e1 ⊗ e1.
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u1 = 0

θ = θ0 − ϑ

∂θ

∂x1
= 0

∂θ

∂x1
= 0

u1 = 0

σ21 = 0 σ21 = 0

x2

x1
O σ12 = σ22 = 0

Ω

2L

Fig. 1 Geometry and boundary conditions at t > 0.

So, the material is submitted to a tensile stress σ11

which is maximal at the upper side x2 where it is equal

to Eaϑ and is decreasing to 0 when x2 goes to infinity

(at given time). At a given point x2 > 0, the tensile

stress is monotonically increasing with time.

2.3 The cohesive crack surface energy

Because of the tensile stresses induced by the heat diffu-

sion process, cracks can nucleate as soon as the thermal

shock is applied and propagate all along the process.

We will only consider cracks which are parallel to the

x2 direction. This a reasonable assumption by virtue

of the geometry and the loading (and that corresponds

to what is observed in experimental tests Jiang et al.

(2012)). From the variational viewpoint this condition

will be considered as a constraint which is prescribed

to the crack path. We assume that the lips of those

cracks are submitted to normal cohesive forces which

are given in terms of the crack opening Ju1K through a

surface energy function κ. (We will neglect tangential

cohesive forces associated with possible tangential dis-

placement jumps.) Specifically, the cohesive surface en-

ergy density κ is of Barenblatt-type Barenblatt (1962),

Ju1K 7→ κ(Ju1K) is increasing, concave and tends to a

finite limit Gc when Ju1K goes to infinity. Specifically,

introducing dimensionless quantities, κ can read as

κ(Ju1K) = σcδcκ̄ (Ju1K/δc)

with

κ̄(0) = 0, κ̄′(0) = 1, κ̄′′(0) ≤ 0,

κ̄′ ≥ 0, κ̄′′ ≤ 0, κ̄(∞) <∞.
Accordingly, the normal cohesive force σ11 is given by

the derivative of κ with respect to Ju1K:

σ11 = κ′(Ju1K) = σcκ̄
′ (Ju1K/δc) (3)

and hence σc represents the cohesive force correspond-

ing to an infinitesimal crack opening whereas δc is a

material characteristic length. As a particular case, we

will sometimes consider the following family of cohesive

models which depends on the parameter ω ∈ [0, 1]:

κ̄(ζ) =

{
ζ − ω

2 ζ
2 if 0 ≤ ζ ≤ 1

1− ω
2 if ζ ≥ 1

.

The associated relationship between the cohesive force

and the crack opening is given by

σnn =

{
(1− ωζ)σc if 0 ≤ ζ < 1

0 if ζ > 1
.

The case ω = 0 corresponds to Dugdale’s model while

the case ω = 1 corresponds to a linear cohesive force

model. Note that Gc := κ(+∞) = (1 − ω
2 )σcδc. This

family of models is illustrated in Fig. 2 where δc is ad-

justed so that the values of σc and Gc be the same for

all models.

Remark 1 The cohesive law (3) is valid as long as

the opening is an increasing function of time. When an

unloading occurs, it is not reasonable from the physi-

cal viewpoint to assume that the behavior is reversible

and that the relation between the cohesive force and the

opening is still given by (3), one must consider an irre-

versibility condition. However, to simplify the presenta-

tion, that irreversibility condition will be only introduced

in Section 4. Accordingly, we will work throughout this

section without any irreversible condition and call the

corresponding setting the reversible case.

2.4 Variational formulation of the problem in the

reversible case

Let v be a displacement field which satisfies the bound-

ary condition v1 = 0 on x1 = ±L and which is possibly
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ω = 0
ω = 0.5
ω = 1

ω=0

ω=0.5

ω=1

1

κ

[[u]]
Gc/σc

Gc

[[u]]
Gc/σc

κ�

σc

ω=0

ω=0.5

ω=1

1

Fig. 2 Cohesive surface energy density κ (top) and cohesive
force κ′ (bottom) depending on the crack opening JuK for
the family of models parameterized by ω. Dugdale’s model
corresponds to ω = 0.

discontinuous across a family of lines parallel to the x2

direction. This set of points where v is discontinuous

is called the jump set of v and denoted Sv. In order

that there is no interpenetration, the jump discontinu-

ity must satisfy Jv1K ≥ 0 on Sv. Such a v is said kine-

matically admissible and one associates to it the total

energy of the body at time t by

Et(v) =

∫
Ω\Sv

ψ(ε(v)− εtht ) dx +

∫
Sv

κ(Jv1K) dx2, (4)

where εtht denotes the thermal strain field at time t

given by (2). Following the variational approach pro-

posed in Bourdin et al. (2008), the real displacement

field at time t, say ut, must be found among the kine-

matically displacement fields which are local minima of

the energy at time t. Specifically, for any kinematically

admissible displacement field v, it must exist h̄ > 0 such

that for all h ∈ (0, h̄) the following inequality holds

Et(ut + h(v − ut)) ≥ Et(ut). (5)

(This definition of stability is in fact a condition for

ut to be a local minimum in each given direction v,
h̄ depending in general on the direction v.) Expanding

this inequality with respect to h up to the second order

leads to

0 ≤ hE ′t(ut)(v − ut) + 1
2 h

2E ′′t (ut)(v − ut) + o(h2), (6)

where E ′t(u)(v) and E ′′t (u)(v) denote respectively the

first and second directional derivatives of Et at u in the

direction v, i.e.

E ′t(u)(v) :=

∫
Ω\(Su∪Sv)

E(ε(u)− εtht ) · ε(v) dx

+

∫
Su∪Sv

κ′(Ju1K)Jv1K dx2

E ′′t (u)(v) :=

∫
Ω\Sv

Eε(v) · ε(v) dx

+

∫
Su∪Sv

κ′′(Ju1K)Jv1K2 dx2.

Dividing by h and passing to the limit when h goes to

0 in (6), one obtains the so-called first order stability

condition,

E ′t(ut)(v − ut) ≥ 0, ∀v kinematically admissible. (7)

This condition is only a necessary stability condition

which is not sufficient in general. Specifically, let ut be

an admissible field which satisfies (7). In any direction

v such that E ′t(ut)(v − ut) > 0, (5) holds for h small

enough. But, in the directions v such that E ′t(ut)(v −
ut) = 0, one must study the sign of the second order

term. That leads to the second order stability condition

which reads as

E ′′t (ut)(v − ut) ≥ 0, ∀v kinematically admissible (8)

such that E ′t(ut)(v − ut) = 0.

By standard arguments of Calculus of Variations Bour-

din et al. (2008), it turns out that the first order sta-

bility condition is satisfied at time t if and only if the

displacement field ut and the associated stress field σt
are such that:



Stress-strain relation : σt = E(ε(ut)− εtht ) in Ω \ Sut

Equilibrium : divσt = 0 in Ω \ Sut

Limit stress condition : σt11 ≤ σc in Ω \ Sut

Cohesive force relation : σte1 = κ′(Jut1K)e1 on Sut

Boundary conditions : σte2 = 0 on x2 = 0, σt21 = 0, ut1 = 0 on x1 = ±L

. (9)
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Let us note in particular that the tensile normal

stress σ11 must be less than the critical value σc ev-

erywhere and even in the uncracked part of the body.

(In fact, this condition would be enlarged and would re-

quire that the maximal principal stress maxi σi must be

less than σc everywhere if we had considered arbitrary

crack directions, see Charlotte et al. (2006).) Note also

that, since the cohesive surface energy density does not

depend on the tangential displacement jump, the vari-

ational formulation automatically gives that there is no

shear stress on the lips of the cracks.

2.5 Discussion on the existence and the stability of the

elastic response

By construction the jump set of the elastic displace-

ment field uelt is empty and the associated stress field

σelt satisfies the equilibrium equation and the bound-

ary conditions. Since σelt11 is maximal at x2 = 0 where

it is equal to Eaϑ, the limit stress condition is satis-

fied if and only if the thermal shock is small enough,

specifically iff ϑ ≤ σc/Ea. Let us distinguish the two

cases.

1. Case ϑ ≤ σc/Ea. The elastic response satisfies the

first order stability condition (at any time). It re-

mains to check that it satisfies the complete sta-

bility condition (5). A direct calculation using the

particular form of the elastic response gives, for any

kinematically admissible field v and at any time:

E ′t(uelt )(v−uelt ) =

∫
Ω\Sv

σelt11

∂v1

∂x1
dx+

∫
Sv

σcJv1K dx2.

Integrating by parts the first term in the right-hand

side above and using the fact that the elastic stress

field does not depend on x1 lead to

E ′t(uelt )(v − uelt ) =

∫
Sv

(σc − σelt11)Jv1K dx2 ≥ 0

where the inequality holds because σelt11 < σc and

Jv1K ≥ 0. Moreover E ′t(uelt )(v − uelt ) = 0 iff the di-

rection v is such that Jv1K = 0 on Sv. For such a

direction, the cohesive surface energy vanishes and

one gets

Et(uelt +hv)−Et(uelt ) = h2

∫
Ω\Sv

1
2 Eε(v)·ε(v) dx ≥ 0.

Therefore the elastic response is really stable and

no crack should occur.

2. Case ϑ > σc/Ea. The elastic response is never sta-

ble and can never be observed. In such a case, co-

hesive cracks necessarily exist at any t > 0.

3 Energy minimization in the case of periodic

crack distribution

3.1 Main assumptions

Knowing that cracks nucleate at t = 0 when ϑ > σc/Ea,

the scenario of crack nucleation for t close to 0 is inves-

tigated in this section. To this purpose, we consider the

Hypothesis 1 All cracks are parallel to the x2-direc-

tion, have the same length and are periodically spaced.

We are seeking out their optimal distribution at a time

t close to 0, i.e. the configuration which leads to the

least energy.

In this scenario the displacement field is periodic and

its jump across the crack is purely normal. Accordingly

we can only consider kinematically admissible displace-

ments of the same form and, still by symmetry, one has

to study only one half of a periodic cell. Without loss

of generality, we can suppose that the unit (half-)cell

is the semi-infinite strip Yd = (0, d) × R+, d being the

half-period, see Fig. 3. The side where the crack is lo-

cated is Γ0 = {0}× (0,∞). The opposite side of the cell

is Γd = {d} × (0,∞). The total energy (4) becomes a

functional of d and of the (virtual) displacement field v

at a given time t. Accordingly, taking into account the

periodicity, one sets

Et(d,v) :=
2L

d

∫
Yd

ψ(ε(v)−εtht ) dx+
L

d

∫
Γ0

κ(2v1) dx2.

(10)

Owing to the symmetry, the kinematical conditions now

read

v1 ≥ 0 on Γ0, v1 = 0 on Γd,

and the jump set of v is

Sv = {x = (0, x2) : Jv1K(x2) > 0} ⊂ Γ0.

3.2 Dimensionless problem statement

In order to simplify theoretical considerations, we first

formulate the above described problem in a dimension-

less setting. To this end we introduce the following

transformations

Yd 7→ Yd̄, x 7→ y =
x

2
√
kt
, d 7→ d̄ =

d

2
√
kt

(11)
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Γ0 Γd

u1 = 0u1 ≥ 0 d

Yd

σ12 = σ22 = 0

σ21 = 0 σ21 = 0

Fig. 3 The unit cell and its boundary conditions .

for coordinates and distances in space, at a given time

whereas the displacements are mapped by

v(x) 7→ v̄(y) =
v(x)

2
√
kt aϑ

. (12)

Accordingly, this leads to define the normalized strain

field by

ε̄(v̄) = 1
2

(
∇yv̄ +∇Ty v̄

) 1

aϑ
ε(v),

the normalized elastic strain energy function by

ψ̄(ε̄e) =
ψ(εe)

a2ϑ2E
= 1

2 ε̄
e
11(v̄)2 + ε̄e12(v̄)2 + 1

2 ε̄
e
22(v̄)2 (13)

and the normalized stresses by

σ̄ij =
σij
Eaϑ

.

The intensity of the thermal shock is characterized by

the dimensionless parameter:

η =
σc
Eaϑ

,

whereas the time t is replaced by the following dimen-

sionless parameter:

t̄ =
2
√
kt aϑ

δc
.

Using the above definitions, the elastic response can be

written in a dimensionless form as

σ̄el11 = fc(y2), σ̄el12 = 0, σ̄el22 = 0, (14)

ε̄el11 = 0, ε̄el12 = 0, ε̄el22 = −fc(y2), (15)

which corresponds to the following dimensionless dis-

placement field

ūel(y) =

∫ +∞

y2

fc(ξ)dξ e2. (16)

Finally the total energy functional (10) becomes

Et(d,v) = 4EL
√
kt a2ϑ2Ēt̄(d̄, v̄)

with

Ēt̄(d̄, v̄) =
1

2d̄

∫
Yd̄

(ε̄(v̄) + fc(y2)I) · (ε̄(v̄) + fc(y2)I) dy

+
η

d̄

∫
Γ0

κ̄(2t̄v̄1)

2t̄
dy2. (17)

Therefore the problem consists now in minimizing Ēt̄
with respect to d̄ and v̄ at given t̄. This dimensionless

formulation shows that the problem essentially depends

on two parameters: the dimensionless intensity of the

thermal shock η and the dimensionless time t̄. It is im-

portant to see that the time has disappeared from the

bulk energy to reappear in the surface energy. This will

simplify the analysis.

3.3 Minimization of the energy at short times

To study the behavior for t close to 0, one formally

passes to the limit in (17) when t̄ goes to 0, at given

(d̄, v̄). Since limt̄→0 κ̄(2t̄v̄)/2t̄ = κ̄′(0)v̄1 = v̄1, that

leads to consider the following energy functional

Ē0(d̄, v̄) =
1

2d̄

∫
Yd̄

(ε̄(v̄) + fc(y2)I) · (ε̄(v̄)

+ fc(y2)I) dy +
η

d̄

∫
Γ0

v̄1 dy2. (18)

This energy is a quadratic strictly convex functional of

v̄ at given d̄. Therefore, there exists a unique displace-

ment field which minimizes the energy over the convex

set C(d̄) of kinematically displacement fields, with

C(d̄) = {v̄ : v̄1 ≥ 0 on Γ0 = {0} × (0,∞),

v̄1 = 0 on Γd̄ = {d̄} × (0,∞)}.
As far as the minimization of Ē0(d̄, v̄) with respect to

(d̄, v̄) is concerned, we will use the following property:

Property 1 Let d̄, η and f be positive constants. Then

min
ϕ∈L2(0,d̄)∫ d̄

0
ϕ(y1) dy1≤0

1
2d̄

∫ d̄

0

(
(ϕ(y1) + f)2 − 2ηϕ(y1)

)
dy1

=

{
f2/2− (f − η)2/2 if f ≥ η
f2/2 if f < η

.
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Proof Decomposing ϕ into its mean value 〈ϕ〉 and a

function with zero mean value, i.e.

ϕ(y1) = 〈ϕ〉+ ϕ̃(y1), 〈ϕ〉 ≤ 0,

∫ d̄

0

ϕ̃(y1) dy1 = 0,

the functional to minimize reads as

1

2d̄

∫ d̄

0

(
(ϕ(y1) + f)2 − 2ηϕ(y1)

)
dy1

= 1
2 (〈ϕ〉+ f)2 − η〈ϕ〉+

1

2d̄

∫ d̄

0

ϕ̃(y1)2 dy1.

Minimizing with respect to ϕ̃ gives ϕ̃ = 0 as the min-

imizer. Therefore, the problem consists in minimizing
1
2 (〈ϕ〉 + f)2 − η〈ϕ〉 with respect to 〈ϕ〉 ≤ 0. One eas-

ily obtains that the minimizer is 〈ϕ〉 = 0 if η > f and

〈ϕ〉 = η − f if η ≤ f . The property follows. ut

Let us return to the minimization problem of Ē0(d̄, v̄)

by remarking first that the energy can read as

Ē0(d̄, v̄) =
1

2d̄

∫
Yd̄

((
v̄1,1 + fc(y2)

)2 − 2ηv̄1,1

+
(
v̄2,2 + fc(y2)

)2
+ 1

2 (v̄1,2 + v̄2,1)2
)

dy, (19)

where v̄i,j stands for ∂v̄i/∂yj . Moreover, since v̄1 = 0

on Γd̄, the condition v̄1 ≥ 0 on Γ0 is equivalent to

∫ d̄

0

v̄1,1(y1, y2) dy1 ≤ 0, ∀y2 > 0.

In the case where v̄ = ūel an easy calculation based on

(16) gives

Ēel := Ē0(d̄, ūel) =

∫ ∞
0

1
2 fc(y2)2 dy2, ∀d̄ > 0.

Let us now distinguish the two cases η ≥ 1 and η < 1.

1. Case η ≥ 1, i.e. ϑ ≤ σc/Ea. Since fc(y2) ≤ η for all

y2 > 0, Property 1 gives

1

2d̄

∫
Yd̄

((
v̄1,1 + fc(y2)

)2 − 2ηv̄1,1

)
dy ≥ Ēel

and the equality holds true if and only if v̄1 = 0.

Inserting into (19), one deduces that Ē0(d̄, v̄) ≥ Ēel
and the equality holds true if and only if v̄ = ūel.

Therefore, we have proved that, whatever d̄ > 0, the

minimizer of Ē0(d̄, ·) is the elastic displacement field

ūel. This result reinforces the property of stability of

the elastic response that we obtained in the previous

section.

2. Case η < 1, i.e. ϑ > σc/Ea. Defining ¯̀
c = fc

−1(η)

one has

fc(y2) > η if y2 < ¯̀
c, fc(y2) < η if y2 > ¯̀

c.

Then, for any d̄ > 0 and any v̄ ∈ Cd̄, Property 1

gives

1

2d̄

∫
Yd̄

((
v̄1,1 + fc(y2)

)2 − 2ηv̄1,1

)
dy

≥ Ēel − 1
2

∫ ¯̀
c

0

(fc(y2)− η)2 dy2,

and the equality holds if and only if

v̄1(y) = (fc(y2)− η)+(d̄− y1),

(where x+ denotes the positive part of x). Inserting

into (19), one deduces that ∀d̄ > 0, ∀v̄ ∈ Cd̄:

Ē0(d̄, v̄) ≥ Ēel − 1
2

∫ ¯̀
c

0

(fc(y2)− η)2 dy2.

Therefore we have obtained that Ēel − 1
2

∫ ¯̀
c

0
(fc −

η)2 dy2 is a lower bound for Ē0. Let us now prove

that it is the infimum, i.e.

inf
d̄>0

min
v̄∈Cd̄

Ē0(d̄, v̄) = Ēel − 1
2

∫ ¯̀
c

0

(fc(y2)− η)2 dy2.

Let us first remark that this lower bound cannot be

a minimum, i.e. it cannot be reached by any pair

(d̄, v̄) with d̄ > 0. Indeed, in order that the lower

bound be reached, one should have both v̄1(y) =

(fc(y2)−η)+(d̄−y1), v̄2,2+fc(y2) = 0 and v̄1,2+v̄2,1 =

0, which is impossible. In order to prove that the

lower bound is the infimum, one must construct a se-

quence whose energy converges to the lower bound.

So, let us consider d̄ = 1/n with n ∈ N∗ and

v̄n(y) = (fc(y2)−η)+
( 1

n
−y1

)
e1 +

∫ ∞
y2

fc(ξ) dξ e2,

for y ∈ (0, 1/n)× (0,∞). Inserting into (19) gives

Ē0(1/n, v̄n) = Ēel − 1
2

∫ ¯̀
c

0

(fc(y2)− η)2 dy2

+
1

12n2

∫ ¯̀
c

0

fc
′(y2)2 dy2.

Passing to the limit when n goes to infinity gives

the desired result.
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3.4 Conclusion

The analysis of the previous subsection leads to the fol-

lowing conclusion concerning the minimization problem

of the limit energy at short times:

1. If the thermal shock is small enough, i.e. if η :=

σc/(Eaϑ) ≥ 1, then the elastic response minimizes

the (limit) energy (at least in the class of displace-

ment fields considered in Hypothesis 1), result which

confirms the analysis made in Subsection 2.2.

2. On the other hand, if the thermal shock is large

enough, i.e. if η < 1, then the infimum of the (limit)

energy cannot be reached by any finite spacing of the

cracks but is approached by the following minimiz-

ing sequence (d̄, ūd̄) when the crack spacing d̄ goes

to 0:

ūd̄(y) = (fc(y2)− η)+(d̄− y1) e1 +

∫ ∞
y2

fc(ξ) dξ e2,

where x+ denotes the positive part of x. Accord-

ingly, the “limit” when d̄ tends to 0 can be seen as

a distribution of infinitely close cohesive cracks of

length ¯̀
c = fc

−1(η) and across which the displace-

ment jump is infinitely small. Specifically, one gets

lim
d̄→0

Jūd̄K(y2)

d̄
=

{
2(fc(y2)− η)e1 if y2 ≤ ¯̀

c

0 otherwise
.

Let us recall that these results have been obtained by

minimizing not the true dimensional energy functional

Ēt̄ but only its limit Ē0 when t goes to 0.

3.5 Numerical confirmation of the minimization of the

total energy

The minimum of the total energy predicted in Sec-

tion 3.3 is confirmed by finite element simulations. The

dependence of the total energy of the system on the pe-

riodicity d̄ (Fig. 3) is studied with the commercial code

COMSOL for different values of η. In the finite element

model the height H̄ of the domain in y2-direction is

chosen large enough to make sure that at y2 > H̄ the

changes in the stress field due to crack formation are

negligible. A structured mesh of quadrilateral linear fi-

nite elements with edge length min(d̄, H̄)/30 is used.

The cohesive length ¯̀
c for a certain d̄ is such that

σ̄11(0, y2) = η if y2 ≤ ¯̀
c, σ̄11(0, y2) < η if y2 > ¯̀

c

with ū1(0, y2) = 0 for y2 > ¯̀
c.

Owing to the non-linearity, ¯̀
c(d̄) cannot be com-

puted a priori and the boundary condition on y1 = 0 is

not straightforward. To deal with this difficulty we pre-

scribe a symmetry boundary condition on {y1 = 0, y2 >

¯̀max
c } where ¯̀max

c is chosen large enough to ensure that

it always larger than ¯̀
c. On {y1 = 0, y2 ≤ ¯̀max

c } we im-

pose as a nonlinear Neumann boundary condition in

y1-direction the stress

ηreg =

{
η if ū1 ≥ ūtol1

ηū1/ū
tol
1 otherwise

(20)

where ūtol1 << d̄. Choosing ūtol1 sufficiently small en-

sures that the boundary is either subject to the co-

hesive stress η or satisfies ū1 < ūtol1 ≈ 0. It is made

sure that utol1 is chosen small enough to introduce a nu-

merical error not greater than the one resulting from

other sources such as the finite discretization length of

the finite element mesh. For the simulations we chose

in (20) utol1 = 0.25d̄ × 10−4 for η = 0.9 and utol1 =

1.25d̄ × 10−4 for η = 0.5. In Fig. 4 the convergence of

10−2 10−1 100 101

d̄

.116

.118

.12

.122

.124

.126

.128
minv̄ Ē0(d̄, v̄)

inf min Ē0(d̄, v̄)

(a) η = 0.9

10−2 10−1 100 101

d̄

.03996

.03998

.04

.04002

.04004

.04006

.04008

.0401

.04012
minv̄ Ē0(d̄, v̄)

inf min Ē0(d̄, v̄)

(b) η = 0.5

Fig. 4 Convergence of the the total energy per unit length in
y2 direction in simulations (dots) towards the values predicted
in Subsection 3.3 for d̄→ 0 (dashed lines).

minv̄∈Cd̄ Ē0(d̄, v̄) in finite element simulations towards

the infinum predicted in Section 3.3 for d̄ → 0 is de-

picted for η = 0.9 and η = 0.5. Excellent agreement

between the numerical results and the analytical predic-

tions is observed underlining especially that for d̄ → 0

indeed a unique minimum of total energy is reached.

Not only do these computer simulations confirm the

theoretical analysis in Section 3.3, but they can also be

exploited to illustrate the mechanical meaning of the

results. Thus in Fig. 5 the stress field σ̄11 observed in



10 Christian J. Cyron et al.

Fig. 5 Stress field σ̄11 in finite element simulations with η = 0.9 for d̄ = {0.01, 0.11}, all stresses below 0.7 plotted in the same
color in order to improve resolution for higher stresses, y2 = ¯̀c marked as horizontal continued line.

the finite element simulations with η = 0.9 is plotted

for different values of d̄.

– For d̄ = 0.01 obviously σ̄11 ≈ η in the whole part

above the crack tip, i.e. for y2 < ¯̀
c = fc

−1(.9) =

0.089 as expected.

– For increasing values of d̄, however, we observe in

the upper part of the domain that σ̄11 ≈ η only for

small y1, whereas for increasing y1 the effect of the

cohesive crack diminishes smoothly.

– The stress increases and becomes more and more

similar to the thermal stress field from (14).

– For d̄ = 1 the cohesive stress is observed only in a

comparatively small part of the domain whereas for

y1 → d̄ the stress field becomes approximately the

one of an uncracked body.

Precisely, for any finite d̄ we expect from Saint Venant’s

principle that in the upper part of the domain there are

sections parallel to the y2-axis along which σ̄11 > η. Ob-

viously, the creation of a new cohesive cracks along such

sections is energetically favorable which means that for

any finite d̄ we expect that a subdivision of the con-

sidered unit cell by an additional crack should happen.

This immediately leads to the conclusion that d̄→ 0 is

the energetically optimal periodicity between adjacent

cracks.

4 Crack initiation by formation of a

micro-cracked layer

4.1 Effective behavior of micro-cracks

The theoretical analysis above suggests that, at a macro-

scopic point and for a given local macroscopic strain,

the material could have interest to develop a cohesive

microcracking to minimize its energy rather than to

remains elastic. That depends on the intensity of the

macroscopic strain. Specifically, the best deformation

in order to minimize the (total) energy consists in: (i)

either a pure elastic response without microcrack, if the

strain component εe11 is small enough; (ii) or a piece-

wise elastic response intersected by a fine arrangement

of vertical cohesive micro-cracks across which the dis-

placement field suffers an infinitesimal jump, otherwise.

This type of microstructuration is well known in phase

transform problems where the the energy is not con-

vex Ball and James (1989); Bhattacharya and Dolz-

mann (2001). The associated procedure of energy relax-

ation can be transposed to the present context Bourdin

et al. (2008); Bouchitté et al. (1998). From the phys-

ical viewpoint, this consists in replacing the original

energy functional by that corresponding to the homog-

enized (effective) behavior associated with this optimal

microcracking structuration. Of course, the construc-

tion of this effective behavior must take into account

the history of the macroscopic strain because the cur-

rent response depends on the presence of the previ-

ously created micro-cracks. However, since the intro-

duction of an irreversibility condition into a cohesive

force model is a real issue (whereas it is quite natu-

ral in Griffith’s theory setting where the cohesive forces

are neglected), the definition of the effective behavior

will be made in two steps: first, by considering the so-

called reversible case where there is no condition of irre-

versibility; then, by introducing an irreversibility condi-

tion. In both cases, since we are merely interested here

by the thermal shock problem, we have only consid-

ered the possibility of micro-cracks parallel to the x2

direction. Accordingly, the behavior in the x1 direction

only is affected by the micro-cracks and we can consider

that the representative volume element is in fact a one-

dimensional interval which after a suitable rescaling is

assumed to be Y = (−1/2, 1/2).
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micro-cracked layer

uncracked part

Ω y1
0

Y

Fig. 6 The body with a microcrack-layer near the upper side (left); the local structuration of the cracks at the micro-scale
(right).

– The reversible case. Let εe be the given macroscopic

elastic strain tensor. Then, by definition, the effec-

tive strain energy ψr is defined by minimizing, at the

microscale, the total energy with respect to all pos-

sible micro-crack distributions at that given macro-

scopic strain. Specifically, that leads to the following

definition:

ψr(εe) = min
v1

v1(−1/2)=v1(1/2)=0

Jv1K≥0 on Sv1


∫
Y \Sv1

ψ(εe + v′1(y1)e1 ⊗ e1)dy1 +
∑

y1∈Sv1

σcJv1K(y1)

 . (21)

In (21), ψ is the original elastic potential given by

(1) and Sv1
denotes the set of points of the interval

(−1/2, 1/2) where the (dimensionless) scalar field

v1 is discontinuous. This set can be empty and one

has to find the (possibly discontinuous) optimal field

v1 such that the total energy be minimal, at given

macroscopic strain. Note that the effective energy is

the sum of the bulk elastic energy and the surface

energy due to the micro-cracks and this latter en-

ergy only involves σc = κ′(0) because the jump of

the displacement is necessarily infinitesimal. Indeed,

finite jumps would give rise to an infinite energy

when summed over all the micro-cracks.

This minimization problem is essentially the same

as that considered in Subsection 3.3 and hence we

simply give the final result. The effective potential

ψr is given by:

ψr(εe) =



E

2

(
εe11

2 + εe22
2 + 2εe12

2
)

if εe11 ≤ σc/E

σcε
e
11 −

σ2
c

2E
+
E

2

(
εe22

2 + 2εe12
2
)

if εe11 > σc/E

.

Thus, the dependence on εe11 only is affected. The

quadratic dependence is replaced by an affine depen-

dence when εe11 becomes larger than σc/E so that

the effective stress σ11 remains constant and equal

to σc.

Note that the minimizer is v1 = 0 when εe11 ≤ σc/E
and hence is not discontinuous. On the other hand,

when εe11 > σc/E, there exist an infinite number

of minimizers which differ only by their jump set.

Specifically, in this case, any minimizer has to sat-

isfy

v′1(y1) =
σc
E
− εe11 in Y \ Sv1 , Jv1K > 0 on Sv1 ,∑

y1∈Sv1

Jv1K(y1) = εe11 −
σc
E
.

Thus, the number and the position of the disconti-

nuity points are arbitrary (at the micro-scale). For

instance, in the case where the minimizer contains

a single discontinuity at y1 = 0 then v1 reads as

v1(y1) =

{(
σc

E − εe11

)
(y1 + 1

2 ) if − 1
2 < y1 < 0(

σc

E − εe11

)
(y1 − 1

2 ) if 0 < y1 <
1
2

.

– The irreversible case. In the construction above, the

effective behavior only depends on the current strain
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tensor εe and not on its history. In particular, the

opening and the closure of the micro-cracks are con-

sidered as a reversible process. It is not realistic and

one has to introduce some irreversibility conditions.

We adopt here the conditions proposed in Jaubert

and Marigo (2006); Abdelmoula et al. (2010) and

Talon and Curnier (2003). Specifically, the rate of

the displacement jump across the micro-cracks is

governed by the following flow rule:

Jv̇1K ≥ 0 if σ11 = σc, Jv̇1K = 0 if σ11 ∈ (0, σc)

Jv̇1K ≤ 0 if σ11 = 0. (22)

Thus, the displacement jump increases only when

the stress is at the critical value σc and decreases

only when the stress vanishes. Consequently, the to-

tal (dimensionless) opening δ, (sum of the) displace-

ment jump over the (set of) microcrack(s), can be

seen as an internal variable δ which enters in the

stress-strain relation

σ11 = E(εe11 − δ), δ :=
∑

y1∈Sv1

Jv1K(y1) ≥ 0.

Using (22), the evolution law of δ can be formulated

in terms of the following Kuhn-Tucker relations:

when δ = 0,


δ̇ ≥ 0,

σ11 − σc ≤ 0

(σ11 − σc)δ̇ = 0

; (23)

when δ > 0,

{
0 ≤ σ11 ≤ σc
σ11δ̇ = σcδ̇

+
. (24)

In (23), δ̇+ denotes the positive part of δ̇, i.e. δ̇+ =

max{0, δ̇}. Accordingly, the effective behavior of the

material can be seen as that of an elastic-plastic ma-

terial where δ represents the (unique non vanishing)

plastic strain component. This plastic strain exists

only when the material is not in compression and it

evolves only when the tensile stress is at the ends of

the interval [0, σc]. That leads to a behavior which is

schematized on Figure 7 where the arrows indicate

the direction in which the paths must be followed

(a double arrow means that the path is reversible).

The effective strain energy ψr is now function not

only on the current strain tensor εe, but also on the

current total opening δ and even on the cumulated

opening ∆ defined at time t by

∆(t) =

∫ t

0

δ̇(s)+ ds.

Specifically, the effective strain energy ψr reads as

ψr(εe, δ,∆) =
E

2

(
(εe11 − δ)2 + εe22

2 + 2εe12
2
)

+σc∆.

σ11

σc

εst11
δ

Fig. 7 Effective behavior of the microcracked material when
the irreversibility condition is introduced.

(25)

For any accessible state (εe, δ,∆), ψr enjoys the fol-

lowing inequality which plays a fundamental role to

obtain stability properties:

ψr(εe, δ + hδ∗, ∆+ hδ+
∗ ) ≥ ψr(εe, δ,∆), (26)

∀h > 0 and

{
∀δ∗ ≥ 0 if δ = 0

∀δ∗ if δ > 0
.

Indeed, an easy calculation gives

ψr(εe, δ + hδ∗, ∆+ hδ+
∗ )− ψr(εe, δ,∆) =

h(σcδ
+
∗ − σ11δ∗) +

h2

2
Eδ2
∗.

If δ = 0, then σ11 ≤ σc and the inequality (26) fol-

lows. If δ > 0, then 0 ≤ σ11 ≤ σc and the inequality

(26) still holds.

Thus in (26) a second order term is introduced which

will allow the lost of stability.

4.2 The response corresponding to the propagation of

a micro-cracked layer

Throughout the present subsection we only consider

the case where Eaϑ > σc. The previous analysis shows

that a possible solution of the evolution problem cor-

responds to the growth, from the upper boundary, of

a micro-cracked layer the depth of which continuously

increases with time. Let us precisely define such an evo-

lution by discriminating between the reversible and the

irreversible cases.

1. The reversible case. The total energy of the body

at time t associated with the kinematically admissi-

ble displacement field v is defined by replacing the

elastic potential ψ by the effective strain energy ψr.

Therefore it now reads

Et(v) =

∫
Ω\Sv

ψr(ε(v)− εtht ) dx +

∫
Sv

κ(Jv1K) dx2.
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The real displacement and stress fields ut and σt
at time t must satisfy the first order stability con-

dition which differ only from (9) in the stress-strain

relation which becomes

σt =
∂ψr

∂ε
(ε(ut)− εtht ).

It is easy to check that the elastic displacement field

uelt given in Subsection 2.2 satisfies the new first

order stability conditions. The associated stress field

now reads

σt(x) =

{
σc if x ∈ Ωc`t
Eaϑfc

(
x2√
2kt

)
if x ∈ Ωe`t

,

where Ωc`t and Ωe`t denote respectively the micro-

cracked layer and the uncracked part of the body at

time t, i.e.

Ωc`t = (0, L)× (0, `t), Ωe`t = (0, L)× [`t,∞),

`t being the depth of the micro-cracked layer

`t = ¯̀
c

√
2kt, ¯̀

c = fc
−1(η).

2. The irreversible case. The displacement and stress

fields are the same as in the reversible case. The

unique difference is the existence of two internal

variables: the opening field δ (which plays the role of

a residual strain) and the cumulated opening field

∆. At each time t these fields are equal because

there is no unloading, and vanish outside the micro-

cracked layer. Inside the layer, they are given by

δt(x) = ∆t(x) = aϑfc

(
x2√
2kt

)
− σc
E

if x ∈ Ωc`t .

4.3 Stability of the micro-cracked layer

We have shown in the previous subsection that growth

of a micro-cracked layer without any macro-crack is a

possible solution to the evolution problem. It remains to

check the stability of this micro-cracked layer, which we

will do in the following subsection, where for the sake

of simplicity only the irreversible case is considered.

4.3.1 Definition of the stability in the irreversible case

Since the stability condition has only been defined in

the reversible case, one must redefine this condition in

the irreversible case, where the principle remains the

same: comparing the energy of the body in its tested

state with the energy that the body would have if one

perturbs this state in any possible direction. Specifi-

cally, let t > 0 be a given time and (uelt , δt, ∆t) be

the state of the body at this time corresponding to the

micro-cracked layer. Recalling that ∆t = δt, the energy

of the body in this state reads as

Et(uelt , δt, ∆t) =

∫
Ω

ψr
(
ε(uelt )− εtht , δt, δt

)
dx,

where ψr is the effective energy density given by (25).

Let v be a kinematically admissible displacement field

(which can be discontinuous across its jump set Sv) and

let δ∗ be a direction of perturbation of the opening field,

δ∗ can be any square integrable function over Ω with

the constraint that δ∗ must be non-negative outside the

micro-cracked layer. If one perturbs the body at time

t by changing (instantaneously) uelt to uelt + hv, δt to

δt + hδ∗ and hence ∆t = δt to δt + hδ+
∗ where h is a

positive number, then the energy of the body becomes

Et(uelt + hv, δt + hδ∗, ∆t + hδ+
∗ )

=

∫
Ω\Sv

ψr
(
ε(uelt + hv)− εtht , δt + hδ∗, δt + hδ+

∗ )
)

dx

+

∫
Sv

κ(hJv1K) dx2.

The condition for stability is that for any admissible di-

rection of perturbation (v, δ∗), the following inequality

Et(uelt + hv, δt + hδ∗, ∆t + hδ+
∗ ) ≥ Et(uelt , δt, ∆t)

holds if h is sufficiently small. Expanding with respect

to h up to the second order gives

0 ≤ h

∫
Ω\Sv

(
σt · (ε(v)− δ∗e1⊗e1) + σcδ

+
∗

)
dx + h

∫
Sv

σcJv1K dx2

+
h2

2

∫
Ω\Sv

E(ε(v)− δ∗e1⊗e1)·(ε(v)− δ∗e1⊗e1) dx +
h2

2

∫
Sv

κ′′(0)Jv1K2 dx2 + o(h2). (27)

Using the fact that σt = σt11e1⊗ e1, the first order

stability condition reads as

0 ≤
∫
Sv

(
σc−σt11)Jv1K dx2 +

∫
Ω\Sv

(σcδ
+
∗ −σt11δ∗) dx.
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The inequality above is automatically satisfied, because

0 ≤ σt11 ≤ σc and Jv1K ≥ 0 everywhere. Moreover, the

inequality becomes an equality if and only if the direc-

tion of perturbation is such that Jv1K = δ∗ = 0 outside

the micro-cracked layer and δ∗ ≥ 0 inside the micro-

cracked layer. Considering such directions of perturba-

tion, the second order stability condition reads as

0 ≤
∫
Ω\Sv

E(ε(v)− δ∗e1⊗e1)·(ε(v)− δ∗e1⊗e1) dx

+

∫
Sv

κ′′(0)Jv1K2 dx2. (28)

Since the above inequality must hold for any δ∗ such

that δ∗ = 0 in Ωe`t and δ∗ ≥ 0 in Ωc`t , it must hold for

the field δ∗ which minimizes the right-hand side of (28)

at given v. An elementary calculation gives that this

minimizer is

δ∗(x) =

{
v+

1,1(x) if x ∈ Ωc`t \ Sv

0 if x ∈ Ωe`t
,

where the plus still denotes the positive part. Inserting

into (28) the inequality becomes∫
Ωc

`t
\Sv

E
(

(v−1,1)2 + (v2,2)2 + 1
2 (v1,2 + v2,1)2

)
dx

+

∫
Ωe

`t

Eε(v) · ε(v) dx ≥ −κ′′(0)

∫
Sv

Jv1K2 dx2, (29)

where a− denotes the negative part of a, i.e. a− =

max{0,−a}. The inequality (29) must hold for any v

such that Sv ⊂ Ωc`t and Jv1K ≥ 0 on Sv. It is automat-

ically satisfied in the case of Dugdale’s model because

κ′′(0) = 0. Therefore, the response associated with the

growth of a micro-cracked layer is always stable for

Dugdale’s model.

Let us examine now the general case where κ′′(0) <

0. Introducing the Rayleigh ratio

R`t(v) :=

∫
Ωc

`t
\Sv

E
(

(v−1,1)2 + (v2,2)2 + 1
2 (v1,2 + v2,1)2

)
dx +

∫
Ωe

`t

Eε(v) · ε(v) dx

|κ′′(0)|
∫
Sv

Jv1K2 dx2

, (30)

the stability condition consists in comparing the in-

fimum of the Rayleigh ratio (over the set of admissible

v) with 1. Specifically, setting

Rt := inf
v : Jv1K≥0 on Sv⊂Ωc

`t
,

v1=0 on x1=±L

R`t(v), (31)

one gets{
if Rt > 1 the micro-cracked state is stable at t,

if Rt < 1 the micro-cracked state is unstable at t.

4.3.2 Minimization of the Rayleigh ratio

The Rayleigh ratio depends on time t only through the

depth `t of the micro-cracked layer. Hence its infimum

too. Moreover, the infimum depends also on the width

L of the body and on material parameters. By simple

arguments of physical dimension, it is easy to check that

Rt can read as

Rt =
E

|κ′′(0)|LR

(
`t
L

)
. (32)

In (31), R is a dimensionless positive function associated

with the following rescaled Rayleigh ratio minimization

problem:

R(λ) = inf
v∈C(λ)

R(λ,v), (33)

which is posed on a domain of width 2 containing a

layer of depth λ = `t/L. Specifically, one sets

C(λ) := {v : Jv1K ≥ 0 on Sv ⊂ Ωc(λ), v1 = 0 on x1 = ±1},

R(λ,v) :=

∫
Ωc(λ)\Sv

(
(v−1,1)2 + (v2,2)2 + 1

2 (v1,2 + v2,1)2
)

dx +

∫
Ωe(λ)\Sv

ε(v) · ε(v) dx∫
Sv

Jv1K2 dx2

(34)
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and

Ωc(λ) := (−1, 1)×(0, λ), Ωe(λ) := (−1, 1)×(λ,+∞).

Let us prove that λ 7→ R(λ) is monotonically decreas-

ing, i.e.

R(λ1) ≥ R(λ2) if λ1 < λ2. (35)

First, C(λ1) ⊂ C(λ2) because Ωc(λ1) ⊂ Ωc(λ2). More-

over, since (v−1,1)2 ≤ v2
1,1, one gets R(λ1,v) ≥ R(λ2,v)

for all v ∈ C(λ2). Therefore,

inf
v∈C(λ2)

R(λ2,v) ≤ inf
v∈C(λ2)

R(λ1,v) ≤ inf
v∈C(λ1)

R(λ1,v)

and (35) follows.

Let us construct an upper bound for R(λ). Consid-

ering the following displacement field

v(x) = sin
(π

2

(
1− x2

λ

)+)
sign(x1) sinh

π(1− |x1|)
2
√

2λ
e1

which belongs to C(λ) and whose jump set is Sv =

{0} × (0, λ), a tedious calculation eventually leads to

the following estimate

R(λ) ≤ R(λ,v) =
π

4
√

2λ tanh
π

2
√

2λ

. (36)

-1 -.5 0 .5 1
x1

0

.2

.4

.6

.8

1

1.2

1.4

x
2
/λ

−1.0

−0.5

0.0

0.5

1.0

Fig. 8 Normalized displacement test field for the evaluation
of the upper bound.

To obtain a lower bound, one uses the positivity of

each term of the bulk energy to get

R(λ) ≥ inf
v∈C(λ)

∫
Ωc(λ)\Sv

(v−1,1)2 dx∫
Sv

Jv1K2 dx2

. (37)

The infimum above is equal to 1/2 (the proof is left to

the reader) and is reached by the field v which vanishes

in Ωe(λ) and is given by

v(x) = sign(x1)(1− |x1|)e1 in Ωc(λ).

(This displacement field is not in C(λ) because it is dis-

continuous at x2 = λ, but it can be approached by ele-

ments of C(λ).) Finally, we have obtained the following

bounds for the infimum of the Rayleigh ratio:

Eδc
2ωσcL

≤ Rt ≤
π

4
√

2 tanh
( πL

2
√

2`t

) Eδc
ωσc`t

, (38)

where ω = −κ̄′′(0) > 0. Let us remark that the lower

and upper bounds are equal when t (and hence `t)

go(es) to infinity. This mathematical result can be in-

terpreted mechanically as pointed out in remark 2.

These estimates are sufficient to discuss the stabil-

ity of the micro-cracked layer at large times, but must

be improved at short times. Indeed, let us define the

characteristic length of the material

dc =
Eδc
ωσc

. (39)

If the body width L is small enough, i.e. 2L ≤ dc, one

deduces from (38) that Rt > 1 for all t and hence the

micro-cracked layer is always stable. On the other hand,

if 2L > dc, then Rt < 1 for sufficiently large times t

so that the micro-cracked layer becomes unstable. Still

in case that 2L > dc, to conclude on the stability of

the micro-cracked layer at small times requires to find

limλ→0 R(λ). The determination of this limit is a real is-

sue and we make the following conjecture which is based

on some arguments and the computations presented on

the next subsection:

Hypothesis 2 The function λ 7→ R(λ) goes to infinity

like 1/λ when λ goes to 0. Specifically, there exists R0 >

0 such that

lim
λ→0

λ R(λ) = R0.

Note that the constant R0 is necessarily independent

of the material parameters and of the thermal shock.

It can only depend on the shape of the body and on

the type of boundary conditions which are prescribed.

Next, we assume that R(λ) is not only monotonically

decreasing, but in order to ensures the existance of the

inverse function R−1 for all λ, we even assume

Hypothesis 3 The function R(λ) and is strictly mono-

tonically decreasing.

Finally, we assume similarly as already for the micro-

cracks

Hypothesis 4 Macro-cracks are parallel to the x2-direc-

tion and form a periodic pattern in x1-direction.
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From Hypothesis 2, 3 and 4 as well as (32) we conclude

that

Property 2 As far as the stability of the micro-cracked

layer is concerned, one has

1. If 2L ≤ dc, then the micro-cracked layer is always

stable;

2. If 2L > dc, then there exists a critical time tc be-

fore which the micro-cracked layer is stable and af-

ter which the micro-cracked layer is unstable. This

critical time is given by

tc =

(
R−1(L/dc)

erfc−1(η)

)2
L2

4k
. (40)

Therefore, the stronger the thermal shock (i.e. the

smaller η) or the smaller the material characteristic

length dc, the shorter the critical times.

3. If 2L � dc, then the critical time is approximately

given by

tc ≈ t∞c =

(
R0

erfc−1(η)

)2
d2
c

4k

and corresponds to the time when the depth of the

micro-cracked layer is `tc ≈ R0dc.

Note that for large L, tc is a finite, positive value in-

dependent on L, which means that the critical time for

destabilization of the micro-crack layer never drops un-

der a minimal value. Therefore, regardless of the body

width the micro-crack layer will always be stable. Fig-

ure 9 plots the critical time versus the load parameter

η which is increasing with the mildness.
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Damage [Sicsic et al. 2013]

Fig. 9 Critical time for destabilization versus load parameter
η.

4.3.3 Numerical results for Rayleigh coefficient R0

The results from Section 4.3.2 are checked numerically

by finite element computations of the rescaled Rayleigh

coefficient R(λ) for different values of the ratio λ be-

tween thermal penetration depth and cell width.

This Rayleigh coefficient in the irreversible case can

be determined only numerically. From (33) and (34) we

conclude that for a given ratio λ between thermal pene-

tration depth and domain width, the rescaled Rayleigh

ratio R(λ) is the smallest real value satisfying for any

variation v the condition

0 =

∫
Ωc(λ)\Sv

(
(v−1,1)2 + (v2,2)2 + 1

2 (v1,2 + v2,1)2
)

dx

+

∫
Ωe(λ)\Sv

ε(v) · ε(v) dx− R(λ)

∫
Sv

Jv1K2 dx2. (41)

To compute this value, we perform a finite element com-

putation for reasons of symmetry only on the half-cell

with 0 ≤ x1 ≤ 1. This half-cell is discretized by a rect-

angular grid and we use bilinear basis functions and a

constant discretization length h2 in y2-direction on the

boundary Γ .

The column vector VI concatenates all x1-displa-

cements of nodes situated on the crack boundary Sv,

which forms a part of the boundary of the half-cell con-

sidered. Note that the nodal displacements VI on the

crack boundary in our finite element computation dis-

tinguish from the jump Jv1K in (41) by a factor of two.

Therefore (41) can be written in a discrete manner as

0 =

[
VI
VII

]T 
[
Kel
I,I Kel

I,II

Kel
II,I K

el
II,II

]
︸ ︷︷ ︸

Kel

−2R(λ)h2

[
1 0

0 0

]
︸ ︷︷ ︸

Kel,crack

[
VI
VII

]

(42)

where 1 denotes the identity matrix, h2 the discretiza-

tion length in x2-direction. Kel is the elastic stiffness

matrix of the considered half-cell with zero Dirichlet

boundary conditions everywhere except for Sv and the

body surface at x2 = 0, which are free boundaries.

Kel,crack can be seen as the total stiffness of the com-

plete system consisting of an elastic continuum and a

cohesive crack. As (42) can be satisfied if and only if VI
and VII form an eigenvector of Kel,crack with eigenvalue

zero,

VII = −(Kel
II,II)

−1Kel
II,IVI . (43)

Let us denote µi the eigenvalues of

Kel,eff = Kel
I,I −Kel

I,II(K
el
II,II)

−1Kel
II,I
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Recalling that R(λ) is the smallest real value satisfying

(42), we arrive at

R(λ) =
1

2h2
µ1 (44)

Mechanically, in (44) Kel,eff describes the effective

stiffness of the elastic material in the periodic cell to-

wards a crack opening in direction VI and its small-

est eigenvalue normalized by the discretization length

h2 describes the minimal stiffness of the continuum to-

wards a crack opening in any direction, which is exactly

the mechanical meaning of the Rayleigh-like coefficient

R(λ). Using (44), R(λ) can be computed conveniently

in MATLAB for any given λ. The results of these com-

putations are depicted in Fig. 10. By parameter stud-

ies with both different domain depths in x2-direction

and different discretization lengths it is verified that

the numerical error by discretization and finiteness of

the simulated domain in x2-direction is negligible in all

simulations.

Obviously, in the limit 1/λ → 0, (i.e. `t → ∞) we

arrive at λR(λ) ∼ λ/2, i.e. at limλ→∞ R(λ) = 1/2,

which is exactly what we expect from (37) and (38)

for large λ where upper and lower bound converge to

the same value. On the other hand, for λ→ 0 we obtain

the constant limλ→0 λR(λ) = R0 ≈ 0.232, which backs

up numerically Hypothesis 2. Note that this numeri-

cal result is also in accordance with the upper bound

from (36) for small λ, which requires limλ→0 λR(λ) ≤
π/(4
√

2) ≈ 0.555.
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Fig. 10 Rayleigh-like coefficient versus normalized domain
width

As can be seen in Fig. 10, R(λ) is indeed not only

monotonically decreasing as pointed out already in (35),

but even strictly monotonically decreasing as assumed

in Hypothesis 3. Thus both the Hypothesis 2 and 3 are

confirmed by the numerical computation of R(λ).

Remark 2 (Interpretation of R(λ) for λ→∞) For

very large values of λ the domain becomes a quasi-

one-dimensional strip stretched out in x2-direction. In

such a continuum shear deformation and strain in x2-

direction are expected to be negligible so that v2,1 =

v2,2 = 0 in (34) and the strain in x1-direction is ex-

pected to be constant. Geometric compatibility requires

that the strain v−1,1 sums up over the cell of width 2 to

the jump Jv1K:∫
Ωc(λ)\Sv

v−1,1 dx = 2

∫
Sv

v−1,1 dx2 =

∫
Sv

Jv1K dx2, (45)

and thus in Ωc(λ), v−1,1 = Jv1K/2 so that (34) gives

lim
λ→∞

R(λ) = 1/2. (46)

Thus the fact that in (38) upper and lower bound con-

verge for `t →∞, i.e. , λ→∞ to the same value which

is equivalent to R(λ) = 1/2, can be understood mechan-

ically simply from the fact that in this limit the domain

becomes quasi-one-dimensional so that all strains be-

come negligible except for the one in direction of the

width of the body, which becomes constant and thus di-

rectly related to the jump at the crack.

4.4 Comparison with Griffith’s surface energy and

gradient based damage models

Following Property 2, when 2L� dc

tc ≈
(

R0

erfc−1(η)

)2
d2
c

4k
, `tc ≈ R0dc. (47)

It is instructive to compare the current results to those

from a gradient-damage model for the same problem

Sicsic et al. (2013). Qualitatively, in both cases no macro-

scopic cracks are initiated at t = 0. Rather for the dam-

age model one observes a homogeneous (with respect

to y2-direction) damaged layer growing in time which

can be considered the counterpart to the micro-crack

layer in the cohesive model. At a critical time tc for

both models a destabilization of this damaged layer is

observed. In the damage model the bifurcation critical

time is according to (Sicsic et al., 2013, Proposition 10)

given by

tb = τ2
c (η)

η2 ¯̀2
dam

4k
(48)

where τc(η) is a function of the thermal load parameter

η determined numerically in Sicsic et al. (2013), ¯̀
dam

is a characteristic length of the material in the dam-

age model. Obviously, this length affects tc the same

way as the characteristic material length dc in the co-

hesive force model. Furthermore, the thermal diffusivity
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k plays the same role in (47) and (48). As to the influ-

ence of the thermal load there, interestingly, these both

expressions are numerically very similar (Fig. 9).

5 From the loss of stability of the microlayer to

a parallel array of macro-cracks

For 2L > dc the micro-crack layer loses its stability at

some time tc > 0. In the sequel we will restrict to case

where the slab is such that 2L� dc. In the following we

will discuss the post-critical development following the

principle of local minimum of total energy under the ir-

reversibility constraint. Studying the full complexity of

the mixture of micro-cracks and macro-cracks goes be-

yond the scope of this paper. Therefore we limit the dis-

cussion of the post-critical developments to some simple

qualitative arguments revealing the general lines along

which the system will evolve after the loss of stability

of the micro-cracked layer in the irreversible case.

5.1 Initiation of macro-crack pattern

In the previous section, the micro-layer is unstable at

t = tc where a single macrocrack appears in the cen-

ter of the domain. To understand how the pattern of

macro-cracks will evolve in time, we assume for the mo-

ment that the macro-cracks are not formed directly at

t = tc, but at some later time. We seek those of a peri-

odicity dopt that minimize the energy per unit length.

From Hypothesis 1 and 4, the energy saved in a pe-

riodic cell of width dopt by formation of macro-cracks

can be expressed by the second order term in h in (27)

interpreting Ω and Sv as domain and crack boundary

in this periodic cell. As the term h2

2

∫
Sv
κ′′(0)Jv1K2 dx2

does not depend on dopt, the minimization of this en-

ergy is with (30) and (31) equivalent to the minimiza-

tion of Rdt + 1 where Rdt is referring to a periodic cell

of width d instead of the whole domain of width L as

Rt. Then the energy per unit length and thus the total

energy of the whole system is minimized by the crack

spacing

dopt = arg min
d

{
Rdt + 1

d

}
(49)

where we neglect the requirement that the body width

L has to be a multiple of the optimal crack spacing dopt.

From the strict monotonicity of Rdt in d we conclude

that this minimum is obtained under the condition

0 =
∂

∂d

[
Rdt + 1

d

]
d=dopt

. (50)
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Fig. 11 Optimal macro-crack spacing as a function of time.

Using the numerical data from Fig. 10, we can plot dopt
on the basis of (50) as depicted in Fig. 11.

The limit for t → ∞ observed in this figure can be

derived as follows: for t → ∞ we conclude from (38)

and (39), where L is replaced by the crack spacing d,

that

lim
t→∞

Rdt =
dc
2d
, (51)

which leads with (50) to

lim
t→∞

dopt = dc. (52)

In Fig. 11 we can clearly see that the optimal crack

spacing decreases. The requirement that the body width

has to be a multiple of the crack spacing is neglected.

If this constraint is additionally taken into account, the

graph for dopt becomes a staircase-shaped approxima-
tion of the graph in Fig. 11.

Remark 3 This results is different from the one given

by global minimization with Griffith surface energy Jenk-

ins (2005) where the optimal spacing at the surface de-

pends on the loading `0. In the case of gradient based

damage models Sicsic et al. (2013) the optimal spac-

ing is proportional to a material length ¯̀
dam but also

depends on the loading. Here it only depends on the

material parameter dc and not on the loading.

Let us now consider a body with a finite, but very

large width L. The changes of the stress field by the

creation of a macro-crack at some time tc(L) (where

the width is made explicit in (40)) can be expected

to mainly affect the neighborhood of the crack, i.e.

the region around x1 = x̄1 (the center of the periodic

cell considered, i.e. where the macro-crack forms). Far

away from this first macro-crack the micro-crack layer

will therefore persist and evolve nearly independently

on macro-crack. Therefore, as time progresses and the
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optimal spacing for macro-cracks has decreased suffi-

ciently in the way illustrated in Fig. 11, the two half-

domains in positive and negative direction of the first,

central macro-crack are expected to be subdivided by

another macro-crack. This process of continuous sub-

division is actually expected to continue as time pro-

gresses although under no circumstances the macro-

crack spacing is expected to drop below the minimal

value dc from (52). To back up these assumptions about

the post-critical behavior we performed finite element

simulations (described in Appendix A) whose results

are illustrated in Fig. 12.

The stress is observed in these simulations to drop

with the formation of macro-cracks under the critical

stress level η in the whole periodic cell except on the

tips of the macro-cracks. However, if the crack spac-

ing is large compared to the thickness of the micro-

crack layer, and thus to the length of the newly formed

macro-crack, the stress field close to the boundary of

the periodic cell remains almost unaffected by the for-

mation of the macro-crack. Since σ11/σc ≤ 1 before for-

mation of the macro-crack we thus expect σ11/σc < 1

afterwards everywhere in the domain. Recalling (27),

the periodic cell is thus directly after the formation of

the macrocrack in a stable state. If crack spacing d is

small, the stress level does not recover back to σc, but

even slightly further decreases in the region close to

x2 = 0 where σ11/σc = 1 previously (cf. Fig. 12 and 13).

This prevents from any further destabilization once the

crack spacing has dropped under a certain level, which

we expect from our simulations to be even significantly

larger than the minimal periodicity dc discussed above.

The situation is different, however, for a large crack

spacing as illustrated in Fig. 12 and 13. In this case,

at least far from the macro-crack, the stress σ11 has

never dropped much, but only slightly below σc, and as

time progresses, stress rises due to temperature diffu-

sion and the critical stress level is quickly recovered in

a large region as illustrated in the left plot of Fig. 13.

This allows for further destabilization, i.e. the forma-

tion of new macro-cracks with a smaller crack spacing.

The monotonicity of the Rayleigh ratio with respect to

the width of the periodic cells considered with the fact

that the critical stress level is expected to be recovered

first at the maximal distance from the already existing

macro-cracks allows to assume that the reduction of

crack-spacing happens by successive bisections of the

periodic cells. This way crack spacing is expected to

reduce until it has become too small for further desta-

bilization of the existing periodic cells.

Remark 4 Although Fig. 13 provides a general un-

derstanding of how crack spacing reduces over time as

long as the distance between the macro-cracks is still

.5 .6 .7 .8 .9 1 1.1
σ11/σc

0

.2

.4

.6

.8

1

1.2

1.4

x
2
/`

t

tc(d)

1.02tc(d)

1
0.40

0.45

0.50

0.55

(a) d/(2
√
ktc(d)) = 40

0 .1 .2 .3 .4 .5
σ11/σc

0

.2

.4

.6

.8

1

1.2

1.4

x
2
/`

t

tc(d)

1.02tc(d)

(b) d/(2
√
ktc(d)) = 2

Fig. 13 Normalized stress field σ11/σc for η = 0.4 on bound-
ary x1 = d + x̄1 of periodic half-cell at the time tc(d) of
macro-crack initiation at x1 = x̄1 (black dashed line) and
short time later at t = 1.02× tc(d) (gray line).

large enough, it is not appropriate for quantitatively

predicting when the existing crack spacing is replaced

by a smaller one. The reason is that it is based on

the assumption of a micro-crack layer without preex-

isting macro-cracks whereas the subsequent stepwise re-

duction of crack spacing discussed above happens in an

environment consisting of a mixture of micro-cracked

regions and already existing macro-cracks. Our simula-

tions assume that both cases differ even far away from

the macro-cracks by certain subtle features such as the

fact that the critical stress level is seemingly never fully

recovered at any point with x2 = 0 after the formation

of the first macro-cracks.

In all simulations it is observed that the macro-

cracks featured directly after their formation a large

non-cohesive zone where the critical crack opening δc is

exceeded and only a small cohesive zone. This can be

understood immediately from the variational approach

used for the computation of the critical time for desta-

bilization. Macro-cracks can form if there exists at least

one deformation mode v for opening the macro-crack

where the reduction of cohesive surface energy thanks

to κ′′ by an increased crack opening surpasses the in-

crease in elastic energy by this deformation mode. If

such a deformation mode v exists, the more energy

can be released the further the crack opens as long as

neither the stiffness of the continuum nor κ′′ change.

The former remains constant in linear continuum me-

chanics so that a maximal release of energy necessarily

goes along with an opening of the macro-crack until

κ′′ changes at least on a part of the crack lip, i.e. un-

til a non-cohesive zone exists (where κ′′ drops to zero).
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Fig. 12 Normalized stress field σ11/σc for η = 0.4 in periodic half-cell with d/(2
√
ktc(d)) = 40 (top) and d/(2

√
ktc(d)) = 2

(bottom) at the moment tc(d) directly after the formation of a macro-crack pattern with periodicity d in a only micro-cracked
body (left) and short time later at t = 1.02 × tc(d) (right). At tc(d) the critical stress is reached exactly only at the tip of

the macro-crack on the left boundary of the domain although for d/(2
√
ktc(d)) = 40 there is a broad layer in the upper right

part, where it is almost reached. The thickness of micro-cracked layer before formation of macro-cracks at tc(d) is depicted by
horizontal black line and the center of full periodic cell is denoted by x̄1.

Therefore, once the micro-crack layer loses stability and

macro-cracks appear, these always appear by a “bru-

tal” crack opening creating immediately a non-cohesive

zone.

5.2 Propagation of macro-cracks

Once a minimal periodicity has been reached, which

is no longer reduced by further bisections of the pe-

riodic cells, the critical stress will appear only at the

tips of the macro-cracks. Therefore at this time, micro-

cracks cannot form or grow any longer whereas the ex-

isting macro-cracks will keep growing as thermal diffu-

sion progresses. The size of the micro-cracked regions

will therefore become smaller and smaller and finally

negligible relative to the length of the macro-cracks.

Together with the negligibly small cohesive zone at the

tip of the macro-cracks the situation becomes almost

identical to a pattern of Griffith cracks and thus for

large t, one may expect Griffith-like crack propagation,

in which according to Bahr et al. (2010) periodicity of

crack propagation gradually doubles.

This way, we obtain for the irreversible case on the

basis of the principle of local minimum of total energy

a crack initiation and propagation: (1) initiation of a

micro-cracked layer at t = 0; (2) propagation of this

layer; (3) loss of stability at some critical time tc by

a single macro-crack; (4) formation of a macro-crack

pattern with very large periodicity; (5) this periodic-

ity reduces gradually by bisection of the periodic cells

until a minimal periodicity of the macro-crack pattern

is reached; (6) propagation of the array; (7) selective

arrest, the periodicity of the macro-crack pattern grad-

ually doubles.
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Fig. 14 Optimal periodicity in the reversible case in the phys-
ical space.

For the long term behavior of the array of cracks,

the irreversibility conditions is neglected for simplifica-

tion of the computations. In Fig. 14 the optimal pe-

riodicity for the reversible case is plotted for different

values of the load parameter η versus time t, these re-

sults are compared with those of (Bahr et al., 2010, Fig.

4). For large t, the simulations performed in order to

plot Fig. 14 revealed cracks where the length of the co-
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hesive zone is negligible compared to the length of the

non-cohesive zone (e.g., for η = 0.1 and 4kt/(R0dc)
2 =

3.1× 106, the ratio of both length is 1.1× 10−3). Thus,

in this case the cracks formed according to the cohe-

sive model are largely similar to Griffith cracks and

one would thus expect a similar influence of equiva-

lent model parameters in both cases. This is indeed the

case. The logarithmic curves depicted in (Bahr et al.,

2010, Fig. 4) can be expressed as

log(d/`0) = Aη + k log(a/`0) (53)

with crack periodicity d, crack length a, a real parame-

ter k. The normalization constant reads `0 = Gc/(Eaϑ)2,

which is related to dc by `0 = (2 − ω)ωdcη
2/2. Aη de-

notes a real constant for a given loading η. According

to (Bahr et al., 2010, Eq. (18)) we furthermore have

a = 4kt
1.735

d
, (54)

which together with (53) gives

d = Aη × `
1−k
1+k

0 = Aη × η2 1−k
1+k .

In Fig. 14 we observe for the largest value of t the re-

lation d = Aη × η0.38, which is equivalent to k = 0.68,

which is exactly the slope in Fig. 4b of Bahr et al.

(2010). If the exponent in the power law relating op-

timal periodicity and crack length in our simulations

is almost identical to the one proposed in Bahr et al.

(2010), the prefactor in the power law differs by roughly

a factor of two. The exact reason for this deviation has

not yet been analyzed. Possible explanations are devi-

ations between the cohesive and Griffith model in the

regime close to the critical time tc where the cohesive

cracks are initiated. It should also not be forgotten that

this regime is close to the point a/d ∼ 1 where the scal-

ing assumptions on which the analysis of Bahr et al.

(2010) is based are no longer satisfied.

6 Conclusion and Perspectives

In this paper we studied crack initiation in a half-plane

cooling by means of a cohesive force model. A tempera-

ture diffusion independent of the crack set and a perfect

conductivity at the surface are assumed. If the loading

is sufficiently severe (η ≤ 1), cracks nucleate at t = 0

whereas if η > 1 the elastic solution remains stable for

any time. For short times a layer of micro-cracks with

infinitesimal periodicity and opening is formed. This al-

lows to define an effective behavior which reveals to be

very similar to the one of an ideally plastic constitutive

law.

Assuming crack propagation on the basis of the prin-

ciple of local minimum of the total energy subject to a

irreversibility condition this layer is shown to remain

stable and grow until the critical point of time tc. The

critical stress σc and the toughness Gc are not enough

to model crack initiation and propagation as our pa-

per clearly demonstrates that the shape of the cohe-

sive model, through κ′′(0) as a third free parameter,

has an influence on the stability. Indeed, for Dugdale

(ω = −κ′′(0) = 0) surface energies, this homogenized

behavior remains stable for any time t > 0. Further-

more the irreversibility assumption is fundamental, as

with no irreversibility Dal Maso and Garroni (2008) the

microlayer is found to always be unstable. Irreversibil-

ity was already found to be a crucial modeling assump-

tion in order to reproduce fatigue effects Abdelmoula

et al. (2010). The micro-cracked layer we observe ini-

tially may be viewed as the counterpart of a homoge-

neous damaged layer found for the same problem at

small times theoretically and numerically on the basis

of a gradient damage model in Sicsic et al. (2013).

At tc a single macro-crack appears at the center

of the domain. The post-critical development after tc
of the system subject to an irreversibility constraint

to get dopt(t) is non-unique and thus hard to describe

quantitatively in a rigorous manner. Assuming that the

macro-crakcs are equally spaced and the same length as

the micro-layer dopt(t) quickly decreases by subsequent

bisection of the periodic cells by the formation of new

macro-cracks. The later always nucleate brutally and

exhibit a very small cohesive zone. This bisection occurs

due to a loss of stability of the periodic cells similar

to the one observed at tc and stops once a stable cell

periodicity is reached. Once a minimal periodicity is

reached, the propagation of macro-cracks is assumed.

At the latest at this point growth of micro-cracked zones

is stopped, and their importance will become negligible

in the course of time while macro-cracks keep growing.

For large times t our results are in accordance with the

scale law found in Bahr et al. (2010) assuming a Griffith

model.
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A Appendix: Numerical implementation for

macro-crack

In this appendix we briefly describe how the results depicted
in Fig. 13 are obtained. The general setting is similar to the
one discussed in Section 3.5 with the following two important
differences:

1. a non-zero second derivative κ′′(0) < 0 of the cohesive
surface energy is taken into account;

2. the constitutive behavior is described by ψr instead of ψ.

The first difference is a natural consequence of carrying out
simulations for a finite time in the physical rather than the
normalized space. The second one allows us to account for a
preexisting layer of micro-cracks in numerical computations
addressing the possibility of a formation of macro-cracks and
in fact even for the formation of new micro-cracks during
the formation of the macro-cracks. Thus we admit under the
constraint of irreversibility an arbitrary mixture of micro- and
macro-cracks when looking for the optimal spacing of macro-
cracks. In COMSOL the second feature can be implemented
by means of an elasto-plastic material behavior for the stress
component σ11 with yield stress σc. To speed up and stabilize
the computations we made use of such a constitutive law
only in parts of the domain such as the micro-cracked zone
0 ≤ x2 ≤ `t, because far from the micro-cracked layer the
elasto-plastic behavior does not appear.

The difficulty in simulating the formation of a macro-
crack in the finite element simulations is that the preexisting
micro-crack layer is actually in equilibrium, albeit not a stable
one, and the seeked configuration with macro-crack is only a
second equilibrium configuration which has to be found. To
this end, we define in the computation a fixed length `Sv

over which we allow the macro-crack to form and apply on
this crack-boundary a cohesive load σnum

c = τnumσc with a
continuation parameter τnum ∈ {0; 1} for path continuation,
which is continuously increased from zero to one. This way
COMSOL will provide among the two equilibrium configu-
rations - the one with and without a macro-crack - the one
with larger opening of the macro-crack, as the path contin-
uation starts from a configuration where the potential crack
boundary of length `Sv is not supported by any boundary
stress.

A disadvantage of this method compared to the regular-
ized boundary condition (20), which cannot directly be ap-
plied here, is that the crack length `Sv is no longer calculated
automatically, but that it is an initially unknown input pa-
rameter for the simulation. The proper `Sv can then be found
either by comparing the total energy obtained for different `Sv

or by searching the case where σ11 = σc at the crack tip, be-
cause both criteria are equivalent according to Ferdjani et al.
(2007). Practically, the second criterion turned out to be eas-
ier to apply. The temporal development between subsequent
points in time which is depicted in Fig. 13 is simply simulated
by imposing an increasing penetration depth of the thermal
shock on the domain.
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