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Abstract

We consider in this work thermal multiphase multicomponent flows in porous media. We derive

fully computable a posteriori error estimates for the dual norm of the residual supplemented by a

nonconformity evaluation term. The estimators are general and valid for a variety of discretization

methods. We also show how to estimate separately the space, time, linearization, and algebraic

errors giving the possibility to formulate adaptive stopping and balancing criteria. Moreover, a

space–time adaptive mesh refinement algorithm based on the estimators is proposed. We consider

the application of the theory to an implicit finite volume scheme with phase-upwind and two-point

discretization of diffusive fluxes. Numerical results on an example of real-life thermal oil-recovery in

a reservoir simulation illustrate the performance of the refinement strategy and in particular show

that a significant gain in term of mesh cells can be achieved.

Key words: a posteriori error analysis, adaptive mesh refinement, compositional Darcy flow, thermal
flow, finite volume method

1 Introduction

The thermal multiphase compositional model in porous medium describes the flow of several fluids
through a subsurface under a non-isothermal condition. The governing equations are the conservation of
the amount of each component and the conservation of energy, which are partial differential equations,
supplemented by algebraic equations expressing the conservation of volume, the conservation of the
quantity of matter, and the thermodynamic equilibrium, see [18, 19, 14].

Thermal models are especially important for simulation of the enhanced oil recovery, where the in-
crease of temperature reduces the oil viscosity which in turn improves mobility and makes the production
easier and leading to better recovery indexes. Several methods of thermal simulation have been consid-
ered. We can cite, e.g., the recent works [35, 17, 41, 39, 33, 38, 20, 36]. Thermal processes play also an
important role in the modeling of geothermal reservoirs, see, e.g., [40] and the references therein.

A mathematical structure of multiphase thermal models of flow in porous media is proposed in [47].
The authors give a formulation and numerical solution of equations for modeling multicomponent, two-
phase, thermal fluid flow in porous media. For this purpose they develop an algorithm that achieves a
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better balance between stability and accuracy. This approach was used previously for reservoir simulation
of black-oil model [9] and also for compositional models [8]. Recently, it has been proposed in [10, 36]
to formulate the phase transitions as a set of local inequality constraints and use the complementarity
approach.

Many numerical methods have been proposed for the discretization of the multiphase compositional
model: finite differences and finite element methods in, e.g., [3, 7, 18, 50], mixed finite element methods
in, e.g., [24, 13, 15, 16], finite volume methods in, e.g., [34, 37, 30, 5, 1, 4], and recently vertex-centered
methods on general 3D meshes in [29]. Many adaptive mesh refinement algorithms have been considered,
cf. [31, 26, 17] for dynamic griding to thermal and isothermal models, and other recent works, cf. [46,
44, 39, 41, 33, 38, 42, 43].

The discretization of the thermal multiphase multicomponent model leads to a nonlinear, strongly
coupled systems of differential and algebraic equations. The resolution of these systems requires an
important computational effort. Therefore, proposing an adaptive algorithm to optimize this resolution
holds a special interest in reservoir modeling. To the best of our knowledge, this work is the first to
develop a posteriori error estimates to control the error and stopping criteria for the iterative algebraic and
nonlinear solvers for the general version of the thermal multiphase compositional model. We follow [49,
12] where a rigorous a posteriori error analysis for the immiscible incompressible two-phase flow was given
under the assumption that the flow process is isothermal, and [22], where a generalization to arbitrary
number of phases and components, still in the isothermal case, was done.

The paper is organized as follows. Section 2 details the unknowns and the physical properties related
to the general thermal multiphase compositional model and describes the governing equations that
constitute the mathematical system of the model. In Section 3 we consider a discretization of the
thermal model based on the two-points finite volume scheme in space and the backward Euler scheme
in time. Linearization by the Newton method and algebraic resolution by an arbitrary iterative solver is
also discussed. In Section 4 we postprocess the original phase pressures and temperature and we devise
their H1

0 (Ω)-conforming reconstructions, as well as H(div; Ω)-conforming fluxes needed in the a posteriori
analysis. In Section 5 we introduce the weak formulation of the problem, define the corresponding error
measure, and derive the a posteriori error estimate. Section 6 finally illustrates the numerical results on
an enhanced oil recovery thermal process for heavy oil. We show results corresponding to adaptive mesh
refinement strategy saving an important number of mesh cells during the simulation, without affecting
the precision of the resolution.

2 The thermal multiphase compositional model

We consider the flow through a porous medium of several fluid phases, each composed of a finite number
of components from a given set. Mass exchange between phases as well as thermal effects are accounted
for. The precise formulation we use extends that of Eymard, Guichard, Herbin, and Masson [29] based
on the original paper of Coats [19]; see also [32] and [22].

Let Ω ⊂ Rd, d ≥ 1, denote a bounded connected polygonal domain with boundary ∂Ω, and let tF > 0.
In petroleum-related applications, Ω typically represents a reservoir, while tF is the simulation time. We
denote by P = {p} and C = {c} respectively the set of phases and components. A synthetic description
of the fluid system is given in terms of the component-phase matrix M = [mcp]c∈C, p∈P ∈ {0, 1}C,P such
that, for all c ∈ C and all p ∈ P,

mcp =

{

1 if the component c is contained in the phase p,

0 otherwise.

Given the component-phase matrix, we can define, for all p ∈ P, the set of components present in the
phase p as Cp = {c ∈ C; mcp = 1}. Conversely, for each component c ∈ C, the set of phases containing c
is given by Pc = {p ∈ P; mcp = 1}.

2.1 Unknowns

The unknowns of the model are (i) the reference pressure P ; (ii) the temperature T ; (iii) the saturations
S = (Sp)p∈P , representing the fraction of the pore volume occupied by each phase; (iv) for all p ∈ P,
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the molar fractions of the components present in p, Cp := (Cp,c)c∈Cp
. The unknowns of the model are

collected in the vector

X :=









P
T

(Sp)p∈P

(Cp,c)p∈P,c∈Cp









.

Finally, for each phase p ∈ P the (average) phase pressure is given by

Pp = Pp(P,S) := P + Pcp(S), (2.1)

where Pcp(S) is a generalized capillary pressure.

2.2 Fluid and medium properties

The porous medium is characterized by the following properties (the usual dependency on the unknowns
is provided in brackets): (i) the porosity φ; (ii) the symmetric tensor K of absolute permeability; (iii) the
thermal conductivity λ; (iv) the rock energy er(Pp, T,Cp); (v) the rock molar density ζr. These properties
can additionally depend on the space variable when heterogeneous media are considered, but it is assumed
for the sake of simplicity that the dependence on time is only via the variables of the model. Next, each
fluid phase p ∈ P is characterized by the following properties: (i) the molar density ζp(Pp, T,Cp);
(ii) the mass density ρp(Pp, T,Cp); (iii) the viscosity µp(Pp, T,Cp); (iv) the relative permeability kr,p(S);
(v) for all c ∈ Cp, the fugacity fc,p(Pp, T,Cp); (vi) the phase enthalpy Hp(Pp, T,Cp); (vii) the phase
internal energy ep(Pp, T,Cp). It is also convenient to define for each phase p ∈ P the mobility given by

νp(Pp, T,S,Cp) := ζp(Pp, T,Cp)
kr,p(S)

µp(Pp,T,Cp)
.

2.3 The thermal multiphase compositional model

We summarize in this section the equations that govern the non-isothermal multiphase compositional
flow. For each component c ∈ C, we let lc denote the amount (in moles) of component c per unit volume
given by

lc = lc(X ) = φ
∑

p∈Pc

ζp(Pp, T,Cp)SpCp,c. (2.2)

The conservation of the amount of each component is expressed by the following system of PDEs:

∂tlc +∇·Φc = qc, ∀c ∈ C, (2.3)

where, for each c ∈ C, qc ∈ L2((0, tF);L
2(Ω)) denotes a source or sink and the component flux Φc has

the following expression:

Φc :=
∑

p∈Pc

Φp,c, Φp,c = Φp,c(Pp, T,S,Cp) := νp(Pp, T,S,Cp)Cp,cvp(Pp, T,Cp), (2.4)

with vp denoting the average phase velocity given by Darcy’s law (in the following, g denotes the gravity
vector acting along −z and g its Euclidian norm),

vp = vp(Pp, T,Cp) := −K (∇Pp − ρp(Pp, T,Cp)g) = −K (∇Pp + ρp(Pp, T,Cp)g∇z) . (2.5)

The molar energy per unit volume is given by

eH = eH(X ) = φ
∑

p∈P

ζp(Pp, T,Cp)ep(Pp, T,Cp)Sp + (1− φ)ζrer(Pp, T,Cp). (2.6)

The conservation of energy is then expressed by the following scalar PDE:

∂teH +∇·ΦH = QH , (2.7)

where QH ∈ L2((0, tF);L
2(Ω)) denotes a thermal source or sink and

ΦH := J+
∑

p∈P

Φp,H , (2.8)
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with Fourier flux J = J(T ) := −λ∇T and phase enthalpy fluxes given by

Φp,H := νp(Pp, T,S,Cp)Hp(Pp, T,Cp)vp(Pp, T,Cp).

For the sake of simplicity, we assume no-flow boundary conditions,

Φc·nΩ = 0 for all c ∈ C and ΦH ·nΩ = 0 on ∂Ω× (0, tF), (2.9)

where ∂Ω denotes the boundary of Ω and nΩ its outward normal. At t = 0 we prescribe the initial molar
energy and the initial amount of each component by setting

eH(·, 0) = e0H , lc(·, 0) = l0c ∀c ∈ C. (2.10)

The system is closed by the algebraic equations
∑

p∈P

Sp = 1,
∑

c∈Cp

Cp,c = 1 ∀p ∈ P, (2.11)

and enforcing the thermodynamic equilibrium expressed by
∑

c∈C(NPc
−1) =

∑

p∈P NCp
−NC inequalities

of fugacities (we have used the notation NX for the cardinality of the set X ).
To fix the ideas, we now present an example of a thermal multiphase multicomponent model which

is the case considered in the numerical experiment of Section 6 below. It is the thermal Dead Oil model
a steam-assisted gravity drainage process (SAGD), a technique of steam injection designed to increase
the oil mobility.

Example 1 (Dead Oil model). In the Dead Oil model we have three phases: the oil phase, the water
phase, and the steam phase, represented respectively by lowercase indices (w, o, s). We use also the
uppercase indices (W,O) to represent the two components of the model: water and oil, respectively. The
system of governing equations consists of the mass conservation equation of the water component

∂t
(

φ(ζwSw + ζsSs)
)

+∇·(νwvw + νsvs) = qW,

of the mass conservation equation of the oil component

∂t(φζoSo) +∇·(νovo) = qO,

and of the energy conservation equation

∂teH +∇·(u− λ∇T ) = QH .

Here,

eH := φe+ (1− φ)ζrer, e :=
∑

p∈{w,o,s}

ζpepSp, u :=
∑

p∈{w,o,s}

νpHpvp.

The algebraic closure equations are stated as follows: the volume conservation gives

Sw + So + Ss = 1,

the structure of the model together with the conservation of the quantity of matter imply

Cw,W = Cs,W = Co,O = 1,

and the thermodynamic liquid–steam equilibrium relation reads

SsSw(T−Tsat(P )) = 0.

We consider no-flow boundary conditions prescribed for the component fluxes,

(νwvw + νsvs) · nΩ = 0, on ∂Ω× (0, tF ),

(νovo) · nΩ = 0, on ∂Ω× (0, tF ),

and also a condition of no-flow for the total energy flux,

(−λ∇T + u) · nΩ = 0, on ∂Ω× (0, tF ).

Finally the initial conditions are fixed as

eH(·, 0) = e0H ,

φ(ζwSw + ζsSs) = l0W,

φζoSo = l0O.
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3 Discretization and resolution

We consider here a discretization of the thermal multiphase compositional model of Section 2.3 which
naturally extends the scheme of [22, Section 2.2] to the non-isothermal case, see also [32].

3.1 Space-time meshes

Let (τn)1≤n≤N denote a sequence of positive real numbers corresponding to the discrete time steps such

that tF =
∑N

n=1 τn. We consider the discrete times (tn)0≤n≤N such that t0 := 0 and, for 1 ≤ n ≤ N ,
tn :=

∑n
i=1 τi; then we define the time intervals In := (tn−1, tn). For a function of time v with sufficient

regularity we let vn := v(tn), 0 ≤ n ≤ N , and, for 1 ≤ n ≤ N , we define the backward differencing
operator

∂n
t v :=

1

τn
(vn − vn−1)

that we shall use for both scalar- and vector-valued functions.
Let (Mn)0≤n≤N denote a family of meshes of the space domain Ω. For every element M ∈ Mn,

we denote by |M | its d-dimensional Lebesgue measure and by hM its diameter. For 0 ≤ n ≤ N , we
denote by En the set of mesh faces. Boundary faces are collected in the set Eb,n := {σ ∈ En; σ ⊂ ∂Ω}

and we let E i,n := En \ Eb,n. We let also E i,n
M denote the faces of an element M ∈ Mn not lying on

∂Ω. For an internal face σ ∈ E i,n we fix an arbitrary orientation and denote the corresponding unit
normal vector by nσ. For a boundary face σ ∈ Eb,n, nσ coincides with the exterior unit normal nΩ

of Ω. We assume that the family (Mn)0≤n≤N is super admissible in the sense of [27, Definition 3.1].
Super admissibility requires that for all cells M ∈ Mn there exists a point xM ∈ M (the cell center)
and for all faces σ ∈ En there exists a point xσ ∈ σ (the face center) such that, for all faces σ lying on
the boundary of M , the line segment joining xM with xσ is K−1-orthogonal to σ. Common examples of
super admissible meshes are Cartesian orthogonal grids (for diagonal permeability tensor K) or matching
triangular meshes that satisfy the (strict) Delaunay condition. In what follows we let, for all M ∈ Mn

and all σ ∈ E i,n
M , dM,σ := dist(xM ,xσ) and K

σ
M := K · nσ.

3.2 Two-point finite volume discretization

In the context of two-point finite volume methods, the unknowns of the model are discretized using one
value per cell: For all 0 ≤ n ≤ N we let

Xn
M := (Xn

M )M∈Mn , Xn
M :=









Pn
M

Tn
M

(Sn
p,M )p∈P

(Cn
p,c,M )p∈P,c∈Cp









∀M ∈ Mn.

For all time steps 0 ≤ n ≤ N and all M ∈ Mn, the discrete phase saturations are collected in the
vector Sn

M := (Sn
p,M )p∈P while, for all p ∈ P, the discrete molar fractions are collected in the vector

Cn
p,M := (Cn

p,c,M )c∈Cp
. The initial condition (2.10) is augmented to

XM(·, 0) = X 0
M, (3.1)

with X 0
M resulting from a steady-state equilibrium computation. For each phase p ∈ P, the corresponding

phase pressure inside each cell M ∈ Mn at time step 0 ≤ n ≤ N is given by

Pn
p,M = Pn

p,M (Pn
M ,Sn

M ) := Pn
M + Pcp(S

n
M ). (3.2)

The PDEs (2.3) and (2.7) expressing, respectively, the conservation of the amount of each component
and of energy, are discretized by requiring, for all 1 ≤ n ≤ N and all M ∈ Mn,

Rn
c,M

(

Xn
M

)

:= |M |∂n
t lc,M +

∑

σ∈Ei,n

M

Fc,M,σ(X
n
M)− |M |qnc,M = 0, ∀c ∈ C, (3.3)

Rn
H,M

(

Xn
M

)

:= |M |∂n
t eH,M +

∑

σ∈Ei,n

M

(

FH,M,σ(X
n
M) +GM,σ(X

n
M)
)

− |M |Qn
H,M = 0, (3.4)
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where qnc,M :=
∫

In

∫

M
qc/(|M |τn), Q

n
H,M :=

∫

In

∫

M
QH/(|M |τn), and the accumulation terms are given,

for all 0 ≤ n ≤ N , by the following discrete versions of (2.2) and (2.6), respectively: For all M ∈ Mn,

lnc,M = lc,M (Xn
M ) := φ

∑

p∈Pc

ζp(P
n
p,M , Tn

M ,Cn
p,M )Sn

p,MCn
p,c,M ∀c ∈ C, (3.5)

enH,M = eH,M (Xn
M ) := φ

∑

p∈P

ζp(P
n
p,M , Tn

M ,Cn
p,M )Sn

p,Mep(P
n
p,M , Tn

M ,Cn
p,M ) + (1− φ)ζrer(P

n
p,M , Tn

M ,Cn
p,M ).

(3.6)

The total flux of a generic component c ∈ C across an interface σ results from the sum of the corresponding
fluxes for each phase p ∈ Pc, i.e.,

Fc,M,σ(X
n
M) :=

∑

p∈Pc

Fp,c,M,σ(X
n
M), (3.7)

and, similarly, the flux FH,M,σ is given by the sum of the fluxes for each phase p ∈ P, i.e.,

FH,M,σ(X
n
M) :=

∑

p∈P

Fp,H,M,σ(X
n
M), (3.8)

where, for a given phase p, any M ∈ Mn, and any σ ∈ E i,n
M with σ = ∂M ∩ ∂L,

Fp,c,M,σ(X
n
M) = ν↑p(X

n
M)Cn

p,c,M
↑
p
Fp,M,σ(X

n
M), Fp,H,M,σ(X

n
M) = ν↑p(X

n
M)H↑

p,M
↑
p

Fp,M,σ(X
n
M), (3.9)

with phase upstream cell

M↑
p =

{

M if Pn
p,M − Pn

p,L ≥ 0,

L otherwise,

and Cn

p,c,M
↑
p

, H↑

p,M
↑
p

, and ν↑p(X
n
M) := νp(P

n

p,M
↑
p

, Tn

M
↑
p

,Sn

M
↑
p
,Cn

p,M
↑
p
) denoting, respectively, the upstream

molar fraction, upstream enthalpy, and upstream mobility. In (3.9), we have introduced the two-point
finite volume approximation of the normal component of the average phase velocity on σ given by

Fp,M,σ(X
n
M) := |σ|

αMαL

αM + αL

[

Pn
p,M − Pn

p,L + ρnp,σg (zM − zL)
]

, αK :=
K
σ
K

dKσ

∀K ∈ {M,L}, (3.10)

where ρnp,σ is an interface mass density of the phase p obtained by averaging the cell values in M and

L; cf. [22] for further details. Finally, for all M ∈ Mn and all σ ∈ E i,n
M with σ = ∂M ∩ ∂L, the discrete

Fourier flux GM,σ is given by

GM,σ(X
n
M) := |σ|

βMβL

βM + βL

(Tn
M − Tn

L ), βK :=
λK

dKσ

∀K ∈ {M,L}. (3.11)

All boundary fluxes are set to zero to account for the homogeneous natural boundary condition (2.9).
To close the system, we enforce, for all 1 ≤ n ≤ N and all M ∈ Mn,

∑

p∈P

Sn
p,M = 1,

∑

c∈Cp

Cn
p,c,M = 1 ∀p ∈ P, (3.12)

and require that the thermodynamic equilibrium expressed in terms of
(

∑

p∈P NCp
−NC

)

equalities of

fugacities is satisfied in each cell. For further details we refer to [22] and the references therein.

3.3 Linearization and algebraic resolution

The discretization method of Section 3.2 requires to solve a system of nonlinear algebraic equations at
each time step, which we do using the Newton algorithm. For 1 ≤ n ≤ N and Xn,0

M fixed (typically,
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Xn,0
M = Xn−1

M ), the Newton algorithm generates a sequence (Xn,k
M )k≥1 with Xn,k

M solution to the following
linear system: For all M ∈ Mn,

∑

M ′∈Mn

∂Rn
c,M

∂Xn
M ′

(

Xn,k−1
M

)(

Xn,k
M ′ −Xn,k−1

M ′

)

+Rn
c,M

(

Xn,k−1
M

)

= 0, ∀c ∈ C, (3.13)

∑

M ′∈Mn

∂Rn
H,M

∂Xn
M ′

(Xn,k−1
M )

(

Xn,k
M ′ −Xn,k−1

M ′

)

+Rn
H,M (Xn,k−1

M ) = 0. (3.14)

The (approximate) solution to (3.13)–(3.14) is typically obtained using an iterative algebraic solver.

For 1 ≤ n ≤ N , a given Newton iteration k ≥ 1, and Xn,k,0
M fixed (typically, Xn,k,0

M = Xn,k−1
M ), the

iterative solver generates a sequence (Xn,k,i
M )i≥1 solving the linear system up to the residuals given, for

all M ∈ Mn, by

Rn,k,i
c,M =

|M |

τn
∂lc,M
∂Xn

M

(

Xn,k−1
M

)(

Xn,k,i
M −Xn,k−1

M

)

(3.15)

+
∑

M ′∈Mn

∑

σ∈Ei,n

M

∂Fc,M,σ

∂Xn
M ′

(

Xn,k−1
M

)(

Xn,k,i
M ′ −Xn,k−1

M ′

)

+Rn
c,M

(

Xn,k−1
M

)

, ∀c ∈ C,

Rn,k,i
H,M =

|M |

τn
∂eH,M

∂Xn
M

(

Xn,k−1
M

)(

Xn,k,i
M −Xn,k−1

M

)

+
∑

M ′∈Mn

∑

σ∈Ei,n

M

∂FH,M,σ

∂Xn
M ′

(

Xn,k−1
M

)(

Xn,k,i
M ′ −Xn,k−1

M ′

)

(3.16)

+
∑

M ′∈Mn

∑

σ∈Ei,n

M

∂GM,σ

∂Xn
M ′

(

Xn,k−1
M

)(

Xn,k,i
M ′ −Xn,k−1

M ′

)

+Rn
H,M (Xn,k−1

M ).

Thus, at time step n, Newton iteration k ≥ 1, and linear solver iteration i ≥ 1, the residual vectors
Rn,k,i

c,M , Rn,k,i
H,M are given for all M ∈ Mn by

Rn,k,i
c,M =

|M |

τn

(

lc,M
(

Xn,k−1
M

)

+ L
n,k,i
c,M − ln−1

c,M

)

+
∑

σ∈Ei,n

M

Fn,k,i
c,M,σ − |M |qnc,M ∀c ∈ C, (3.17)

Rn,k,i
H,M =

|M |

τn

(

eH,M (Xn,k−1
M ) + E

n,k,i
M − en−1

H,M

)

+
∑

σ∈Ei,n

M

(

Fn,k,i
H,M,σ +Gn,k,i

M,σ

)

− |M |Qn
H,M , (3.18)

where L
n,k,i
c,M and E

n,k,i
M are linear perturbations of the mass and energy accumulation terms defined as,

respectively,

L
n,k,i
c,M

:=
∂lc,M
∂Xn

M

(

Xn,k−1
M

)(

Xn,k,i
M −Xn,k−1

M

)

, E
n,k,i
M

:=
∂eH,M

∂Xn
M

(

Xn,k−1
M

)(

Xn,k,i
M −Xn,k−1

M

)

,

whereas the linearized fluxes Fn,k,i
c,M,σ and Fn,k,i

H,M,σ read

Fn,k,i
c,M,σ

:=
∑

p∈Pc

Fn,k,i
p,c,M,σ, Fn,k,i

H,M,σ
:=
∑

p∈P

Fn,k,i
p,H,M,σ, (3.19)

with linearized phase fluxes

Fn,k,i
p,c,M,σ

:= Fp,c,M,σ

(

Xn,k−1
M

)

+
∑

M ′∈Mn

∂Fp,c,M,σ

∂Xn
M ′

(

Xn,k−1
M

)(

Xn,k,i
M ′ −Xn,k−1

M ′

)

, (3.20)

Fn,k,i
p,H,M,σ

:= Fp,H,M,σ(X
n,k−1
M ) +

∑

M ′∈Mn

∂Fp,H,M,σ

∂Xn
M ′

(

Xn,k−1
M

)(

Xn,k,i
M ′ −Xn,k−1

M ′

)

. (3.21)

Finally, the linearized energy flux reads

Gn,k,i
M,σ

:= GM,σ(X
n,k−1
M ) +

∑

M ′∈Mn

∂GM,σ

∂Xn
M ′

(

Xn,k−1
M

)(

Xn,k,i
M ′ −Xn,k−1

M ′

)

. (3.22)
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4 Approximate solution and reconstructions

In this section, we first postprocess the original piecewise constant finite volume phase pressures and
temperature approximations. We then detail how to obtain the flux reconstructions and smoothed phase
pressure and temperature that enter the definitions of the a posteriori estimators proposed in Section 5.
We will employ, for each time step n, H(div; Ω)-conforming discrete fluxes belonging to the lowest-order
Raviart–Thomas–Nédélec space RTN(Mn) (see Brezzi and Fortin [11]). Recall that, for rectangular
parallelepipeds meshes such as the ones used in the numerical examples of Section 6 below,

RTN(Mn) := {vh ∈ H( div ; Ω); vh|M ∈ Q0,1(M)×Q1,0(M) if d = 2,

Q0,1,1(M)×Q1,0,1(M)×Q1,1,0(M) if d = 3, ∀M ∈ Mn} .

For more general meshes one can either introduce a matching simplicial submesh of Mn and use the
simplicial version of RTN(Mn), or use the construction proposed in [23, Appendix A].

4.1 Post-processing of the phase pressures and temperature

The original finite volume approximations of the phase pressures and of the temperature are piecewise
constant. To evaluate their gradient inside each cell, we define piecewise quadratic, possibly discontinuous
phase pressures and temperature as described in the following. Let a time step 1 ≤ n ≤ N , a Newton
linearization iteration k ≥ 1, and an algebraic solver iteration i ≥ 1 be fixed. Following [28], we define

the fluxes Γ
n,k,i
p,h ∈ RTN(Mn), p ∈ P, and Γ

n,k,i
T,h ∈ RTN(Mn) such that, for all M ∈ Mn and all

σ ∈ E i,n
M ,

(Γn,k,i
p,h ·nM , 1)σ = Fp,M,σ(X

n,k,i
M ) ∀p ∈ P, (Γn,k,i

T,h ·nM , 1)σ = GM,σ(X
n,k,i
M ), (4.1)

with Fp,M,σ and GM,σ defined by (3.10) and (3.11), respectively, and Γ
n,k,i
p,h ·nΩ = 0 on ∂Ω, Γn,k,i

T,h ·nΩ = 0

on ∂Ω, thereby accounting for the no flux boundary conditions (2.9). The fluxes Γ
n,k,i
p,h , p ∈ P, defined

by (4.1) are discrete Darcy phase velocities. Motivated by (2.5) and following [48], we introduce for each

p ∈ P the piecewise quadratic phase pressure Pn,k,i
p,h such that, for all M ∈ Mn,

(−K∇Pn,k,i
p,h )|M = (Γn,k,i

p,h )|M − (Kρp(P
n,k,i
p,M , Tn,k,i

M ,Cn,k,i
p,M )g)|M and

(Pn,k,i
p,h , 1)M

|M |
= Pn,k,i

p,M .

Similarly, we define the piecewise quadratic temperature reconstruction Tn,k,i
h such that, for allM ∈ Mn,

−λ∇Tn,k,i
h |M = Γ

n,k,i
T,h |M and

1

|M |
(Tn,k,i

h , 1)M = Tn,k,i
M .

From the above reconstructions we define the space-time functions Pn,k,i
p,hτ , p ∈ P, and Tn,k,i

hτ assuming

an affine-in-time behavior from the converged values at tn−1 and the (possibly non converged) values

Pn,k,i
h , p ∈ P, and Tn,k,i

h at tn. For further use we also define the vector of reconstructed phase pressures

P
n,k,i
hτ

:= (Pn,k,i
p,hτ )p∈P . Henceforth, ∇ is to be understood as the broken gradient operator on Mn when

used for Pn,k,i
p,hτ or Tn,k,i

hτ .

4.2 Saturations, molar fractions, amounts of components, and molar energy

The approximations of saturations, molar fractions, amounts of components, and molar energy obtained
using the finite volume discretization detailed in Sections 3 are piecewise constant in space. We define
for all 0 ≤ n ≤ N , k ≥ 1, and i ≥ 1, the functions of space such that

(Sn,k,i
p,h )|M = Sn,k,i

p,M ∀p ∈ P

(Cn,k,i
p,c,h)|M = Cn,k,i

p,c,M ∀p ∈ P, ∀c ∈ Cp,

(ln,k,ic,h )|M = ln,k,ic,M
:= lc,M (Xn,k,i

M ) ∀c ∈ C,

(en,k,iH,h )|M = en,k,iH,M
:= eH,M (Xn,k,i

M ),
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with lc,M and eH,M defined by (3.5) and (3.6), respectively. The space–time functions Sn,k,i
p,hτ , p ∈ P,

Cn,k,i
p,c,hτ , p ∈ P , c ∈ Cp, l

n,k,i
c,hτ , c ∈ C, and en,k,iH,hτ are then defined therefrom while being continuous and

piecewise affine in time.

Remark 4.1. As detailed in [22, Section 4.2.2], the relations (3.2), (3.5), and (3.6) may not hold pre-

cisely for the discrete approximations Pn,k,i
hτ , Tn,k,i

hτ , Sn,k,i
p,hτ , C

n,k,i
p,c,hτ , P

n,k,i
p,hτ , en,k,iH,hτ , and ln,k,ic,hτ (the capillary

pressure function applied to a piecewise polynomial is typically no more a piecewise polynomial and a
product of two piecewise affine-in-time functions is a piecewise quadratic-in-time function). Similarly,
whereas the algebraic closure equations (3.12) hold precisely, the equality of fugacities will be violated if
the local fugacity equations are not resolved exactly. We suppose the error from all these non-satisfactions
as negligible.

4.3 H
1
0 -conforming phase pressures and temperature reconstructions

The approximations defined in Section 4.1 have sufficient regularity for the application of the piecewise
gradient operator, but are nonconforming. In order to define our a posteriori estimators below, follow-
ing [21, 6] in the model cases, we introduce space-continuous phase pressures and temperature recon-

structions defined by P
n,k,i
p,h = Iav(P

n,k,i
p,h ), Tn,k,i

hτ = Iav(T
n,k,i
hτ ), where Iav denotes the vertex-averaging

interpolator, cf., e.g., [2].

4.4 H(div; Ω)-conforming flux reconstructions

Let a time step 1 ≤ n ≤ N , a Newton linearization iteration k ≥ 1, and an algebraic solver iteration i ≥ 1
be fixed. We define the following flux reconstructions for use in the a posteriori estimates of Section 5:

• The discretization fluxes Θ
n,k,i
dis,c,h ∈ RTN(Mn), c ∈ C, and Θ

n,k,i
dis,H,h ∈ RTN(Mn) such that, for

all M ∈ Mn and all σ ∈ E i,n
M ,

(Θn,k,i
dis,c,h·nM , 1)σ := Fc,M,σ(X

n,k,i
M ), (Θn,k,i

dis,H,h·nM , 1)σ := FH,M,σ(X
n,k,i
M ) +GM,σ(X

n,k,i
M ),

(4.2)

with Fc,M,σ, FH,M,σ, and GM,σ defined by (3.7), (3.8), and (3.11), respectively, while Θn,k,i
dis,c,h·nΩ =

Θ
n,k,i
dis,H,h·nΩ = 0 on ∂Ω coherently with (2.9).

• The linearization error fluxes Θ
n,k,i
lin,c,h ∈ RTN(Mn), c ∈ C, and Θ

n,k,i
lin,H,h ∈ RTN(Mn) such that,

for all M ∈ Mn and all σ ∈ E i,n
M ,

(Θn,k,i
lin,c,h·nM , 1)σ = Fn,k,i

c,M,σ − Fc,M,σ(X
n,k,i
M ),

(Θn,k,i
lin,H,h·nM , 1)σ = Fn,k,i

H,M,σ − FH,M,σ(X
n,k,i
M ) +Gn,k,i

M,σ −GM,σ(X
n,k,i
M ),

(4.3)

with Fn,k,i
c,M,σ, F

n,k,i
H,M,σ, and Gn,k,i

M,σ defined by (3.19)–(3.22), while Θ
n,k,i
lin,c,h·nΩ = Θ

n,k,i
lin,H,h·nΩ = 0 on

∂Ω.

• The algebraic error fluxes Θ
n,k,i
alg,c,h ∈ RTN(Mn), c ∈ C, and Θ

n,k,i
alg,H,h ∈ RTN(Mn) such that, for

all M ∈ Mn and for all σ ∈ E i,n
M ,

(Θn,k,i
alg,c,h·nM , 1)∂M := −Rn,k,i

c,M , (Θn,k,i
alg,H,h·nM , 1)∂M := −Rn,k,i

H,M , (4.4)

with Rn,k,i
c,M and Rn,k,i

H,M defined by (3.17) and (3.18), respectively, with Θ
n,k,i
alg,c,h·nΩ = Θ

n,k,i
alg,H,h·nΩ =

0 on ∂Ω.

• The total fluxes Θ
n,k,i
c,h ∈ RTN(Mn), c ∈ C, and Θ

n,k,i
H,h ∈ RTN(Mn) are then obtained from the

above quantities letting

Θ
n,k,i
c,h

:= Θ
n,k,i
dis,c,h +Θ

n,k,i
lin,c,h +Θ

n,k,i
alg,c,h, Θ

n,k,i
H,h

:= Θ
n,k,i
dis,H,h +Θ

n,k,i
lin,H,h +Θ

n,k,i
alg,H,h. (4.5)
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5 A posteriori error estimate

In this section we describe the weak solution for the thermal multiphase compositional model of Sec-
tion 2.3, we define an error measure composed of the dual norm of the residual augmented by a noncon-
formity evaluation term, and derive an a posteriori estimate allowing to distinguish the different sources
of the error.

5.1 Weak solution

We proceed in the same spirit as for the isothermal case considered in [22]. In the following, (·, ·)D stands
for the L2-scalar product on D ⊂ Ω and ||·||D for the associated norm; the same notation is used for both
scalar and vector arguments, and the subscript is dropped whenever D = Ω. We define

X := L2((0, tF);H
1(Ω)), Y := H1((0, tF);L

2(Ω)). (5.1)

Let ε > 0 be a (small) parameter which only needs to satisfy ε ≤ 1. We equip the space X with the
following norm:

||ϕ||X :=

{

N
∑

n=1

∫

In

∑

M∈Mn

||ϕ||2X,M dt

}
1

2

, ||ϕ||2X,M
:= εh−2

M ||ϕ||2M + ||∇ϕ||2M . (5.2)

This choice is motivated by the homogeneous Neumann boundary conditions (2.9). Taking ε = 0 is
possible and classical when Dirichlet (pressure and temperature) boundary conditions are prescribed at
least on a part of the boundary, cf. [25, 49, 12]. We suppose sufficient regularity to satisfy:

Assumption 5.1 (Regularity of the exact solution). The weak solution of the multiphase compositional
thermal problem of Section 2.3 can be characterized as follows:

lc ∈ Y ∀c ∈ C, (5.3a)

eH ∈ Y, (5.3b)

Pp(P,S) ∈ X ∀p ∈ P, (5.3c)

T ∈ X, (5.3d)

Φc ∈ [L2((0, tF);L
2(Ω))]d ∀c ∈ C, (5.3e)

ΦH ∈ [L2((0, tF);L
2(Ω))]d, (5.3f)

∫ tF

0

{(∂tlc, ϕ)(t)− (Φc,∇ϕ)(t)} dt =

∫ tF

0

(qc, ϕ)(t)dt ∀ϕ ∈ X, ∀c ∈ C, (5.3g)

∫ tF

0

{(∂teH , ϕ)(t)− (ΦH ,∇ϕ)(t)} dt =

∫ tF

0

(QH , ϕ)(t)dt ∀ϕ ∈ X, (5.3h)

the initial condition (2.10) holds, (5.3i)

the algebraic closure equations (2.11) and the inequalities of fugacities hold, (5.3j)

where Pp, lc, eH , Φc, and ΦH are defined, respectively, by (2.1), (2.2), (2.6), (2.4), and (2.8).

We mention that existence and uniqueness of a weak solution has to our knowledge not been estab-
lished for the general thermal multiphase compositional model.

Remark 5.2 (PDEs fluxes). It follows from (5.3b)–(5.3a), the assumptions qc ∈ L2((0, tF); L
2(Ω)),

QH ∈ L2((0, tF); L
2(Ω)), (5.3e)–(5.3f), and (5.3g)–(5.3h) that actually

Φc,ΦH ∈ L2((0, tF);H(div,Ω)), (5.4a)

∇·Φc = qc − ∂tlc ∀c ∈ C, (5.4b)

∇·ΦH = QH − ∂teH , (5.4c)

Φc·nΩ = 0 on ∂Ω× (0, tF) ∀c ∈ C, (5.4d)

ΦH ·nΩ = 0 on ∂Ω× (0, tF). (5.4e)

Thus, the component fluxes ΦH ,Φc have continuous normal trace in a proper weak sense, the governing
equations (2.3) and (2.7) are satisfied with a weak divergence, and the boundary conditions (2.9) hold in
the normal trace sense. This in particular motivates the flux reconstructions (4.5).
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5.2 Error measure

Consider the approximate solution as specified in Sections 4.1–4.2, defined on the whole space–time slab
Ω× (0, tF) (we omit here the indices n, k, i for simplicity). The error measure from [22, Section 3.3] for
the isothermal multiphase compositional model consists here of the quantities Nc, c ∈ C, and Np, p ∈ P,
depending on P hτ , Thτ ,Shτ , (Cp,hτ )p∈P , defined as, respectively,

Nc := sup
ϕ∈X,||ϕ||

X
=1

∫ tF

0

{

(∂tlc − ∂tlc,hτ , ϕ)(t)−
(

Φc −Φc,hτ ,∇ϕ
)

(t)
}

dt, (5.5)

with the exact component fluxes Φc defined by (2.4) and Φc,hτ given by

Φc,hτ :=
∑

p∈Pc

Φp,c,hτ , Φp,c,hτ := νp(Pp,hτ , Thτ ,Shτ ,Cp,hτ )Cp,c,hτvp(Pp,hτ , Thτ ,Cp,hτ ), (5.6)

and

Np := inf
δp∈X

{

∑

c∈Cp

∫ tF

0

∣

∣

∣

∣Ψp,c(Pp,hτ )(t)−Ψp,c(δp)(t)
∣

∣

∣

∣

2
dt

}
1

2

, (5.7)

where, for a space–time function ϕ ∈ L2((0, tF);H
1(M)) (piecewise regular in space with respect to the

partitions Mn), we have let

Ψp,c(ϕ) := νp(Pp,hτ , Thτ ,Shτ ,Cp,hτ )Cp,c,hτK∇ϕ. (5.8)

As we consider a non-isothermal flow, we need to add some other contributions to define an error
measure taking into account the energy equation. We define

NH = NH(P hτ , Thτ ,Shτ , (Cp,hτ )p∈P)

:= sup
ϕ∈X,||ϕ||

X
=1

∫ tF

0

{(∂teH − ∂teH,hτ , ϕ)(t)− (ΦH −ΦH,hτ ,∇ϕ) (t)} dt,
(5.9)

with ΦH defined by (2.8) and ΦH,hτ given by

ΦH,hτ := Jhτ (Thτ ) +
∑

p∈P

Φp,H,hτ , (5.10)

where
Φp,H,hτ := νp(Pp,hτ , Thτ ,Shτ ,Cp,hτ )Hp(Pp,hτ , Thτ ,Cp,hτ )vp(Pp,hτ , Thτ ,Cp,hτ ), (5.11)

and for a space-time function ϕ ∈ L2((0, tF);H
1(M)), we have let

Jhτ (ϕ) := −λ∇ϕ. (5.12)

Note here that the definition (5.9) corresponds to the dual norm of the residual inspired from the weak
formulation (5.3h) related to the energy equation. We supplement this term by defining a nonconformity
measure for the temperature,

NT = NT (P hτ , Thτ ,Shτ , (Cp,hτ )p∈P) := inf
θ∈X

{

∫ tF

0

||Jhτ (Thτ )(t)− Jhτ (θ)(t)||
2
dt

}
1

2

. (5.13)

Collecting all the previous contributions, we define the error measure for the multiphase thermal com-
positional model as

Ne = Ne(P hτ , Thτ ,Shτ , (Cp,hτ )p∈P) :=

{

∑

c∈C

Nc
2 +NH

2

}
1

2

+

{

∑

p∈P

Np
2 +NT

2

}
1

2

. (5.14)
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A localized version of this error measure can be obtained as follows: For each approximation as
defined in Sections 4.1–4.2, we let

Nn,k,i
e :=

{

∑

c∈C

Nn,k,i
c

2
+Nn,k,i

H

2

}
1

2

+

{

∑

p∈P

Nn,k,i
p

2
+Nn,k,i

T

2

}
1

2

, (5.15)

with Nn,k,i
c , c ∈ C, Nn,k,i

p , p ∈ P, Nn,k,i
H , and Nn,k,i

T localized versions of respectively (5.5), (5.7), (5.9),
and (5.13), where time integration is performed on In instead of (0, tF ).

The error measure for the exact solution satisfying Assumption 5.1 is zero. Conversely, shall the
approximate solution satisfy exactly the initial condition and have the error measure zero, then it satisfies
Assumption 5.1.

5.3 An a posteriori error estimate distinguishing the space, time, lineariza-

tion, and algebraic errors

In this section we propose an a posteriori estimate for the time-localized error measure (5.15) that we
subsequently adapt to distinguish the different sources of error.

5.3.1 A basic time-localized a posteriori error estimate

For 1 ≤ n ≤ N , we define the piecewise constant space functions qnc,h, c ∈ C, and Qn
H,h, such that

qnc,h|M =
∫

In

∫

M
qc/(|M |τn), c ∈ C, and Qn

H,h|M =
∫

In

∫

M
QH/(|M |τn), respectively. For further use we

also define the piecewise constant space-time functions qc,hτ , QH,hτ , such that qc,hτ |In = qnc,h, QH,hτ |In =
Qn

H,h, respectively, for all 1 ≤ n ≤ N .
Let 1 ≤ n ≤ N , a Newton linearization iteration k ≥ 1, and an algebraic solver iteration i ≥ 1 be

fixed. It follows from (3.17), (3.18), the definition (4.5) of the flux reconstructions Θ
n,k,i
c,h , c ∈ C, and

Θ
n,k,i
H,h , and Green’s theorem that there holds,

(

qnc,h −
lc,M

(

Xn,k−1
M

)

+ L
n,k,i
c,M − ln−1

c,M

τn
−∇·Θn,k,i

c,h , 1

)

M

= 0 ∀M ∈ Mn,

(

Qn
H,h −

eH,M

(

Xn,k−1
M

)

+ E
n,k,i
c,M − en−1

H,M

τn
−∇·Θn,k,i

H,h , 1

)

M

= 0 ∀M ∈ Mn.

Let CM := min{CP,M , ε−
1

2 }hM . Then following [22] we define the following estimators:

ηn,k,iR,M,c
:= CM

∣

∣

∣

∣

∣

∣qnc,h − (τn)−1
(

lc,M
(

Xn,k−1
M

)

+ L
n,k,i
c,M − ln−1

c,M

)

−∇·Θn,k,i
c,h

∣

∣

∣

∣

∣

∣

M
, ∀c ∈ C, (5.16a)

ηn,k,iR,M,H
:= CM

∣

∣

∣

∣

∣

∣Qn
c,h − (τn)−1(eH,M

(

Xn,k−1
M

)

+ E
n,k,i
c,M − en−1

H,M )−∇·Θn,k,i
H,h

∣

∣

∣

∣

∣

∣

M
, (5.16b)

ηn,k,iF,M,c(t) :=
∣

∣

∣

∣

∣

∣Θ
n,k,i
c,h −Φ

n,k,i
c,hτ (t)

∣

∣

∣

∣

∣

∣

M
∀t ∈ In, ∀c ∈ C, (5.16c)

ηn,k,iF,M,H(t) :=
∣

∣

∣

∣

∣

∣Θ
n,k,i
H,h −Φ

n,k,i
H,hτ (t)

∣

∣

∣

∣

∣

∣

M
, ∀t ∈ In, (5.16d)

ηn,k,iNC,M,p,c(t) :=
∣

∣

∣

∣

∣

∣Ψp,c(P
n,k,i
p,hτ )(t)−Ψp,c(P

n,k,i
p,hτ )(t)

∣

∣

∣

∣

∣

∣

M
∀t ∈ In, ∀c ∈ C, ∀p ∈ Pc, (5.16e)

ηn,k,iNC,M,T (t) :=
∣

∣

∣

∣

∣

∣J
n,k,i
hτ (Tn,k,i

hτ )(t)− J
n,k,i
hτ (Tn,k,i

hτ )(t)
∣

∣

∣

∣

∣

∣

M
, ∀t ∈ In, (5.16f)

ηn,k,iNA,M,c
:= ε−

1

2hM (τn)−1
∣

∣

∣

∣

∣

∣lc,M
(

Xn,k,i
M

)

− lc,M
(

Xn,k−1
M

)

− L
n,k,i
c,M

∣

∣

∣

∣

∣

∣

M
, ∀c ∈ C, (5.16g)

ηn,k,iNA,M,H
:= ε−

1

2hM (τn)−1
∣

∣

∣

∣

∣

∣
eH,M

(

Xn,k,i
M

)

− eH,M

(

Xn,k−1
M

)

− E
n,k,i
c,M

∣

∣

∣

∣

∣

∣

M
, (5.16h)

where the functions Ψp,c, p ∈ P , c ∈ Cp, are defined by (5.8), and Φ
n,k,i
c,hτ and Φ

n,k,i
H,hτ respectively as

in (5.6) and (5.10).
The proof of the following result is a straightforward generalization of that of [22, Theorem 3.3] and

is omitted for the sake of brevity.
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Corollary 5.3 (Time-localized a posteriori error estimate). Consider a time step 1 ≤ n ≤ N , a Newton
linearization iteration k ≥ 1, and an algebraic solver iteration i ≥ 1. Under Assumption 5.1 there holds,
with estimators given by (5.16),

Nn
c ≤

{

∫

In

∑

M∈Mn

(

ηn,k,iR,M,c + ηn,k,iF,M,c(t) + ηn,k,iNA,M,c

)2
dt

}
1

2

c ∈ C, (5.17a)

Nn
p ≤

{

∑

c∈Cp

∫

In

∑

M∈Mn

(

ηn,k,iNC,M,p,c(t)
)2
dt

}
1

2

p ∈ P, (5.17b)

Nn,k,i
H ≤

{

∫

In

∑

M∈Mn

(

ηn,k,iR,M,H + ηn,k,iF,M,H(t) + ηn,k,iNA,M,H

)2

dt

}
1

2

, (5.17c)

Nn,k,i
T ≤

{

∫

In

∑

M∈Mn

(

ηn,k,iNC,M,T (t)
)2

dt

}
1

2

. (5.17d)

5.3.2 Distinguishing the different error components

For all 1 ≤ n ≤ N , k ≥ 1, i ≥ 1, and M ∈ Mn, we define the spatial estimators evaluating the error
related to the spatial mesh choice,

ηn,k,isp,M,c(t) := ηn,k,iR,M,c +
∣

∣

∣

∣

∣

∣Θ
n,k,i
dis,c,h −Φ

n,k,i
c,hτ (t

n)
∣

∣

∣

∣

∣

∣

M
+

{

∑

p∈Pc

(

ηn,k,iNC,M,p,c(t)
)2

}
1

2

t ∈ In, (5.18a)

ηn,k,isp,M,H(t) := ηn,k,iR,M,H +
∣

∣

∣

∣

∣

∣Θ
n,k,i
dis,H,h −Φ

n,k,i
H,hτ (t

n)
∣

∣

∣

∣

∣

∣

M
+ ηn,k,iNC,M,T (t) t ∈ In, (5.18b)

the temporal estimators evaluating the error related to the size of the time step,

ηn,k,itm,M,c(t) :=
∣

∣

∣

∣

∣

∣
Φ

n,k,i
c,hτ (t

n)−Φ
n,k,i
c,hτ (t)

∣

∣

∣

∣

∣

∣

M
t ∈ In, (5.18c)

ηn,k,itm,M,H(t) :=
∣

∣

∣

∣

∣

∣
Φ

n,k,i
H,hτ (t

n)−Φ
n,k,i
H,hτ (t)

∣

∣

∣

∣

∣

∣

M
t ∈ In, (5.18d)

the linearization estimators measuring the error in the linearization of the nonlinear system (3.3)–(3.4),

ηn,k,ilin,M,c
:=
∣

∣

∣

∣

∣

∣Θ
n,k,i
lin,c,h

∣

∣

∣

∣

∣

∣

M
+ ηn,k,iNA,M,c, (5.18e)

ηn,k,ilin,M,H
:=
∣

∣

∣

∣

∣

∣Θ
n,k,i
lin,H,h

∣

∣

∣

∣

∣

∣

M
+ ηn,k,iNA,M,H , (5.18f)

and the algebraic estimators that quantify the error in the algebraic iterative resolution of the linear
system (3.13)–(3.14),

ηn,k,ialg,M,c
:=
∣

∣

∣

∣

∣

∣Θ
n,k,i
alg,c,h

∣

∣

∣

∣

∣

∣

M
, (5.18g)

ηn,k,ialg,M,H
:=
∣

∣

∣

∣

∣

∣Θ
n,k,i
alg,H,h

∣

∣

∣

∣

∣

∣

M
. (5.18h)
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Global versions of these estimators are given by

ηn,k,isp,c :=

{

4

∫

In

∑

M∈Mn

(

ηn,k,isp,M,c(t)
)2
dt

}
1

2

, (5.19a)

ηn,k,itm,c :=

{

2

∫

In

∑

M∈Mn

(

ηn,k,itm,M,c(t)
)2
dt

}
1

2

, (5.19b)

ηn,k,ilin,c :=

{

2τn
∑

M∈Mn

(

ηn,k,ilin,M,c

)2

}
1

2

, (5.19c)

ηn,k,ialg,c :=

{

2τn
∑

M∈Mn

(

ηn,k,ialg,M,c

)2

}
1

2

(5.19d)

and

ηn,k,isp,H :=

{

4

∫

In

∑

M∈Mn

(

ηn,k,isp,M,H(t)
)2
dt

}
1

2

, (5.20a)

ηn,k,itm,H
:=

{

2

∫

In

∑

M∈Mn

(

ηn,k,itm,M,H(t)
)2
dt

}
1

2

, (5.20b)

ηn,k,ilin,H :=

{

2τn
∑

M∈Mn

(

ηn,k,ilin,M,H

)2

}
1

2

, (5.20c)

ηn,k,ialg,H :=

{

2τn
∑

M∈Mn

(

ηn,k,ialg,M,H

)2

}
1

2

. (5.20d)

Using the triangle and Cauchy–Schwarz inequalities and Corollary 5.3, we can estimate the time-
localized norm Nn

e of (5.15) as follows:

Corollary 5.4 (Distinguishing the space, time, linearization, and algebraic errors). Under the assump-
tions of Corollary 5.3, there holds, with the estimators given by (5.19)–(5.20),

Nn,k,i
e ≤

{

∑

c∈C

(

ηn,k,isp,c + ηn,k,itm,c + ηn,k,ilin,c + ηn,k,ialg,c

)2

+
(

ηn,k,isp,H + ηn,k,itm,H + ηn,k,ilin,H + ηn,k,ialg,H

)2

}
1

2

. (5.21)

Criteria can be proposed in the same spirit as for the isothermal case considered in [22] for stopping the
iterative algebraic solver and the iterative linearization solver when the corresponding error components
do not affect significantly the overall error.

6 Test case

In this Section we present one of the SAGD process simulation, more precisely the Dead Oil model
presented in Example 1.

6.1 Model description

The reservoir considered in this test case is a 3-dimensional parallelepiped (100m × 1400m × 55m)
discretized by a nonuniform Cartesian grid, see Figure 1 cbrown, right. We consider a homogeneous
anisotropic reservoir with 35% porosity, 1.94 · 10−12 m2 horizontal permeability, and 0.97 · 10−12 m2
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Injection well

Production well

Figure 1: Reservoir mesh

Figure 2: Relative permeability

vertical permeability. Two horizontal wells, injection and production well (in the Y direction) perforate
the reservoir, see Figure 1 cbrown, left.

The fluid is a heavy, viscous oil. Viscosity range is tabulated as a function of temperature, from
1.68 · 103Pa·s (at 23.89◦C) to 0.741 · 10−3Pa·s (at 455.44◦C). The initial water saturation is equal to 0.15
so that the initial oil saturation is equal to 0.85.

The mass density of the oil for this test case is given by the following formula

ρo(P, T ) = ρo,O(P, T ) = ρrefo

[

1 + cO(P − P ref) + dO(T − T ref)
]

,

with a constant compressibility of the oil component cO = 72.5·10−11Pa−1, a constant thermal expansion
of the oil component dO = 8.5 ·10−4K−1, and a constant reference mass density ρrefo = 63.304. The water
mass density is given by

ρw(T ) = α1 + α2T + α3T
2,

with α1 = 7.81 · 102, α2 = 1.63 · 100, and α3 = −3.06 · 10−3. Water viscosity is given as for a standard
water following [45], (1.002 · 10−3Pa·s at 20◦C).

The capillary pressure is set to zero and the relative permeability is shown in Figure 2. The thermal
conductivity λ(t) of the rock is constant equal to 33. We mention that the thermal properties of the
rock are those of the so-called saturated rock. The compressibility of the rock is constant equal to
43.5 · 10−10Pa−1 and the lost in heat in the foot-wall is not simulated.

The SAGD (steam assisted gravity drainage) process is simulated for tF = 10 years. The reservoir is
initially assumed at hydrostatic equilibrium with a constant temperature equaling to 11◦C. The initial
pressure is 7.27 ·105Pa at −400m. To get started the production of the reservoir we begin with a heating
phase of the surrounding region of production and injection wells in a period of 90 days. Then, the
production well is put into production for one day with high rate of liquid flow without injection to bring
down the pressure in the injection zone. Finally a period of injection/production (until 10 years) is held
during the simulation. In the model, the injection and production rates are controlled by the pressure
(24.81 · 105Pa for the producer and 25.36 · 105Pa for the injector).
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Figure 3: Approximate oil saturation (left) and spatial estimator of the oil phase (right) at 400, 1100,
and 2800 days (fixed mesh)

Figure 4: Approximate temperature (left) and temperature spatial estimator (right) at 400, 1100, and
2800 days (fixed mesh)
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6.2 Approximate solution and a posteriori estimate

We show here the behavior of the approximate solution and the corresponding a posteriori estimate
during the simulation on a fine fixed grid.

Figure 3 shows the evolution of the oil saturation and the corresponding spatial estimator of the oil
phase ηnsp,M,o (5.18a) at different time steps. We see an error detected by the estimator around the wells;
importantly, this estimator detects the error that follows the movement of the oil front in the reservoir.
This result demonstrates that we have a good indicator of the corresponding error and suggests its use
in an algorithm of mesh adaptivity.

The results of the evolution of temperature and the temperature’s spatial estimator (ηnsp,M,T (5.18b))
are summarized in Figure 4. Remark that the predicted error points out an important error in the zone
that follows the diffusion of the temperature during the simulation, which shall help us to choose wisely
the mesh to refine in order to equilibrate the distribution of the error over the domain and then reduce
the size of the system for resolution.

6.3 Adaptive mesh refinement

In this section we numerically assess an adaptive mesh refinement (AMR) strategy based on the space
error indicators derived in Section 5.3.2 by comparing the results with a reference solution obtained on a
fine grid. As we have a symmetry in the domain, of the flow of the fluid Figure 3, and of the diffusion of
temperature Figure 4, we present the results in what follows on the half of the domain only. To refine the
mesh adaptively we use a space criterion based on the spatial estimator of the oil phase ηnsp,M,o (5.18a).
The algorithm that describes the adaptive strategy can be sketched as follows:

Algorithm 6.1 (Adaptive algorithm).

Fix the fractions of cells to refine, ζref , and to derefine, ζderef
while tn ≤ tF do {Time loop}
Solve the system (3.3)–(3.4).
Compute ηntm,M,o, η

n
sp,M,o.

Refine the cells M ∈ Mn such that ηnsp,M,o ≥ ζref maxL∈Mn

{

ηnsp,L,o

}

.

Derefine the cells M ∈ Mn such that ηnsp,M,o ≤ ζderef maxL∈Mn

{

ηnsp,L,o

}

.
Adapt the time step if necessary.

end while

Figure 5 shows the evolution of the approximate oil saturation at different simulation times. We
remark that the refinement follows the front of saturation as time evolves, and then the derefinement
process is effected in the zones abandoned by the front of oil saturation.

Similar results can be appreciated in Figure 6 where we present the evolution of the temperature at
several chosen time steps. A refinement that follows the diffusion of temperature can be observed, as
well as a derefinement in the non-exposed zone.

The efficiency of the adaptive algorithm based on the spatial a posteriori estimator can be appreciated
in Figure 7. Figure 7a illustrates the cumulated rate of oil production during the simulation; we compare
here the result on the fine grid and the result with adaptive mesh refinement. We observe that applying
the refinement strategy does not affect the accuracy of the predicted oil production, which is industrially
the most important quantity.

The cumulative number of cells during the simulation is shown in Figure 7b. We remark an important
reduction in term of the number of cells using the adaptive refinement strategy in comparison with the
resolution on the fine grid. On average, the number of cells is reduced by 75%, which is a very important
gain.
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Figure 5: Approximate oil saturation at 2, 4, 8, and 10 years (adaptively refined mesh)

Figure 6: Approximate temperature at 2, 4, 8, and 10 years (adaptively refined mesh)
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