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SOFIC MEASURES AND
DENSITIES OF LEVEL SETS

ALAIN THOMAS

Dedicated to the memory of Pierre Liardet

ABSTRACT. The Bernoulli convolution associated to the real 8 > 1 and the
probability vector (po,...,pq—1) is a probability measure 7g, on R, solution
of the self-similarity relation n = Zz;é Dk -noSk_l, where S (z) = z‘%k If B is an
integer or a Pisot algebraic number with finite Rényi expansion, ng , is sofic and
a Markov chain is naturally associated. If 3 =b € Nand pg = --- = pg_1 = é,
the study of 7, is close to the study of the order of growth of the number
of representations in base b with digits in {0,1,...,d — 1}. In the case b = 2 and
d = 3 it has also something to do with the metric properties of the continued
fractions.

Communicated by Cornelius Kraaikamp

Introduction

The different sections of this paper are relatively independent. In the first two
sections we talk about the sofic subshift and sofic measures, also usually called
hidden Markov measures, submarkov measures, functions of Markov chains,
rational measures. A sofic probability measure on a space {0, 1,...,b—1} is the
image of a Markov probability measure by a shift-commuting continuous map,
and can be naturally represented by products of matrices (see for instance [7]).
[3] is a collection of papers about hidden Markov processes, involving connections
with symbolic dynamics and statistical mechanics. See also [4l [17] I8 [20].

2010 Mathematics Subject Classification: 11P99, 28XX, 15B48.
Keywords: partition function, numeration system, radix expansion, Pisot scale, Bernoulli
convolutions.
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ALAIN THOMAS

The measures defined by Bernoulli convolution [22], i.e., the measures

e’} d—1
Ngpi= K < Pk%/,@n) ;
n=1 \k=0

where 8 € R, po,...,ps—1 > 0 and ), pr = 1, are sofic if 3 is an integer.
They are also sofic when 3 is a Pisot number (i.e., an algebraic number whose
conjugates belong to the open unit disk) with finite Rényi expansion (see [24] for
the definition). A transducer of normalization [I5, Theorem 2.3.39] is naturally
associated to § and d. The matrices associated to the measure ng, are easy to
define when 3 is an integer, 8 = b > 2. In the case pg = - -+ = pg_1 = % they are
used by different authors (see, for instance [23]) because they are related to the
number of representations of the integer n in base b with digits in {0,...,d—1},
let N(n). And the Hausdorff dimensions of the level sets of n, are related
with the lower exponential densities of some sets of integers, on which A/ (n) has
a given order of growth (Theorem [2T]). There exist many partial results about
the level sets of the measures defined by products of matrices (see, for instance

8, 9} 10, 12]).

1. Sofic subshifts

We recall some classical definitions about the subshifts (see for instance [I1, [14]
19} 25, 26]). By subshifts we mean closed subsets of {0,1,...,b— 1} invariant
by the shift o : (Wp)nen — (Wnt1)nen. Let us give two equivalent definitions
of the sofic subshifts.

Definition 1. A sofic subshift is a subshift recognizable by a finite automa-

ton [IJ.

Definition 2. A subshift is a sofic iff it is the image of a topological Markov
subshift by a letter-to-letter morphism.

In this definition, “letter-to-letter morphism” can be replaced by “continuous
morphism”, because any continuous morphism (i.e., any continuous map, for the
usual topology, commuting with the shift) has the form

W((Wn)nEN) = (w(wn—swn—s+1 .- -Wn+3))n€N

with ¢ : {0,1,...,b—1}2st1 — {0,1,.... 0" — 1}, being understood that w,, = 0
for n < 0.
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SOFIC MEASURES AND DENSITIES OF LEVEL SETS

Example 3. An example of sofic subshift in the sense of Definition[] is the set
of the labels of the infinite paths in the following automaton:

0 1
[0] (0]

(this subshift is the set of the sequences (wy)nen € {0, 1} without factor 1021
for any ¢ € N U {0}, hence it excludes an infinite set of words and it is not of
finite type). It is sofic in the sense of Definition [2] because it is the image by
the morphism 7 : (z,y) — y of the Markov subshift of the sequences (&, )nen €
{(a,0), (b,0), (b,1), (c,0)}" such that, for any n € N,

§n€n+1 € {(a, 0)(ba 0)7 (aa 0)(b7 1)) (b7 0)(@, 0)7 (ba 1)(67 O)a (Cv O)(ba 0)7 (Ca 0)(b7 1)}
The graph of this Markov subshift is:

) :
Example 4. An example of sofic subshift in the sense of Definition 2 is the
image of the Markov subshift associated to the graph:

by the letter-to-letter morphism
¢ :{a,b, e}V — {0,1}"

associated to

P {aabv C} - {07 1}a w(a) = w(b) =0, w(c) =1

As in Example [ it excludes the words 10%1, i € NU {0}. It is also a sofic
subshift in the sense of Definition [Il because it is recognizable by the following
automaton, where each arrow with initial state = has label ¥ (z):

0 1
Notice that, if we associate to this automaton a Markov subshift and a mor-
phism by the same method as in Example Bl we recover the initial Markov
subshift and morphism of Example (4]
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2. Markov, sofic and linearly representable measures

We specify now the definitions of the Markov and sofic measures we use in the
sequel.

Definition 5. (i) We call a (homogeneous) Markov probability measure (not
necessarily shift-invariant), a measure p on the product set {0,1,...,b — 1},
defined by setting, for any cylinder set

[w1 wn] = {(Ei)iEN : §1§n :wl...wn},

plwt - wn] = PuiPurws - - Pan 1w s (1)
where p = (po e pbfl) is a positive probability vector and
Poo cee Pob—1)
s
Po-10 -+ P-1)(b-1)

is a nonnegative stochastic matrix.

Clearly, the support of p is a Markov subshift, and g is shift-invariant
(or stationary) iff p is a left eigenvector of P.

(ii) A probability measure on {0,1,...,b" — 1} is called sofic if it is the
image of a Markov probability measure by a continuous morphism ¢ = {0, 1, ...
conb—=1 = 10,1,..., 8 — 13N, This morphism can be chosen letter-to-letter:

@((Wn)nEN) = (w(W”))neN'

(iii) According to [2] we say that a probability measure 1 on {0,1,...,b— 1}
is linearly representable if there exist a set of r-dimensional nonnegative row vec-
tors {Ro, ..., Rp—1}, aset of r x r nonnegative matrices M ={My, ..., M,_1} and
a positive r-dimensional column vector C, satisfying both conditions

<Z Ri> C=1 and (Z Mi> C=c, (2)
and such that
Nwt ... wn] = Ry, My, ... M, C. (3)

Remark 6. If >, M; is irreducible and if R; = RM; for any i, where R is the
positive left eigenvector of ), M; such that RC' = 1, the measure 7 defined

in @) is o-invariant andn[w1 o wn] = RM, . M, C.

The next theorem concerns the linear representation of the sofic measures,
given for instance in [7]. It uses also the ideas of the proof of [2, Theorem 4.28].

94



SOFIC MEASURES AND DENSITIES OF LEVEL SETS

Theorem 7. A probability measure on {0,1,...,b— 1} is sofic if and only if
it is linearly representable.

Proof. First we note that any Markov measure is linearly representable because
the formula () is equivalent to

1
plwr .o cwp] =70, Py ... Pu, | 1] (4)
1
where
T = (Po 0 ... 0), T = (0 P 0),
Poo 0 ... 0 0 Po1 ... 0
P = : N N B : A E
P-1)0 0O ... 0 0 Po-11 - 0

Now any sofic measure v defined from a Markov measure p and a map
¥ :{0,1,...,0—1} = {0,1,...,0' — 1}
is linearly representable because ([ implies

I/[o.)ll w%] = Zw1€’¢'_1(w/1) ”.anew_l(wﬁ) ,LL[wl...an]

QCrep-1(wp) Twr) -+ (o ep-1(wy) Fom) | (5)

n

= Ry M,,...M,C,

where for 0 < ¢/ < ¥/, the row vector Ry := Ziew—l(i’) m;, the matrix M; =
1

Ziew—l(i’) P; and the column vector C := | ! | satisfy both conditions in (2J).
1

Conversely, let  be a linearly representable measure, so there exists some

r-dimensional row vectors Ry, ..., Ry_1, some r X r matrices My, ..., My_1 and

r-dimensional column vector C' satisfying (2) and (3). We shall modify the linear

representation of 7 in the following way: let A be the diagonal matrix whose

diagonal entries are the entries of C; setting R, := R;A, M! := A7'M;A and

C’ .= A~1C, the entries of C’ are 1 and

nwi .. .wn] =R, M, ..M, C"
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Setting
Rl = (R, 0 ... 0), Rf = (0 R, ... 0), ..
M, 0 ... 0 0 M{ ... 0
My o=l s My = ]
My 0 ... 0 0 M ... 0
C/
C,/ = .
cr

we have a third linear representation of #:
Nwy ... wy] = RZIM(L; .. .M(Z"C'".

From @), p := ), R/ is a probability vector and P := Y . M/ is a stochas-
tic matrix, they define a Markov probability measure p on the product set
{0,1,...,7b — 13N, and 7 is sofic because it is the image of u by the morphism
defined from the map ¢ : i~ [£], i€ {0,1,...,7b — 1}. O

T

3. Level sets and density spectrum associated
toamap f:N— R}

3.1. Position of the problem

This section is independent of the previous. In Theorem [ below we do not
make any hypothesis on the map f: N — R but, in the examples we consider
later, f has a polynomial rate of growth, meaning that

1 1
— 00 < ag :zliminfmgag :zlimsupm<+oo. (6)
n—oo  logn n—oo  logn
Our purpose is to associate to any a € a1, s, a set of positive integers £ ()
as large as possible such that
1
i losf(m) _ (7)
ne€(a), n—oo logn
(the notation lim,ecp, n_soo U, stands for limg_, oo U, , where E = {ny,no,...}
with ny < ng < ...). Then we call “level sets” the sets £(a), and “density
spectrum” the map which associates to « the “density” (in the following sense)
of £(a): because of the following remark, we do not use the natural densities
defined for any S C N by
SN[, N
d_(S) := liminf #T[’),

N—o00
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d4(S) := limsup #5011, N)
N—00 N

but the exponential densities defined by

.. Jlog (#SN[1,N))
€xXp o
d_7(S) = lim inf log N

Y

log (#5N[1, N
d¥P(9) = 1i;fnjup o8 (#logZ\[f )).

Remark 8. One cannot expect to find for any « in a non trivial interval [a1, as],
a set £(a) with positive natural density d_(€(a)) and satisfying the condition
(. Indeed if we have d_(€(a)) > 0 for any « in a non countable set A, there
exists € > 0 such that d_(€(a)) > ¢ for infinitely many values of . When « # 3,
the set £(a)NE(P) is obviously finite, so by removing a finite number of elements
from one of these sets, £(«) and £(3) are disjoint. One can construct in this way
a sequence of disjoint sets of positive integers £(ay,) such that d_(E(ay,)) > ¢,
but this is in contradiction with the following inequalities (deduced from the
general formula lim inf,,_, o (up, + vy,) > lminf,, o (u,) + liminf,, o (vy)):

1>d <U 5(%)) >3 d_(E(am)).

neN neN

Theorem 9. We associate to any map f: N — R and to any o > 0, € > 0,
the set

log f(n)
= N — < —_— < .
E(a,e) {nEN a—c< logn _Oc—i—e} (8)
There exist some integers 1 = Ny < No < --- such that the set
E(e) = J (E(e, 1/k) N [Nk, Niey1,)), (9)
has densities el
d_ (E(a)) = lim._,od_ (S(a,s)) = inf.vod_ (5(04,5)),
de:(p (5(04)) = 1im5_>0 de:(p (8(0[, E)) = inf€>0 de:(p (8(0[, E)), (10)
di (E(@) = limesodi(E(a,e)) = infesody (E(a,e)),
diXp (5(04)) = 1im5_>0 diXp (8(0[, E)) = inf€>0 diXp (8(0[, E)) .
If £(a) is not finite, one has limycg(a), n—oo loig(n”) = « and one says that

E(a) is a level set associated to a. One also says that A”P(E(-)) and dTP(E(+))
are the density spectrums of f because they don not depend on the construction
of E(a) in @), but only depend on the exponential densities of the sets E(w,¢).
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The second subsection, independent on the first, will be used later to prove
the theorem.

3.2. A general lemma about the subsets of N

Given a sequence (Ej)r of subsets of N, monotonic for the inclusion,
we construct a subset of N whose densities are the limits of the ones of E},.

Lemma 10. Let (Ej)r be a sequence of subsets of N, non-increasing or non-
decreasing for the inclusion. There exist some integers 1 = N1 < Ny <
such that the set

E = (Bx N [Nk, Ni1)) (11)

. keN
has densities

d_(E)=/(_:= lim d_(Ey), dZP(E)=("":= lim d“P(E}),

kHOO exp exp . b exp (12)
dy(E) =104 := khm dy (Ey), dJP(E) =105 hm AT (Ey).

— 00 k—o0

Proof. Let us define the integers 1 = N; < Ny < --- by induction: we suppose
that we know the value of Ny for some k, and we search Ny;1 large enough
in view to obtain (I2). We have E;, C Ej, C E;/ with

E,; Z:Ekﬂ[Nk,OO) and E];/ IZEkU[l,Nk),

and Ej, E} have same densities as Ej. So, by definition of “limitinf” and
“limitsup”, we can chose Nj11 such that for all N > Ny,

N(d-(Bx)— 1) < #E,N[L,N) < #E/N[L,N) < N(dy(Ex)+ 1),
NIFEOE < g N[L,N) < #B{N[L,N) < NETEIE
N(d—(Ext1) — £) S#Ew1N[1,N) < N(dy(Epg1) + 1),
NATP(Eryr)— 5 <#Ek+1ﬁ[1,N) < Ndixp(EkJA)-i-%. (13)

Using again the definition of “limitinf” and “limitsup”, we can impose a supple-
mentary conditions to Ni11, according to the value of k mod. 4:

if £ =0 mod. 4, #E]/c,m[].,NkJrl) < Nk+1(d,(Ek)+%)
exp 1
ith=1mod 4,  #E/N[,Ney) < Npp, OO "
if £k =2 mod. 47 Nk—',—l (d+ Ek — %) < #E]; N [1,Nk+1)
if k=3 mod. 4, stf(Ek)*z < #E, N[, Nii1).

Since
E N[, Ngt1) € EN(L, Niyr) € B N [1, Niya),
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we deduce from ([3) (applied to N = Nj11) and ([[d) that, according to the
value of k mod. 4,

o FEOLNe) oy s (BEO0NGD) e
k=0 Nk+1 k— 00 0g NE+1
. #EN[1,Nii1) , log (#EN[1,Ni11)) exp
kkfi NkJrl koo 08 Niet1

For any £k € N and Niy1 < N < Niyo we have the following inclusions,
if the sequence of sets (Fj)y is non-increasing:

Exs1N[,N)C EN[1,N)C E; N[1,N) (16)
while, if the sequence of sets (Ej )y is non-decreasing:
E,N[l,N)C EN[l,N) CE41N[1,N). (17)

Now, ([I2) follows from (@), (I7), (I3) and ([I3). O

Remark 11. If one remove the hypothesis that (Ej); is monotonic, it may

happen that the lower (resp. upper) densities of the set E defined by () are
smaller (resp. larger) that the limitinf (resp. the limitsup) of the corresponding
densities of Ej, even if the sequence (N )i increases quickly, so the method used
for the proof of Lemma do not apply. Suppose for instance that, for some
positive integer x, the set £y = --- = E,_1 has lower density 1/2 and more

precisely, #(EN[,N,)) = #(E1N[1,N,)) = | N./2].

Suppose that the set F, is distinct from Fj but has also lower density 1/2 with,
for instance, E, N[1,2N,) = [1, N,;). Then if N,,11 > 2N,;, the integer N = 2N,

satisfy #(Eﬂ[l,N)) :#(Elﬂ[l,Nﬁ)) = [N/4].

Now suppose about the lower exponential density, that Fh4 = --- = E,_1
have lower exponential density 1/2, more precisely,

#(EN[L,N,) = #(E1N[1,N,)) = [N V2.

Suppose that E, has lower exponential density 1/2 with, for instance, E, N
[1,N,€2) =[1,Ny). Then if N,;y; > N,.2, the integer N = N,.? satisfies

#(EN[LN)) =#(E1N[1,N,)) = [NV4].
3.3. Proof of Theorem

Proof. Lemma [I0 applies to the non-increasing sequence

Ep =&(a,1/k). O
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Example 12. Let f(n) = n!™in" then, given a € [0,2] and ¢ > 0, £(a, ) is

the set of the integers n such that 1+ sinn € [a — e, + €. It has a positive
usual density hence it has exponential density 1, as well as £(a)). The density
spectrum of f is:

FIGURE 1. Exponential density of £(«) in function of o in Example [[2]

Example 13. The number of representations of n in base 2 with digit in {0, 1, 2},
defined by

N(’I’L) : # {(u}i)izo T n= ZwiZi, w; € {O, 1, 2}}, (18)

has a polynomial rate of growth: (@) holds with a3 = 0 (because, for any k,

N(@2F -1)=1) and ay = log 1+2\/5/10g2 (see [Bl, Corollary 6.10]).

By [1Il, Theorem 19] there exists a subset S C N of natural density 1—and
consequently exponential density 1-—such that the limit
log N'(n)

Qg = lim ————=
nes, n—oo IOgTL

exists and is positive. Since S N[N, 00) C E(ap, ) for any € > 0 and for N large
enough, one has also

ds (E(ag)) = dTP(E(an)) = 1.
Nevertheless, let us deduce from [T1, Corollary 32| that
daz > «p, di(p (5(&3)) > 0. (19)
From [I1] Corollary 32|, given af, and ) in the interval (ap, iggg — 1) one has
for N large enough

#{n<N : % >o/0} > NP (20)

and [IT, Remark 21-3] ensures that (o, % —1)#0.
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To prove ([[3) by contraposition, suppose that
d7P(E(a)) < B) for any a > ag.

Then by the definition of £(a), for each a > af there exists €, > 0 such that
d7P(E(a,eq)) < Bp. There exists B, < B such that, for N large enough,

log V' (n)

#{n<N ta—es <
logn

<a+ Ea} <N B,

The open intervals (o — g4, + €4), @ > «f, cover the compact set [ag), 2],
so there exists a subcover of [af,2] by ng intervals of this form. Let g < £}
be the maximum of 3, for o being the center of such an interval. We have

- log V' (n)

#{n <N :a;< Tog < 2} <noN? (N large enough).  (21)

Since one check easily that logN(”) < 2 for any n € N, ([2I)) is in contradiction
with (20), hence ([IJ) holds and more precisely there exists

as > ay >ap and B3 > 3

su(.:/l\lfthat d7P(E(as)) = P3. Since iggg — 1~ 0.585 the upper density spectrum
of NV is:

B20.58 |- — — L — F————

a.=0 2,=0.56 ,>0.58  2,~0.69

FIGURE 2. Upper exponential density of £(a) in function of a in Example [I3]
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0 5000 6000 7000 8000

FIGURE 3. The values of % for n € [212,213) in Example [[3
The order of growth of A/ can be represented by this graph.

4. Relation between singularity spectrum and
density spectrum

Let n be a probability measure on {0,1,...,b — 1} the level sets E(a) are

efine ognlwy ... w
T ) = L ¢ i ]} (22)

and one calls the singularity spectrum, the map
o+ H-dim(E(a)),

where H-dim is the Hausdorff dimension, on the understanding that the dis-
tance between two sequences (wp)nen and (w!),en is blinfliswi#Fwi}
Any ball is a cylinder set, and the diameter of a cylinder set is

5([&)1 .. .wk]) =bk,

It is natural to associate to 7 the function f, : NU {0} — [0, 1] defined as
follows from the expansion of n in base b:

fo(n) :=nlwr...wg] forany n =, w71+ 4 wid
where the notation =, means that Vi, w; € {0,1,...,b — 1} and w; # 0.

Notice that f,, depends only on the restriction of 7 to the set of the sequences
(Wn)nen such that wy # 0.
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Proposition 14. Let 1 be a probability measure on {0,1,...,b— 1} such that
1 Ow1 ...
log 0w+ -wnl 4 p o (e

n—oo lognwy ... wy)

The level sets E(-) (of the measure n) and E(-) (of the function f,) satisfy the
inequality
H-dim(E(a)) < dZP(E(-a)).

Proof. From the hypothesis on the probability 1, a sequence (wy,)nen with the
first term w; = 0 belongs to E(«) if and only if (wy+1)nen do. The set E'(«)
of the sequences (wp)neny € E(a) with the first term wy # 0, has same Hausdorff
dimension as F(«) because

E(a) = [ J{0"} x E'(a) and H-dim({0"} x E'(a)) = H-dim(E'(«)).

According to ([I0) it is sufficient to prove for any k € N the inequality

Hdim(E' (o)) < d°P (5 (—a, %)) .

The integer k is now fixed and, by definition of the limit inf, there exists an
infinite set £ C N such that

g BFECODOLN) e <5(—a, 1)) (23)

NEE, N—oo log N k

One can assume that the elements of E have the form N = b’ with i € N:
indeed N is in some interval [b*N) p(M)+1) the denominator log N in (Z3) is
equivalent to log (bi(N )), and the numerator is greater or equal to

1 .
. = i(N)
log (#5< a,k>ﬂ{1,b )>
Let w € E’(a). There exists x € N such that

1 lognfws ... w 1
-l == < — 24
TS gy T (24)

and, since these inequalities are true for any x large enough, one can chose
k = k(w), such that Kk > 2ka + 2 and b € E. Let us prove that the integer
n=n(w):=wb" 4. +wb (25)
1
'k

belongs to the level set £(—a
is log(fy(n)) because w; # 0.

) if k is large enough. The numerator in (24))
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One has
_log(fy(n)) _ lognlw: ...w,] log(b*)
logn log(1/b%) logn
hence, using (24)),
(a 3 i) log(b™) _ _log(fy(n)) _ (a+ i) log(b")
2k/) logn — logn  — 2k/) logn
Now
log(b*) log(b%) K 1 K 1
logn — log(b"—1) k-1 and (a+2k)/@—1 *a+k

(consequence of the hypothesis k > 2ka + 2), so n € E(—a, %)

There exists a disjoint cover of E’(a/) by a finite or countable family of cylinder
sets C;, each of the C; having the form [w; ...w,], where K = k(w) is defined
in ([24). We consider the cylinder sets C; such that x(w) has a given value kg.
The corresponding integers n(w) are distinct and belong to

£(=a, %) A [L, B).

By the hypotheses on k(w) one consider only the integers kg > 2ka+ 2 such that
b"° € E; in particular, the larger is k, the larger is xg. Let € > 0 and suppose
that k is large enough so that, applying [23)) to N = b"° and setting

o= a9 (e(— 1)

k
1 E(—a, )N 1, bro
o8 (#E(—a )N [LE™) _
log bro

Consequently, for any s > di + ¢,

> 1

S ro(dp+€)1,—Kkos __
Zé(cl) < Z oo — 1 — pdrte—s’

7 H():O

proving that
H-dim(E'(«)) < dj, + €.

Since it is true for any k large enough and any ¢ > 0, this implies

H-dim(E'(a)) < d™P(E(—a)).
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5. Bernoulli convolution and number of representations
in integral base

5.1. Bernoulli convolution in integral base and related matrices

The Bernoulli convolution [6, 22] in integral base b > 2, associated to a posi-
tive probability vector p = (po,...,pd—1) with d > b, is the probability measure
1 = 1, defined by setting, for any interval I C R

Mop(l) =P, ({(Wk)keN P0<wr<d—1, Y % € 1}) (26)
k

where P, the product probability defined on {0, ...,d—1}" from the probability
vector p.

We define also, on the symbolic space {0, 1,...,b— 1}, the probability mea-
sures
_nlg+ I .e)

Nq,symb|E1 -+ - Ek] - q:0,1,2,...,

el el =50y )

nsum,symb[€1 cee 51@] = Zn(q + Isl...ek)~ (27)
q=0

Let us prove that both are sofic.

Remark 15. The shift-invariant measure nsum, syms is the image of P, by the
shift-commuting map ¢ which associates to any (wg)ren, the b-expansion of the
fractional part of ), 7. Unfortunately ¢ is discontinuous:

lim o((b—1)"0) =b—1 is different from ¢( lim (b—1)"0) = 0.

n— oo n— oo

So it is not sufficient to use this map for proving that 7gum,syms is sofic.

Let the bi-infinite matrix

0 Pd—1 - Pd—b—1 .- - Po ... 0 0 ...
My = , (28
o 0 0 Pd—1 Py ... Po 0 ... ( )
where each row contains the same probability vector (pd_1 po), shifted

b times to the right at the following row. We define in an unique way some

matrices My, ..., My_1, by setting that My, ..., M,_, are submatrices of My,

of size a + 1 := [%—‘ and
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po 0 ... p1 po 0 ...
My := . , My = . . s e

My = (pbf e ',j'). (29)

Assuming by convention that p; =0 for i € {0,...,d — 1}, we can write

bj Pj-1 e Pj—a
Pj+b  Pj+b-1  ---  DPjtb—a
Mj = (Pj+bg—q') 0sa<a = : : , : - (30)
0<q¢’<a : : - :
Pj+ab  Pj+ab—1 --- DPjt+ab—a

Remark 16. About the choice of the size of the matrices, a = {%—‘ —1is

the largest integer such that the matrix >, (pj+bq—q’) ogze is irreducible, and

the smallest integer such that its transpose is stochastlc

Theorem 17. The following formula gives the measure of the translated b-
-adic intervalq—l—[el e, withqe{0,1,...,a}, e1,...,e,€{0,1,...,b—1} and

I€1~~~€k = [Zz 1 b” Z'L 1 bl + bk)
n(q + IEl---Ek) = EqM€1 .. -Mskcv (31)

where Fo, E1,...,E, are the canonical basis (a + 1)-dimensional row vectors
and C' the unique positive eigenvector of the irreducible matriz ), M; such that
> EiC = 1. Consequently the measures 1g,symb and Nsum,symp are linearly rep-
resentable.

Proof. Let I = I, ., and I' = I, ., . With the convention that p; = 0

n

for any i ¢ {0,1,...,d — 1}, we have

ng+1) = ZP({wl—zandZ k+1€qb+51—i+l’}>

= sz qb+61—z+1)
iE€EZ

= Z Papter—q 1(d +1').
q' €L
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In fact ¢’ belongs to {0,1,...,a}, otherwise n (¢’ + I’) is null. Since the coeffi-

cients pgpye, —q for ¢,¢' €{0,1,...,a}, are the entries of M,,,
n(I) n(’)
n(l +1) n(I’+1)
. = Mel .
n(I +a) n(I' + a)

and, by induction,

oD, 7((0.1)
4 + ) =M., ...M.,C with C:= i : " (32)
n(l +a) n(laa +1))

In the particular case k = 1 we have I = I, and, making the sum in (B2
for e1 = 0,1,...,b— 1, we deduce that C' is a eigenvector of ) . M;. Moreover
C' is positive because the measure of any nontrivial subinterval of [O, %] is
positive, and ), F;C = 1 because [0,a + 1] D [0, %] (the support of ). O

Corollary 18. The measures g, symb and Nsum,symb ore sofic, as well as the
measure i’ defined by
n'le1 ... ek) = Noum,symblEk - - - €1]-

Moreover, n' is the continuous image by the map i — L#J, of the Markov

measure on {0,1,...,(a+ 1)b— 1} of transition matriz
tMo My ... My
Ppo=| 1 1
My My ... ‘M, .

and initial probability vector

(tc ... tc).

Proof. According to Theorems [T and [T, 1y symb and Nsym,syms are sofic. For-
mula (ZI) gives a linear representation of 7’:

1

nler . ee] =1C (M) (M) |

1
According to the proof of the converse part of Theorem [7] P, is the transition
matrix and (‘C" ... 'C) is the initial probability vector of the Markov chain
associated to 7. O

107



ALAIN THOMAS

5.2. The matrices M; are also related to the transducer of normal-
ization [I5] and to the number of representations of the integers
in base b

Definition 19. (i) The normalization in base b, with d > b digits, is the map
n:{0,....,d—1}" —{0,...,b—1}%
(wi)ien > (£i)iez such that

Wi o~ & - & :
Z - = Z 5 (— Z 5 with E_(h—1) # 0 if (w;)ien # (O)ieN>
=1 i=—o00 i=—(h—1)
with the additional condition that the &; are not eventually b — 1.

(ii) The normalization in base b also associates to a finite sequence

(/T ,wop) with terms in  {0,...,d—1}
and distinct from 0", the sequence

(€k—1,...,60) with termsin {0,...,b—1}

such that
W1 D" wpb® =g WP -+ gob° and g1 # 0. (33)
Notice that if we put wp = wp41 =+ = wr—1 = 0 we have

n(wk_l,...,wO,O,O,...):(...,O,O,ek_l,...,60,0,0,...).

(iii) The number of b-representations of n with digits in {0,...,d — 1} is
(o)
N(n):= #{(wz‘)izo T n= Zwibi, w; €{0,...,d— 1}}
=0

The number of b-representations of length k is
k—1
Ni(n) = #{(wo, CeWE—1) M= Zwibi, w; €{0,...,d— 1}}
i=0

Now we define the transducer T as follows:

i/rem,(q +1)
® @

where ¢ belongs to the set of states {0, ...,a} witha = [%] —1, and quoty(g+1)
and remy(g+1) are, respectively, the quotient and the remainder of the Euclidean
division of ¢+ by b. It is the transpose of the transducer of normalization defined
by Frougny and Sakarovitch in [I5, Propositions 2.2.5, 2.2.6 and Theorem 2.2.7],
which chose {—a,...,a} as set of states.
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Proposition 20. Let us consider the matrices My, ..., My_1 defined by ([29)
or B0), where we suppose that pg = -+ = pg—1 = é.

(i) The transpose of dM; is the incidence matriz of the graph of set of vertices
{0,...,a}, whose edges are the edges of T with output label j.

(ii) Let w =¢1...e, € {0,...,b—1}* and M,, = M., ... M., , we have

Nk(n) Nk(n—l) J\/k(n—a)
J\/k(n+bk) J\/k(n—i—bk—l) Nk(n+bk—a)
d* M, = : : : : 7
Nk(nikabk) Nk(n—i—.abk—l) Nk(n—k.abk—a)
where n = e1bF =1 4 -+ 4 g, b0,
The first row of d*M,, is also equal to (N'(n) N(n—1) ... N(n—a)),
so we have 1
Mop(Ley..e) = 7 (M) Nmn-1) ... N(n—a))C. (34)
(iii) To normalize a finite sequence (&n,—1,...,&0) € {0,...,d—1}", one enters

in T the digits &g, ...,€n—1,0,0,... from the initial state 0, and one obtain in
output the digits (o, ..., x—1,0,0,... such that

En1b" 4 b0 = G n BT A (b (35)

Proof. (i) In B0) we have pjipq—q = % when j +bg — ¢ € {0,...,d — 1},
that is, when a edge of output label j relates ¢’ to ¢ in 7.

(ii) Consequently the entry of the (¢ + 1)*® row and (¢’ + 1)'" column of the
matrix '(dM;,)...! (dM.,) is the number of paths from ¢ to ¢’ whose output
label is € . ..e1. The input label wy, . .. w; and the states g, .. ., go of such a path

tish .
Sy gk + Wi = bgr—1 + e (with gx = q)

Qr—1 + Wi—1 = bgr—2 + €11

(36)
q1 + w1 = bgo + &1 (with go = ¢').
We deduce
D @i+ w)b =0 g b Y e
i=1 i=1 i=1
and, after simplification,
k k
D wibh =gt — g+ ) bt (37)
i=1 i=1

meaning that wy ...wy is a representation of length k of n + b*q¢’ — q.
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Conversely, if 1) holds, then (B6]) holds with
g =q'b' +) (5 —w)b' .
Jj<i
It remains to prove that ([B@) implies ¢; < a by descending induction. Since
qr = q one has ¢ < a. If ¢; < a, the Euclidean divisions in ([B6]) imply

qi +w; a+d—1
NN

where the r.h.s. is at most a because

a+d—1 Sa+d—1<%+d—1:d—1S d—1
b b b b—1— |b—1

—‘—a—f—l.

(i) In particular, if @&7) holds with ¢ = ¢’ = 0 then wy...w; is the input
label and ¢ ...e1 the output label of a path from the state 0 to the state
0. Suppose that ([B3) holds. Equivalently, (87) holds with ¢ = ¢’ = 0, with

wi.oowp =0"Fe, 1 & and €1 ... e = Cu—n,. .., o. This proves that, if we
enter the digits &y,...,&,-1,0,0,... from the initial state 0, the output digits
are Cg,- .-, Cr—1- U
Theorem 21. In the case pg = -+ = pg_1 = % the level sets of the measure

My,p, that is, the sets

1 _
B(a) = {x €R - lim 28— tr) a},
r—0 logr

are related to the level sets E(+) of the function N by the inequality

H-dim (E(a)) < dP (8(112 i - a)> . (38)

Proof. We first consider the measure 7y syms on the symbolic space {0,...
...,b—1}" and we prove that the level sets Eoy, symp () of this measure, defined
as in ([22)), satisfy ([B8). The condition of Proposition [[4]is satisfied: indeed (BT
implies
sym cee 1 . 1 sym .
10,5y bl0e1 . e = — and thus lim 08 110,5y pl0e1 .. e

=1.
UO,symb[El .. -5k] d k—o0 10g 770,3ymb[<51 e Ek]

For any n =, g1 + o 4 &40 one has ¥ < n < bF and consequently,

k=k(n) =1+ | 22| By @D,

ﬂo,symb[€1 S €k(n)] = W([O,l)) (N(TL) e N(’I’L - a)) C. (39)
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Let f(n) = no,symbl€1 - - - €k(n)], by Proposition 4] one has
H-dim (Ep syms (@) < dZP(Ef(—a)). (40)

We deduce from ([B9) that f has the same density spectrum as the function
g9(n) == 5N (n), because, from [II, Lemma 9 (ii)], there exists a positive
constant K such that
1 N(n)
<
Klogn = N(n—1)

< Klogn. (41)

Since limnﬁoo(loigfr(l”) — loig(s)) = llgig, the level sets £(-) of N are related

to the ones of g and f: one has

a0 (2G5 - 0)) =470 (E,(-a)) = a2 (a0,

With @) one deduce

Hedim (Eo symp (@) < P (g(llzii - a)> . (42)

Let us now prove by a classical method that the real z =, > ;- 7+ belongs
to E(a) N (0,1) if and only if (gx)x belongs to Eo syms(c) \ {0}. This is due
to the fact that I, ., C (x — blk,x + bik), and conversely (x — r,x + 1) C
L, U Iy U I~ holds for bk% <r< bi,c, the words w’ and w” being respectively
the lexicographical predecessor and the lexicographical successor of w = ¢7 .. . g.
We use of course the relation (34)) and the inequality (41]). Now let us prove that

H-dim(E(a) N[0,1)) = H-dim (Ep,syms(a)). (43)

To any cover of Ey symp(cv) corresponds a cover of E(a) N [0,1), and conversely
to any cover of E(a)N0,1) and to any interval (a,a’) of this cover, correspond
two cylinder sets [w], [w'] such that (a,a’) C I, U I, where the words w,w’
have length & such that bk% <d—-a< bi,c. One deduce easily that (43]) holds.

The measure 1, is obviously symmetrical with respect to the middle of its

support [O, %]. So E(a) is a symmetric subset of [O, %} of npp, and it

remains to prove that E(a) N (¢, + 1) = ¢ + E(a) N (0,1) for any posi-
tive integer ¢ < %% (hence ¢ # a). Given a positive integer kg, we con-

sider the b-adic intervals I., ., such that & > ko + a and e1...€x, # ko,
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The entries of M., ... M., ., are positive, except possibly the ones of its last
row: this is due to the fact that the entries of dM; are at least equal to the ones
of the (0, 1)-matrix

110 0 ... 00 0O
1110 ... 00 0O
(di5) ogisa = ; Do
0 0 00 01 11
0 0 00 0 0 00

such that d;; = 1 < ¢ # a and |i — j| < 1, except the second entry of the first
row of dMjy which is 0. Denoting by C'(ko) the largest entry of the matrix (with
positive integral entries) d**te¢FE, M., ... M, for any ¢ € {0,...,a — 1} and

€kog+a

€1 Ekota € {0,...,b— 1}*0F% such that e1...ex, # 0%, the formula (BI)
implies 1 ) R
Clko) = n(le,..c0)
Since it is true for any ko € N and ¢ € {0,...,a — 1}, one deduce
E(@)n(q,q+1)=q+ E(a)N(0,1) for 0<gq< a,
and (3]) follows from [{@2)), {@3) and from the symmetry of F(«). O

< (ko).

6. The general framework in Pisot base

The normalization map [I5] in the integral or Pisot base 8 > 1, associates
to each sequence (w;)ien € {0,1,...,d — 1} the sequence (g;)icz € {0,1,...
, [B] — 1}% satisfying both conditions:

e

zEN 1E€EZL (44)
Vi € Z, Z —= < — (Parry S-admissibility condition [21]).
]>z

6.1. The tranducer 7 associated to § and d
The states of the transducer are the carries of the normalization of the se-

quences (w;);en with digits in {0, 1,...,d—1}. More precisely suppose that (IEI)
holds and put w; = 0 for any ¢ < O then for each ¢ € Z the sum Z]>z il

is equal to Zj>i % plus a real number that we denote by 4 B’ So we call

“the ith carry”, the real ¢; defined by both relations

G Wi — € € — W
E:Z jﬁjjzz ]51' J (45)

Jj>i J<i
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The first relation implies

d—
gi € (—1,a] with «a:=

—_

™
—

The second relation implies
¢ = Bgi—1 —wi t+ & (46)

and implies that ¢; belongs to the set
i—1
Sg.a = Zozj,é’j €N, aj € (=d, [B])NZ, p N (—1,al
j=0

Garsia’s separation lemma [I6] ensuring that Sg q is finite, we can chose Sg 4
as set of states of 7 and assume that the arrows have the form

w /e

q * Bg — w + €.

Notice that the arrows are in the opposite direction of the ones considered in in-
tegral base because, as can be seen for instance in Example 22 the Euclidean
division that we use for the normalization in integral base do not have analogue
in non-integral base; more precisely, the relation

q/+w:5q+6 Wlth 56{0,177[6]_1}

may hold for several values of ¢ and & when ¢’ and w are fixed.

In practice we construct at the same time a suitable set of states S} ; C Sp.q
and the transducer: the set of states S/’&d is by definition the smallest set S
containing 0 and containing Sq — w + ¢, whenever the three reals

qge s, wel{0,1,....d—1}, e€{0,1,...,[8] -1}
satisfy the condition Bg—w+e € (—1,a]

Example 22. The transducer 7 when 32 = 33 — 1 and d = 3:

Eg,3—-8=-2+28+2= % belongs to Sg g, but does not belong to S’ﬂ’d.
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6.2. How to normalize a sequence (w;)ien?

We first notice that in a non-integral base there do not exist a literal trans-
ducer of normalization. For instance in base g = 1+2\/57 if we normalize from
the left to the right a sequence of the form (01)"z without knowing if the digit
x is 0 or 1, we obtain (01)"0 if x = 0 and 1(00)™ if x = 1. So all the terms
of the normalized sequence depend on the value of x, while the successive car-
ries cannot depend on x because x is at the right. As well if we normalize from
the right to the left a sequence of the form 0x(11)" without knowing if the digit

x is 0 or 1, we obtain 0(10)"0 if z = 0 and (10)"01 if x = 1.

Proposition 23. Let (w;)ien € {0,1,...,d — 1}, The normalized sequence
defined in ([@) is the unique 3-admissible sequence (;)icz with

#{i <0 : g #0} < o0,
which is the output label of a bi-infinite path of input label Owiwows . . .

Proof. If @) holds, the states ¢; defined by ([@H]) satisfy {0, so (g;)iez is the
output label of a bi-infinite path of input label Owqwows . . .

Conversely, if (g;);ez is S-admissible and is the output label of a bi-infinite

path of input label Owiwsws . .., one has for any i <4’ in Z
4qi Z Wj —¢&j q;’
= = -+ = (47)
zh i<j<i’ p A
which implies
Saey
ieN A i€z A
because lim;/_, 4 o % = 0 (obvious) and lim;, o % = 0 (for |g;—1| < [g;| when
Wi =&; = 0) O

6.3. The number of redundant representations

For any finite sequence ¢ ... € {0,1,...,d—1}* we denote by N(ey ...cx)
the number of wy ...wy € {0,1,...,d — 1}* such that

Wi 4w = e B 4 e B (48)

Notice that, this time, the carries ¢; = Z?:i-}-l “jgw;ﬁ do not belong to (—1,q]
but to (—a, «). The transducer T’ we consider has the same arrows as 7, but its
set of states {ip = 0,11,...,1,} is the smallest set S containing 0 and containing
Bqg—w+eforanyge S, we{0,1,...,d—1},e€{0,1,...,[5] — 1} such that

Bqg—w+e € (—a,a).
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Proposition 24. N(ey ...ex) is the number of paths in T', from 0 to 0, with
output label €1 . . . ey. FEquivalently,

1
0
N(ey ep) = (1 0 0) Ne, Ne, | . |,
0
where the (0,1)-matrices Ny = (nfj) 0gi<a ¢e€{0,1,...,d—1} are defined by
0<j<a

Proof. There exists a path from 0 to 0 with output label ¢ ..., if and
only if (G]) holds for some qo = 0,q1,...,qx = 0 in {ig,...,i.} and wy,...,wy
in {0,1,...,d — 1}. This is equivalent to qugk ““ﬂ—_ﬁ = 0, because (6] is

equivalent to gif_ll = “igsi 4 L 0

Example 25. If 32 = 38 — 1 and d = 3, the transducer 7" is

6.4. The linear representation of the Bernoulli convolutions
in Pisot base

The Bernoulli convolution [, 22] in real base 5 > 1, associated to a positive
probability vector p = (po, . . .,pi—1), d > S, is the probability measure n = g,
defined by setting, for any interval I C R

ngp(l) == Py <{(Wk)keN c0<w, <d -1, Z% EI})a (49)
k

where P, the product probability defined on {0, ...,d—1}" from the probability
vector p.
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In order to compute the value of ng, on some suitable intervals, we recall the
Parry condition of S-admissibility [I5, Theorem 2.3.11].

Definition 26. A sequence (£x)ken is S-admissible, i.e., is the Rényi expansion
of areal z € [0,1), iff Vk, epepry1 -+ < araqz... for the lexicographical order,
where (a)ken is the quasi-expansion of the unity that can be defined by

o Q; 1
LZE and Vi >0, O<Zﬁj <
€N j>i
From now we assume that the Pisot number S has a finite Rényi expansion

[24], or equivalently that (ay)ken has a period T

Lemma 27. (i) A sequence is in the closure of Admg (set of the B-admissible
sequences), if and only if it is a infinite concatenation of words belonging to the
set W defined by

weEWES w=aoai...a7 or
Je{l,...,ThHha,e{0,....,a;, = 1}, w=a1...q;_10.

(i) If e1...ex is a concatenation of words of W, the B-adic interval I, . ., ,
, the set of the x € [0,1) whose Rényi expansion begins by €1 . .. ey, is simply

sy L
S IR B

Proof. (i) If e1e2--- € Admg one has e1...e0 = ai...arp, so there exists

k < T such that -
- €1...6x € Wand epq1€542- -+ € Admg.

By iteration, €165 - -+ = wywsy ... with Vi, w; € W.
Conversely suppose that €169 -+ - = wyws ... with Vi, w; € W. Then for any 4
there exists 7 and a nonempty suffix w} of w; such that
Ei+1€i42 """ = w;-ij e
Clearly, from the definition of WV one has wjwjy1 -+ X a1z ... But there exists
k such that w; = aq ... ozkw;-, so one deduce

/
Wiwjp1 - D Q12 - 2 Q102

proving that €162 - - € Admg.
(ii) If e1...ex is a concatenation of words of W, from (i) the eventually

periodic sequence €1 ...epaq - .. ar belongs to Admg Denoting by €162 ... this
1
sequence, the closed interval I, ., &, contains Z 51 Z 51 Bk. O
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In order to define the matrices associated to 73, we consider a set of reals
that may be slightly different from the set Sé} 4 defined in Subsection Let
{jo = 0,...,jar} be the smallest set S containing 0 and containing 8¢ — w + €,
whenever the three reals ¢ € S, w € {0,1,...,d — 1}, ¢ € {0,1,...,[F8] — 1}
satisfy the condition 8¢ — w + & € (—1,a). The matrices M, = (mfj)ogigu/,

0<i<a’
e {0,1,...,[B] — 1}, are defined by

ms.
“ PBji—ij+e else.

The following theorem gives a linear representation of the Bernoulli convo-
lutions associated to Pisot numbers with finite Rényi expansions. Nevertheless,
Feng [8, Theorem 3.3] gives by an other method a matrix-product characteriza-
tion of Bernoulli convolutions associated with general Pisot numbers.

Theorem 28. If e1...€ is a concatenation of words of W, one has for any
ie€{0,...,d'}
nGi + Iey..c,) = EiM,, ... M., C, (50)

where Eo, F1, ..., Eq are the canonical basis (a' + 1)-dimensional row vectors
and C is a suitable positive eigenvector of the irreducible matriz ), 5, M.
Consequently, one can define a sofic measure on the symbolic space WY by setting
n(]l + lemwk)

Gt 0.1) 5D

nijwy ... wg] =

Proof. Let [; = [Zf:j+1 ﬁe—_J, Zf i1 ﬁ, 5+ g J) for any 0 < j < ki
so one has Iy = I, ., (by Lemma 27 (ii)), I, = [0,1) and for any j # 0,

ﬁlj—l =& + Ij.

Assuming by convention that p; = 0 for any ¢ € {0,1,...,d — 1},

d—1
nGi +1j-1) = Z <{w1—band ZwkH € Bji + BIL—1 —L})
=0
d—1 w
= p. P ({Z kil S ﬁji—b+€j+fj}>
=0

a

= Z pﬂji*ji/+€j n (]z/ + Ij)
/=0
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so one has
n(o + Ij-1) n(o + ;)
: = M,
NGar + 1) NG + 1)
and (B0) follows by induction, with

n([j(%j() + 1))
C:= (52)
n(larsjar +1))

From Lemma (i) the intervals I, w € W, form a partition of [0,1). De-
noting by M, the product matrix M,, ... M., for any w =¢€; ...} one deduce
that the column vector C, defined as in (52)), satifies

> M,C=C.
weW

The entries of C' are positive because the intervals [j;,j; + 1) intersect the
interior of [0,c) (the support of n). Now »_ .\, M, is irreducible because,

from the definition of {jo, ..., ju }, there exists a path from any j; to any j; in the
w [/ e

transducer 7, of set of states {jo, ...,jq } and arrows ¢ ——— g —w +¢.

]

Example 29. This is the transducer 7, in the case § = 4V5 and d = 2,
the set of states being {jo = 0,j1 = 1,jo = — 1}:

2

For ¢ € {0,1} and 4,5 € {0,1,2}, the (i, j)-entry of M, is p,, if w = Bj; —j; + ¢
w /e

is an integer, i.e., when there exists an arrow j; ——————j;:

po 0 O p1 po O
Mo=10 0 p and M;=10 0 O
p1 po O 0 pp O
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We have W = {0, 10}. So we can construct from 7, a new transducer with the

output labels 0 and 10:

1/0

. 0
10 m ‘ /10

01/10

We deduce the graph of the Markov chain associated to each of the sofic mea-

sures 1o, 11, 12:

and its transition matrix:

Po

M10) _ |

My
My My Do

0 0 pop
0 P1 0
po O 0
0 0 popr
0 P1 0
Po 0 0

[evi el i e e M en)

119



ALAIN THOMAS

7. More about the representations in base b = 2
with three digits

Let N(n) be the number of representations, with digits in {0, 1,2}, of the
integer n. We denote as follows the canonical expansion of n in base 2:

n o=, 19:0%1 . 0%11%,
where ag > 0 (ap = 0, if and only if n is even), and aq,...,as > 1.

According to [Bl Proposition 6.11], A'(n) is the denominator g5 of the continued

fraction
1

[0;a1,...,as] = i
a+—
ay++ 1
as
From [IT} Theorem 19] there exists g >0 and S C N of natural density 1 such that
log N/
logNn) _ . (53)

nes, n—oo 1ogn
One obtains ag ~ 0.56 by computing A by a recurrence relation:
f := proc(n): if n=0 then 1 elif irem(n,2)=0 then f(n/2)+f(n/2-1) else
f(n/2-1/2) end if end proc:
s := seq(log(f(n)), n =1 .. 16383):
ag:= evalf(sum(s[n], n = 8192 .. 16383)/(8192*log(8192)))

The value of g can also be obtained, without recurrence relation, from the
classical formula for the denominators of the continued fractions:

1 h

apg = lim
5,a1,...,0s Ryioy..ying1 j=0
summing for s,aq,...,as € N such that >0, a; < k and for h € {0,...,s},
0=1ip<i1 <---<ip<ipp1 =S+ 1, assuming that

a; if i — ¢ is an odd positive integer,

as+1 =1 and a;; = { 0 else.

Proposition 30. The constant «y defined in (B3]) is also the Lebesgue-a.e.

value of
iy 10845 (x(1))
s—oo  slog4
where x(t) = [0;a1,az,...] for any t =, 0.1920%21% ... € [1,1), and g(z(t))
is the denominator of both continued fractions [0;aq,...,as] and [0;as, ..., a1].

?
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Proof. From [IIl Remark 21], aplog?2 is the constant v defined in [I3| Theo-
rem 1.1]. Now by [13| Corollary 1.2], }ggg — a is the almost sure value of the
local dimension djoc(t) of the Bernoulli convolution = 123 (in base 2 with three
digits).

In the sequel we denote by 0.110%21%3 ... or by 0.e1€5 ... the expansion of the
real t € [%, 1) in base 2, with a; € N and ¢; € {0,1}, and we suppose that ¢;
is not eventually 0 nor eventually 1. For any k£ > 1 we put

n(t k) = e12" 1 4o 454,20

If k =ay + -+ a, for some even integer s, the formula of [5, Proposition 6.11]
gives
N(n(t k) = qs(z(t)). (54)

By (B4,

N (n(t,k)) + N(n(t, k) —1) =23 (L, ). (55)
But for any integer n, N'(n — 1) is in a sense close to A (n) because, by [11]

Lemma 9 (ii)], one has

1. N(n)

Clogn — N(n—1)

So (B4)) and (B3] imply
doggu(e(t) . loa(2-3n(l., 0y))

Seven g 4 -+ Qg k—o00 k

s— 00

< C'logn.

=log3 — doc(t)log2. (56)
Since, from the law of large numbers, a1+ - -+as is equivalent to 2s for Lebesgue-
a.e. t, (BO) implies that, for Lebesgue-a.e. t € [%, 1),

log qs(x(t)) _ log3
s—oo  2slog?2 log 2

dloc (t) = Q.
]

Remark 31. Using the matricial expression of the denominators of the con-
tinued fractions, Proposition B0l means that «glog?2 is the Lyapunov exponent

. 1 0 1 1
of the set of matrices {<1 1> , (O 1)}

Remark 32. The Levy constant

2
515130 log (f(x) = 1271r0g2 ~ 1.18657 for Lebesgue-a.e. z € (0,1) (57)
is larger than the value of
log qs(z(t 1
lim M = aglogd ~ 0.78 for Lebesgue-a.e. t € [5, 1> . (58)
s—00 s
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On the other side, it is well-known that the partial quotients a;(z) of Lebesgue-

a.e. real x satisfy a1 (z) + ... as(x)
1 ... Qg .

A 5 (59)
For any ¢ such that z(t) satisfies (&) and (B9), the Lh.s. in (B0) tends to 0,
consequently the local dimension at ¢ is maximal: djec(t) = log3  ~, 1.585.

log 2

. log3 ~ log3 109%\/5 ~ ini i
Since gz — @0 ~ 1.025 and oz2 — logz ~ 0.891 (the minimal local dimen-

sion because ¢s; < (lg—ﬁ)aﬁmms by induction), the graph of the singularity

spectrum of 7, 3 has the following form:

H-dim({t:d,..()=4})

0.891 1.025 1.585
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