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SOFIC MEASURES AND DENSITIES OF LEVEL SETS

ALAIN THOMAS

Abstract. The Bernoulli convolution associated to the real β > 1
and the integer d ≥ β is a probablilty measure ηβ,d on R, solution

of the self-similarity relation η =

d−1∑
k=0

pk ·η◦Sk where (p0, . . . , pd−1)

is a probabililty vector and Sk(x) = x+k
β . If β is an integer or a

Pisot algebraic number, the study of this measure is close to the
study of the order of growth of the number of representations in
base β with digits in {0, 1, . . . , d− 1}. In the case β = 2 and d = 3
it is also related to the continued fractions.

0. Introduction

The different sections of this paper are relatively independent. A sofic
probability measure on a space {0, 1, . . . , b − 1}N, i.e. the image of a
Markov probability measure by a shift-commuting continuous map, is
representable by products of matrices as explained in Theorem 5. Now
the measures defined by Bernoulli convolution [12], i.e.

ηβ,d :=
∞

A
n=1

(
d−1∑
a=0

δ a
βn

)
where β ∈ R, d ∈ N and d ≥ β > 1, are an example of sofic measures
if β is an integer or a Pisot number, i.e., an algebraic number whose
conjugates belong to the open unit disk. A transductor of normalization
and a Markov chain are naturally associated to β and d. The matrices
associated to the measure ηβ,d are easy to define when β is a integer,
let b, and have been studied by different authors; for instance they are
the transposes of the ones of Protasov [13]. In this case the measure ηb,d
is related to the number of representations of the integer n in base b
with d digits, let N (n), and the Hausdorff dimensions of the level sets
of ηb,d are related with the exponential densities of some sets of integers
on which N (n) has a given order of growth (Proposition 13).
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2 A. THOMAS

1. Sofic subshifts

By subshifts we mean closed subsets of {0, 1, . . . , b−1}N invariant by the
shift σ : (ωn)n∈N 7→ (ωn+1)n∈N. Let us give two equivalent definitions of
the sofic subshifts.

Definition 1. A sofic subshift is a subshift recognizable by a finite
automaton [1].

Definition 2. A subshift is a sofic iff it is the image of a topological
Markov subshift by a letter-to-letter morphism.

In this definition, ”letter-to-letter morphism” can be replaced by ”con-
tinuous morphism”: indeed a continuous morphism has the form

ϕ
(
(ωn)n∈N

)
=
(
ψ(ωn−sωn−s+1 . . . ωn+s)

)
n∈N

where ψ is defined on {0, 1, . . . , s}2s+1, being understood that ωn = 0
for n ≤ 0.

Proof of the equivalence. Let us see – on a representative example –
why a subshift recognizable by a finite automaton is the image of a
topological Markov subshift by a letter-to-letter morphism.

b	
  

0	
  

0	
   1	
  

a	
   c	
  

0	
  

The sofic subshift we consider, is constituted by the labels of the infi-
nite paths, namely the sequences of 0 and 1 without factors 102i1, i ∈
N∪{0}. It excludes an infinity of words, it is not of finite type. Clearly
it is the image, by a letter-to-letter morphism, of the Markov sub-
shift of alphabet {(a, 0), (b, 0), (b, 1), (c, 1)} that excludes some words
of length two: it excludes the words that are not in the list ((a, 0), (b, 0)),
((a, 0), (b, 1)), ((b, 0), (a, 0)), ((b, 1), (c, 0)), ((c, 0), (b, 0)), ((c, 0), (b, 1)).
Conversely let us consider for instance the Markov subshift S defined
by the following graph:

b	
  a	
   c	
  

and the letter-to-letter morphism ϕ : S → {0, 1}N defined from the
map ψ : {a, b, c} → {0, 1}, ψ(a) = 0, ψ(b) = 1 and ψ(c) = 1. According
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to the second definition, ϕ(S) is a sofic subshift. It excludes the words
012i0, i ∈ N ∪ {0}. It is also a sofic subshift in the sense of the first
definition, because it is recognizable by the automaton whose arrows
from each state x have label ψ(x):

b	
  

1	
  

0	
   1	
  

a	
   c	
  

1	
  

�

2. Markov, sofic and linearly representable measures

Definition 3. (i) A (homogeneous) Markov probability measure is a
measure µ on the product set {0, 1, . . . , b − 1}N defined by setting for
any cylinder set [ω1 . . . ωn]

(1) µ[ω1 . . . ωn] = pω1pω1ω2 . . . pωn−1ωn

where p =
(
p0 . . . pb−1

)
is a positive probability vector and P = p00 . . . p0(b−1)

...
. . .

...
p(b−1)0 . . . p(b−1)(b−1)

 a nonnegative stochastic matrix.

Clearly the support of µ is a Markov subshift, and µ is invariant (or
stationary) iff p is a left eigenvector of P .
(ii) A probability measure on {0, 1, . . . , b − 1}N, let ν, is called sofic if
it is the image of a Markov probability measure by a continuous mor-
phism. This morphism can be chosen letter-to-letter.
(iii) Let {R0, . . . , Rb−1} be a set of nonnegative r-dimensional row vec-
tors, M = {M0, . . . ,Mb−1} a set of r × r nonnegative matrices and C
a positive r-dimensional column vector, such that(∑

i

Ri

)
C = 1 and

(∑
i

Mi

)
C = C.

One can define a probability measure on {0, 1, . . . , b − 1}N, let η, by
setting

(2) η[ω1 . . . ωn] = Rω1Mω2 . . .MωnC.

We call it a M-measure.

Remark 4. If
∑

iMi is irreducible and if Ri = RMi for any i, where
R is the positive left eigenvector of

∑
iMi, the M-measure is called a

”linearly representable measure” for instance in [2] or in
http://www.unc.edu/math/Faculty/petersen/Papers/06Jan2010.pdf

http://www.unc.edu/math/Faculty/petersen/Papers/06Jan2010.pdf
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and is σ-invariant. In this case η[ω1 . . . ωn] = RMω1 . . .MωnC.

Theorem 5. A probability measure on {0, 1, . . . , b− 1}N is sofic if and
only if it is a M-measure.

Proof. We first see that the Markov measures areM-measures. Indeed
the product in (1) can be seen as a product of submatrices of p and P :

(3) µ[ω1 . . . ωn] = πω1Pω2 . . . PωnU

where, for any i and j,

(4)

πi =
(
0 . . . 0 pi 0 . . . 0

)
Pj =

0 . . . 0 p1j 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 p(b−1)j 0 . . . 0

 and U =

1
...
1

 .

Now any sofic measure ν defined from a Markov measure µ and a map

ψ : {0, 1, . . . , b− 1} → {0, 1, . . . , b′ − 1}

is a M-measure, because (3) implies

(5) ν[ω1 . . . ωn] =

 ∑
ψ(i)=ω1

πi

 ∑
ψ(j)=ω2

Pj

 . . .

 ∑
ψ(k)=ωn

Pk

U.

Conversely let η be a M-measure. In the formula (2) we may sup-
pose that the entries ci of the column vector C are 1: indeed let

∆ =

c1 . . . 0
...

. . .
...

0 . . . cr−1

, the formula remains true if we replace C by

∆−1C = U, the matrices Mi by ∆−1Mi∆ and Ri by Ri∆. Accord-
ing to the hypotheses of Definition 3(iii), the following matrices are a
probability vector and a stochastic matrix respectively:

p =
(
R0 R1 . . . Rb−1

)
and P =

M0 M1 . . . Mb−1
...

...
. . .

...
M0 M1 . . . Mb−1

 .

We define from p and P the submatrices πi and Pj, as in (4). Clearly, the
formula (2) is equivalent to (5) with ψ(i) =

⌊
i
r

⌋
, i ∈ {0, 1, . . . , rb− 1}.

Now (5) implies that η is the image of the Markov measure defined by
p and P , so η is sofic. �
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3. Level sets associated to a map f : N→ R∗+
Let us first define the exponential densities associated to f . In the
examples we give later, f has a polynomial rate of growth in the sense
that there exists 0 ≤ α1 ≤ α2 such that

(6) nα1 ≤ f(n) ≤ nα2 (n large enough).

We are interested to find for certain values of α ≥ 0, a subset E(α) ⊂ N
as large as possible such that log(f(n)) ∼ log(nα) for E(α) 3 n → ∞.
Let us construct a subset E(α) that satisfies this condition and has
maximal lower and upper exponential densities. The lower and upper
exponential densities of a subset S ⊂ N are defined by

d−exp(S) := lim inf
N→∞

log (#S ∩ [0, N [)

logN

d+
exp(S) := lim sup

N→∞

log (#S ∩ [0, N [)

logN
.

Definition and theorem 6. Given f : N→ R∗+, one associate to any
α ≥ 0 and ε > 0 the level set

(7) E(α, ε) :=

{
n ∈ N : α− ε ≤ log f(n)

log n
≤ α + ε

}
.

and to any α ≥ 0 the limit-densities – that are also lower bounds

δ−(α) := lim
ε→0

d−exp(E(α, ε))

δ+(α) := lim
ε→0

d+
exp(E(α, ε)).

If f satisfies the condition (6), it is clear from the compacity of [α1, α2]
that there exists α such that E(α, ε) is infinite for any ε > 0. In this
case we define E(α) as follows: there exists a set of integers of the form

(8) E(α) :=
⋃
k

E(α, 1/k) ∩ [Nk−1, Nk[

where the increasing sequence (Nk) is chosen in order that E(α) has
lower exponential density δ−(α), upper exponential density δ+(α), and

lim
n→∞
n∈E(α)

log f(n)

log n
= α.

Proof. For any subset S ⊂ N the quantity log(#S∩[0,N [)
logN

oscillate indefi-

nitely, approximately between its lower bound and its upper bound. So
for any k ∈ N we can find infinitely many Nk ∈ N and N ′k ≤ Nk such
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that
log (#E(α, 1/k) ∩ [0, Nk[)

logNk

≥ δ+(α)− 1

k
log (#E(α, 1/k) ∩ [0, N ′k[)

logN ′k
≤ δ−(α) +

1

k
.

Choosing successively each Nk large enough with respect to Nk−1 and
N ′k−1, E(α) defined in (8) has lower exponential density δ−(α) and
upper exponential density δ+(α). �

Example 7. Let f(n) = n1+sinn then, given s ∈ [0, 2] and ε > 0, the
set of the integers n such that 1 + sinn ∈ [s − ε, s + ε] has a positive
usual density, hence the graph of δ± is

0	
   2	
  

1	
  

4. Level sets associated to a set of matrices

There exist a lot of partial results (for instance [4] and [5]) about the
level sets of theM-measures defined in (2). Given aM-measure η, the
level sets can be defined by

E(α) :=

{
(ωn)n∈N : lim

n→∞

log η[ω1 . . . ωn]

log(1/bn)
= α

}
and we denote by d(α) := H-dim(E(α)) their Hausdorff dimensions.
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On the other side it is natural to associate to the M-measure η, the
function f : N→ R defined for any n =

b
ε1b

k−1 + · · ·+ εkb
0 by

f(n) = Rε1Mε2 . . .MεkC

and to specify the relation between the singularity spectrum α 7→ d(α)
associated to η and the density spectrum α 7→ δ±(α) associated to f .
In the second case α cannot exceed log ρ

log b
, where ρ is the joint spectral

radius of the matrices Mε.

Remark 8. When f is the partition functions in integral base or in
base cβk +o(1), β a Pisot number and c ∈ Q(β) (see [6]), there exists a

real α0 > 0 such that log f(n)
logn

tends to α0 when n tends to infinity along

a subset Sα0 ⊂ N of natural density 1. This imply that E(α0, ε) also
has density 1 and consequently δ−(α0) = δ+(α0) = 1. The problem is
to find some other values of α such that δ+(α) 6= 0; or better, to prove
that that the graphs of d and δ± are concave on a nontrivial interval.

5. Bernoulli convolution and number of representations
in integral base

Given two integers b ≤ d we consider the bi-infinite matrix
(9)

M∞ :=


. . .

...
...

...
...

. . .
...

. . .
...

...
...

. . . 0 pd−1 . . . pd−b−1 . . . p0 . . . 0 0 . . .

. . . 0 0 . . . pd−1 . . . pb . . . p0 0 . . .
...

...
...

. . .
...

...
...

...
...

...
. . .

 ,

each row containing the same probability vector p =
(
p0 . . . pd−1

)
,

shifted b times to the right from the previous row.

5.1. This matrix is related to the Bernoulli convolution in in-
tegral base. Let us define more generally the Bernoulli convolution
in real base β > 1 with d digits, d ≥ β: it is the probability measure
η = ηβ,d defined by setting, for any interval I ⊂ R

(10) η(I) := Pp

({
(ωk)k∈N :

∑
k

ωk
βk
∈ I

})
where ωk ∈ {0, 1, . . . , d−1} and Pp the product probabililty defined on
{0, . . . , d−1}N from the probability vector p, that we suppose positive.
Now we suppose that β = b ∈ N and we prove that the measure η = ηb,d
is in a sense theM-measure associated to the following submatrices of
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the infinite matrix M∞, of size a =
⌈
d−1
b−1

⌉
:

(11)(
p0 0 . . .
...

...
. . .

)
,

(
p1 p0 0 . . .
...

...
...

. . .

)
, . . . ,

(
pb−1 pb−2 . . . p0 0 . . .

...
...

. . .
...

...
. . .

)

that we call M0,M1, . . . ,Mb−1.

Proposition 9. The measure of the translated b-adic interval ε0 +
Iε1...εk where ε0 ∈ {0, 1, . . . , a− 1}, εi ∈ {0, 1, . . . , b− 1} for i ≥ 1 and

Iε1...εk :=
[∑k

i=1
εi
bi
,
∑k

i=1
εi
bi

+ 1
bk

)
, is given by the formula

(12) η(ε0 + Iε1...εk) = Eε0Mε1 . . .MεkC

where E0, E1, . . . , Ea−1 are the canonical basis row vectors and C the
unique positive eigenvalue of

∑
εMε. Consequently the measure ηε0,symb

defined as follows is a M-measure on {0, 1, . . . , b− 1}N:

(13) ηε0,symb[ε1 . . . εk] :=
η(ε0 + Iε1...εk)

η(ε0 + [0, 1))
.

Proof. We denote I = Iε1...εn and I ′ = Iε2...εn , and we put pω = 0 if
ω 6∈ {0, 1, . . . , d− 1}.

η(ε0 + I) =
d−1∑
ω=0

P

({
ω1 = ω and

∑
k

ωk+1

bk
∈ ε0b+ ε1 − ω + I ′

})
=

∑
ω∈Z

pω η (ε0b+ ε1 − ω + I ′)

=
∑
q∈Z

pε0b+ε1−q η (q + I ′) .

In fact q belongs to {0, 1, . . . , a− 1}, otherwise η (q + I ′) is null. Since
the coefficients pε0b+ε1−q are the entries of the matrix Mε1 we deduce

(14)


η(I)

η(I + 1)
...

η(I + a− 1)

 = Mε1


η(I ′)

η(I ′ + 1)
...

η(I ′ + a− 1)



= Mε1 . . .Mεk


η([0, 1))
η([1, 2))

...
η([a− 1, a))

 .
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In the particular case k = 1, we make the sum or the l.h.s. of (14)

for ε1 = 0, 1, . . . , b − 1 and deduce that


η([0, 1))
η([1, 2))

...
η([a− 1, a))

 is a nonneg-

ative eigenvector of
∑

εMε. The sum of its entries is 1 because [0, a]
contains the support of η. Since

∑
εMε is obviously irreducible, by

Perron-Frobenius its nonnegative eigenvector is unique and the formula
(12) follows. �

5.2. The bi-infinite matrix (9) is also related – in the case pk =
1
d

– to the normalization [9] in integral base. The normalization
of a infinite sequence (ωi)i∈N with terms in {0, . . . , d− 1}, is defined by

n ((ωi)i≥1) := (εi)i≥−(h−1)
εi ∈ {0, 1, . . . , b− 1}, ε−(h−1) 6= 0
∞∑
i=1

ωi
bi

=
∞∑

i=−(h−1)

εi
bi

and the εi are not eventually b − 1. The normalization of a finite se-
quence with terms in {0, . . . , d− 1} is a special case:

n(ω1, . . . , ωk) := (ε−(h−1), . . . , εk) ∈ {0, 1, . . . , b− 1}k+h, ε−(h−1) 6= 0,
k∑
i=1

ωi
bi

=
k∑

i=−(h−1)

εi
bi

or equivalently

(15) ω1b
k−1 + · · ·+ ωkb

0 = ε−(h−1)b
k+h−1 + · · ·+ εkb

0.

Proposition 10. One obtains the canonical digits εi by entering suc-
cessively, from the initial state 0, the digits ωk, ωk−1, . . . , ω1, 0, 0, . . . in
the following transducer with set of states {0, 1, . . . , a− 1}, a =

⌈
d−1
b−1

⌉
.

The arrows of initial state q ∈ {0, 1, . . . , a− 1} and input label ω have
final state and output label the quotient and the remainder of the Eu-
clidean division of q + ω by b respectively:

q	
   quotb(q+ω)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ω	
  /	
  remb(q+ω)	
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Proof. We put ωi = 0 (resp. εi = 0) for any i ∈ Z \ {1, . . . , k} (resp. for
any i ∈ Z \ {−(h− 1), . . . , k}). We call the ”ith carry”, the integer

qi =
∑
j>i

ωj − εj
bj−i

=
∑
j≤i

(εj − ωj)bi−j.

From the first equality we have −1 < qi <
d−1
b−1 , or equivalently 0 ≤

qi ≤ a− 1. From the second we have qi = bqi−1 + εi − ωi, showing that
qi−1 and εi are obtained by Euclidean division of qi + ωi by b.
Let us prove that qi−1 belong to the set of states, that is, 0 ≤ qi−1 < a.
Indeed 0 ≤ qi−1 = b qi+ωi

b
c ≤ a+d−2

b
; now the inequality a+d−2

b
< a is

equivalent to a > d−2
b−1 , and a ≥ d−1

b−1 >
d−2
b−1 is true from the definition

of a. �

5.3. Number of b-representations with digits in {0, 1, . . . , d−1}.
In order to compute the number of representations of an integer, let
n =

b
ε1b

k−1 + · · · + εkb
0, we consider the subgraph obtained by fixing

the output : the output label is a given integer ε ∈ {0, 1, . . . , b − 1}.
Then the input label, from a state q to a state q′, is ω = bq′ + ε− q if
this integer belongs to {0, 1, . . . , d − 1}. The incidence matrix of this
subgraph is the transpose of the matrix dMε defined in (11), where we
replace each pi by 1

d
, proving that:

Proposition 11. The number of representations of n with digits in
{0, 1, . . . , d − 1}, let N (n), is the number of paths from the state 0 to
the state 0 with successive outputs εk, . . . , ε1:

N (n) = dk
(
1 0 . . . 0

)
Mε1 . . .Mεk


1
0
...
0

 .

Remark 12. Let q ∈ {0, 1, . . . , a − 1}. Since N (n − q) is the num-
ber of paths from the state q to to the state 0 with successive outputs
εk, . . . , ε1, it is also the (q+1)th entry of dk

(
1 0 . . . 0

)
Mε1 . . .Mεk .

So, from (12),
(16)
dkη(Iε1...εk) =

(
N (n) N (n− 1) . . . N (n− a+ 1)

)
C =: f(n).

5.4. The relation between the singularity spectrum and the
density spectrum. The singularity spectrum dη of the measure η =
ηb,d is related to the density spectrum δ± of the number of representa-
tions in base b with d digits. Suppose that dη(α) = H-dim(E(α)) exists,
and let us cover E(α) by some b-adic intervals Iε1...εk . By the definition
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of E(α), for k large enough we must consider only the intervals such
that

(17) α− ε ≤ log η(Iε1...εk)

log(1/bk)
≤ α + ε.

Let n = ε1b
k−1 + · · ·+ εkb

0 and γ := log d
log b
− α. From (16),

(bk)γ−ε ≤ f(n) ≤ (bk)γ+ε.

We recognize the set Ef (γ, ε) of (7). By definition of the Hausdorff
dimension, given s1 < d(α) < s2,
(b−k)s1#Ef (γ, ε) tends to infinity and (b−k)s2#Ef (γ, ε) tends to 0 when
k →∞. Consequently for k large enough

(bk)s1 ≤ #Ef (γ, ε) ≤ (bk)s2 ,

which proves that

(18) δ−f (γ) = δ+f (γ) = dη(α).

Let us deduce the following

Proposition 13. The density spectrum δ±N of the number of represen-
tations in base b with d digits satisfies

δ−N (γ) = δ+N (γ) = dη(α)

with γ := log d
log b
− α, for any α such that dη(α) exists.

Proof. The function f defined in (16) has the same order of growth as
the function N because – from [6, Lemma 9 (ii)] – for any n ∈ N

1

C log n
≤ N (n)

N (n− 1)
≤ C log n.

Hence δ±f = δ±N and the proposition follows from (18). �

6. The general framework in Pisot base

Let us call n the normalization map [9] in the integral or Pisot base
β > 1; it associates to each sequence (ωi)i∈N ∈ {0, 1, . . . , d − 1}N the
sequence (εi)i∈Z ∈ {0, 1, . . . , dβe − 1}Z satisfying both conditions:

(19)

∑
i∈N

ωi
βi

=
∑
i∈Z

εi
βi

∀i ∈ Z,
∑
j>i

εj
βj

<
1

βi
(Parry admissibility condition [11]).
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Clearly
∑
i∈Z

εi
βi

is not a bi-infinite sum but a sum of the form
∑
i>−h

εi
βi

with positive first term ε−(h−1)β
h−1. It is the Parry expansion [11] of

the real x =
∑
i∈N

ωi
βi

, and h ∈ Z is the integer such that βh−1 ≤ x < βh.

6.1. The tranducer associated to β and d. The states of the trans-
ducer are the carries of the normalization of the sequences (ωi)i∈N ∈
{0, 1, . . . , d − 1}N. More precisely given i ∈ Z, the sum

∑
j>i

ωj
βj

is not

equal to
∑
j>i

εj
βj

but to
∑
j>i

εj
βj

plus a real number that we denote by

qi
βi

. So we call ”the ith carry”, the real qi defined by the formulas

(20)
qi
βi

=
∑
j>i

ωj − εj
βj

=
∑
j≤i

εj − ωj
βj

understanding that ωj = 0 for j ≤ 0. They imply that

(21) qi + ωi = βqi−1 + εi and qi ∈ (−1, α], α :=
d− 1

β − 1
.

This allows to define the transducer of normalization:
The set of states is

S :=

{
i−1∑
j=0

αjβ
j : i ∈ N, αj ∈ Z,−d < αj < dβe

}
∩ (−1, α].

Clearly the carries defined in (20) belong to S. From Garsia’s separation
lemma [10] S is finite, let

{i0 = 0, i1, . . . , ia−1} := S.

The arrows have the form q
ω / ε

−−−−−−−→ βq − ω + ε.
Notice that the arrows are in the opposite direction of the ones con-
sidered in integral base because, except in this case, this is more nat-
ural: as seen in Example 14, the Euclidean division used in Propo-
sition 10 do not have analogue in non-integral base. Using (21), the
couple

(
(ωi)i∈Z, (εi)i∈Z

)
formed by any sequence and the normalized

sequence is represented by a path.
We construct at the same time the set S and the transducer: this
set contains 0 and, for any q ∈ S, it contains βq − ω + ε for any
ω ∈ {0, 1, . . . , d− 1} and ε ∈ {0, 1, . . . , bβc− 1} such that βq−ω+ ε ∈
(−1, α].
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Example 14. If β is the positive root of X3− 2X2 +X− 1 and d = 2,
the set S has thirteen elements and the transducer is the following:

0	
   1	
  
0/1	
   1/0	
  

1	
   ß-­‐1≈0.75	
  

ß2-­‐ß-­‐1≈0.32	
  

1/0	
  

ß2-­‐2ß+1≈0.57	
  

0/0	
   1/0	
  
1/1	
  

ß2-­‐2ß≈-­‐0.43	
  

0/0	
  
1/1	
  

0/0	
  
1/1	
  

-­‐ß+1≈-­‐0.75	
  

-­‐ß+2≈0.25	
  

-­‐ß2+ß+1≈-­‐0.32	
  

0/1	
  

0/0	
  
1/1	
  

0/1	
  

-­‐ß2+2ß-­‐1≈-­‐0.57	
  

-­‐ß2+2ß≈0.43	
   ß-­‐2≈-­‐0.25	
  

0/0	
  
1/1	
  

0/1	
  

1/0	
  

1/0	
  

0/0	
  
1/1	
  

0/0	
  
1/1	
  

ß2-­‐ß≈1.32	
   1/0	
  

1/0	
  

0/1	
  

0/1	
  
0/0	
  
1/1	
  

0/0	
  
1/1	
  

6.2. How to normalize a sequence (ωi)i∈N? We first notice that in
a non-integral base there do not exist a literal transducer of normal-

ization. For instance in base β = 1+
√
5

2
, if we normalize from the left

to the right a sequence of the form (01)nx without knowing if the digit
x is 0 or 1, we obtain (01)n0 if x = 0 and 1(00)n if x = 1. So all the
terms of the normalized sequence depend on the value of x, while the
successive carries cannot depend on x because x is at the right. As well
if we normalize from the right to the left a sequence of the form x(11)n

without knowing if the digit x is 0 or 1, we obtain (10)n0 if x = 0 and
(10)n01 if x = 1.

Proposition 15. (i) Let (ωi)i∈N ∈ {0, 1, . . . , d − 1}N. The normalized
sequence defined in (19) is the unique admissible sequence which is the
output label of a bi-infinite path of input label . . . 000ω1ω2ω3 . . . .
(ii) Let ω1 . . . ωk ∈ {0, 1, . . . , d − 1}k. If there exist an admissible se-
quence ε−(h−1) . . . εk such that ε−(h−1) 6= 0 and

ω1β
k−1 + · · ·+ ωkβ

0 = ε−(h−1)β
k+h−1 + · · ·+ εkβ

0,

then ε−(h−1) . . . εk is the unique admissible output label of a path of input
label 0 . . . 0ω1 . . . ωk, with initial and final state 0.

Proof. We consider a bi-infinite path with input label . . . 000ω1ω2ω3 . . . .
From the definition of the transducer, the states and the output label
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satisfy for any i < i′ in Z

(22)
qi
βi

=
∑
i<j≤i′

ωj − εj
βj

+
qi′

βi′
.

In the case of the item (i), since
qi′

βi′
has a null limit when i′ → +∞,

as well as qi
βi

when i→ −∞ because qi−1 < qi when ωi = 0, we deduce

from (22) that
∑
i∈Z

εi
βi

is the Parry expansion of
∑
i∈N

ωi
βi

.

In the case of (ii), we replace i′ by k in (22) so qi′ is null, as well as

qi for i less than or equal to some integer −h. Then
k∑

i=−(h−1)

εi
βi

is the

Parry expansion of
k∑
i=0

ωi
βi

. �

6.3. The number of redundant representations. For any finite
sequence ε1 . . . εk ∈ {0, 1, . . . , d − 1}k we denote by N (ε1 . . . εk) the
number of ω1 . . . ωk ∈ {0, 1, . . . , d− 1}k such that

(23) ω1β
k−1 + · · ·+ ωkβ

0 = ε1β
k−1 + · · ·+ εkβ

0.

Notice that, this time, the carries qi =
∑

j>i
ωj−εj
βj−i

do not belong to

(−1, α] but to (−α, α). So the set of states we consider is

S ′ :=

{
i−1∑
j=0

αjβ
j : i ∈ N, αj ∈ Z,−d < αj < d

}
∩ (−α, α) .

We denote by i′0 = 0, i′1, . . . , i
′
a′−1 the elements of S ′. Now we count the

number of ω1 . . . ωk ∈ {0, 1, . . . , d− 1}k that satisfy (23), by using the
(0, 1)-matrices Nε = (nij) 0≤i≤a′−1

0≤j≤a′−1

, ε ∈ {0, 1, . . . , d− 1}, defined by

nij = 1⇔ βi′i − i′j + ε ∈ {0, 1, . . . , d− 1}.

We obtain the following

Proposition 16. N (ε1 . . . εk) =
(
1 0 . . . 0

)
Nε1 . . . Nεk


1
0
...
0

.

Example 17. If β = 1+
√
5

2
, the set S has four elements and elements

and S ′ has five elements. The transducer with set of states S is
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0	
   1	
  
0/1	
   1/0	
  

1	
   ß-­‐1≈0.62	
  0/0	
  
1/1	
  

0/0	
  
1/1	
  

1/0	
  

ß≈1.62	
  

0/0	
  
1/1	
  

1/0	
  

and the transducer with set of states S ′

1	
  

0/1	
  

0/1	
  
-­‐1	
   -­‐ß+1≈-­‐0.75	
  

0/0	
  
1/1	
  

1/0	
  

0	
   1	
  
0/1	
   1/0	
  

1	
   ß-­‐1≈0.62	
  0/0	
  
1/1	
  

0/0	
  
1/1	
  

1/0	
  

6.4. The Markov chain associated to a Bernoulli convolution.
Unfortunately the normalization map is not continuous: for instance

in base β = 1+
√
5

2
, limk→∞ n(1k0∞) 6= n(1∞). So, to prove that the

Bernoulli convolution defined in (10) is sofic, it is not possible to apply
directly the methods of §2. Nevertheless it is possible to prove it by
means of the following completed transducer, which is in fact a topo-
logical Markov chain. The states of the completed transducer are the
couples

(ε, ii) ∈ S := {0, . . . , dβe − 1} × {i0, . . . , ia−1}.
Let us define some transition probabilities between the states of the
completed transducer: when we have, in the initial transducer, two

successive arrows
ω / ε

−−−−−−−→ q
ω′ / ε′

−−−−−−−→ q′ we put

(24) p(ε,q),(ε′,q′) := pω′ = pβq−q′+ε′ (independent on ε)

assuming that pω = 0 for any ω ∈ R \ {0, 1, . . . , d− 1}.

Example 18. In Example 14 the graph of the completed transducer is
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(0,i0)	
   1	
  
p0	
   p1	
   (0,	
  i2)	
  

(0,	
  i3)	
  

p1	
  

(0,	
  i5)	
  

p0	
  
p1	
   p1	
  

(0,	
  i6)	
  

p0	
  
p1	
  

p0	
  
p1	
  

(0,	
  i7)	
  

(1,	
  i8)	
  

(1,	
  i9)	
  

p0	
  

p0	
  
p1	
  p0	
  

(0,	
  i10)	
  

(0,	
  i11)	
   (1,	
  i12)	
  

p0	
  

p1	
  

p1	
  

p1	
  
p0	
  

p1	
  

p0	
  

p1	
  

(1,	
  i4)	
  

p1	
  

p1	
  

p0	
  

(1,	
  i0)	
  

(1,	
  i1)	
   (0,	
  i4)	
   p1	
  

(1,	
  i5)	
  

(1,	
  i7)	
  (1,	
  i10)	
  

(1,	
  i11)	
  

p0	
  

p0	
  
p1	
  

p0	
  

p0	
  

(0,	
  i1)	
  

p0	
  

p0	
  

p1	
  

p0	
  

p0	
   p1	
  

(1,	
  i6)	
  

p1	
  

p0	
  

(1,	
  i2)	
  

p0	
  
p1	
  

(0,	
  i12)	
  
p0	
  

p0	
  
p1	
  

p0	
  

p1	
  

p0	
  

and as we see later, the transition matrix of the Markov chain is

M =

(
v0−1 . . . 0
...

. . .
...

0 . . . v39−1

)(
M0 M1M0 M1

2M0
2

M0 M1M0 M1
2M0

2

M0 M1M0 M1
2M0

2

)(v0 . . . 0
...

. . .
...

0 . . . v39

)
where

M0 =



p0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 p1 0 0 0 0 0 0 0 0 0 0

0 0 0 p1 p0 0 0 0 0 0 0 0 0
0 0 0 0 0 p0 p1 0 0 0 0 0 0

0 0 0 0 p1 0 0 0 0 0 0 0 0

p1 p0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 p0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 p1 p0 0
0 0 0 0 0 0 0 0 0 0 p0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 p0 0 0 0 0 0 0 0 0 0 p1
0 0 0 0 0 0 p0 0 0 0 0 0 0


,

M1 =



p1 p0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 p1 0 0 0 0 0 0 0 0

0 0 0 0 0 p1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 p1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 p1 p0 0 0 0 0
0 0 0 0 0 0 0 0 0 p0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 p1 0

0 0 0 0 0 0 0 0 0 0 p1 p0 0
p0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 p1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 p0 p1 0 0 0 0 0 0


,
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and

 v0
...
v13

 =

v14...
v26

 =

v27...
v39

 is a positive eigenvector of M0 +

M1M0 +M1
2M0

2.

Let now β be a Pisot number, d ≥ β an integer, and η the Bernoulli
convolution defined in (10). Generalizing (13), we consider the restric-
tion of η to a interval [q, q + 1), where q ∈ S is one of the states of the
transducer defined in Subsection 6.1. Especially we want to compute
by means of matrices the measure ηq defined on the symbolic space
{0, 1, . . . , dβe − 1}N by

(25) ηq[ε1 . . . εn] :=
η(q + Iε1...εn)

η([q, q + 1))

where Iε1...εn is the set of elements of [0, 1) whose Parry expansion
begins by ε1 . . . εn.

On the following diagram the map sq associates, to any sequence
(ωi)i∈N in the set

Ωq :=

{
(ωi)i∈N : 0 ≤ ωi ≤ d− 1,

∑ ωi
βi
∈ [q, q + 1)

}
,

the Parry-admissible sequence (εi)i∈N such that∑
i∈N

ωi
βi

= q +
∑
i∈N

εi
βi
.

The one-to-one map Sq : Ωr → SN is defined by

Sq
(
(ωi)i∈N

)
:= ((εi, qi)

)
i∈N

where q0 = q and ∀i ∈ N, qi = βqi−1 − ωi + εi. And π : SN →
{0, . . . , dβe − 1}N is the projection. The diagram is

(ωi)i∈N ∈ Ωq
Sq
//

sq

))

(
(εi, qi)

)
i∈N ∈ S

N

π
��

(εi)i∈N ∈ Adm

The probability measure Pq on Ωq is simply
P (·)
P (Ωq)

, and its image mq

by the one-to-one map Sq satisfies

(26) mq[(ε1, q1) . . . (εk, qk)] =
1

P (Ωq)
pω1 . . . pωkπk
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where ωi = βqi−1 − qi + εi for 1 ≤ i ≤ k and

(27) πk = P

(∑
i≥1

ωk+i
βi
∈ [0,Mk)

)
,

Mk being the positive real such that Iε1...εn =
[
0, Mk

βk

)
.

So mq is not necessarily Markov but it has in a sense some transition
probabilities, denoted by p(ε,q),(ε′,q′) in (24).

Let us define now the Markov measure, assuming from now that the
expansion of the unity is periodic, in order to simplify the formula. The
expansion of the unity [11] is a sequence (αi)i∈N such that

1 =
∑
i∈N

αi
βi

and ∀i ≥ 0, 0 <
∑
j>i

αj
βj
≤ 1

βi

We suppose that this sequence has a period, let T . Then the β-shift,
i.e. the set of the sequences of nonnegative integers (εi)i∈N such that∑
j>i

εj
βj
≤ 1

βi
for any i ≥ 0, is coded by the words w of the form

w = α1 . . . αi−1α
′
i with 0 ≤ i ≤ T and 0 ≤ α′i < αi

and the word wmax = α1 . . . αT . Let W = {v1, . . . , v|W|} be this set of
words.

Proposition 19. When ε1 . . . εk is a concatenation of words of W,

(28) mq[(ε1, q1) . . . (εk, qk)] =
P (Ωqk)

P (Ωq)
p(0,q),(ε1,q1) . . . p(εk−1,qk−1),(εk,qk).

Proof. If ε1 . . . εk is a concatenation of words of W it is clear, from the
definition of the Parry-admissible sequences, that the interval Iε1...εk is
simply

[
0, 1

βk

)
when ε1 . . . εk. So in (27) we have Mk = 1, and in this

case (26) is equivalent to (28). �

Theorem 20. The measure ηq defined in (25) is sofic. It is the projec-
tion of the Markov measure of transition matrix

M := ∆−1

Mv1 . . . Mv|W|
...

. . .
...

Mv1 . . . Mv|W|

∆

where

w =
∏
i

εi ⇒Mw :=
∏
i

 p(0,i0),(εi,i0) . . . p(0,i0),(εi,ia−1)
...

. . .
...

p(0,ia−1),(εi,i0) . . . p(0,ia−1),(εi,ia−1)


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and ∆ is the diagonal matrix with diagonal entries v0, . . . , va−1 (dβe
times), the vi being the entries of the positive eigenvector of

∑
w∈WMw.

The initial probabilities are the entries of the (i + 1)th row of ∆M ,
where i the integer such that q = ii. Moreover, for any w1, . . . , w` ∈ W

(29) ηq[w1 . . . w`] =
(
0 . . . 1 . . . 0

)
((i+ 1)th position)

Mw1 . . .Mw`

 v0
. . .
va−1

 .

Proof. Let ε1 . . . εk = w1 . . . w`, and let us sum the r.h.s. of (28) for
any q1, . . . , q|w1|−1, then for any q|w1|+1, . . . , q|w1|+|w2|−1, and so one. We
obtain – with the notation q′j = q|w1|+···+|wj |
(30)∑

mq[(ε1, q1) . . . (εk, qk)] =
P (Ωqk)

P (Ωr)
p′(0,r),(w1,q′1)

. . . p′(w`−1,q
′
`−1),(w`,q

′
`)

where p′(wj−1,r′j−1),(wj ,r
′
j)

is the (i, i′)-entry of the matrix Mwj if r′j−1 is

the ith state and r′j the i′th state. This sum represents the probability
that the canonical digits ε1, . . . , εk and the carries q′1, . . . q

′
` have some

given values. Considering the case k = 1 we deduce that∑
(ε1,q1)

P (Ωq1)

P (Ωq)
p′(0,q),(ε′1,q′1) = 1,

because mq is a probability. So the P (Ωq) for q ∈ S are the entries of a
right eigenvector of

∑
w∈WMw and, according to the notations of the

theorem, we can put vi = P (Ωii) and deduce the first assertion of the
theorem. We obtain (29) by summing (30) for any q′1, . . . , q

′
` ∈ S. �

7. What about the number of representations in a
polynomial base?

Let Npolynomial(n) be the number of representations n =
∑
ωkGk with

ωk ≤ d−1, in the polynomial base Gk = ask
s+· · ·+a0k0. The expected

result:

Npolynomial(n) ∼ eαn
1
s+1

βn
2s+1
2s+2

with α, β constants does not allow to consider some level sets. This
formula was proved in the case d = 2, Gk = k by Hardy and Ramanu-
jan (1918) and generalized by several authors. For instance Roth and
Szekeres (1954) have a formula, assuming only that Gk has the order

of ks, but it is less precise in the way that the exponent αn
1
s+1 must be

replaced by n
1
s+1

+εn with limn→∞ εn = 0, and the exponent βn
2s+1
2s+2 by

n
2s+1
2s+2

+ε′n with limn→∞ ε
′
n = 0.
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8. Representations in base b = 2 with three digits

The number of representations of the integer

n =2 1as0as−1 . . . 0a11a0 ,

with digits in {0, 1, 2}, let N (n), is – according to [3, Proposition
6.11] – the denominator qs of the continued fraction [0; a1, . . . , as] :=

1

a1 +
1

a2 + · · ·+ 1

as

. From [6] there exists α0 > 0 and S ⊂ N of den-

sity 1 such that

(31) lim
n→∞
n∈S

logN (n)

log n
= α0.

From the classical formula giving the denominator of the continued
fraction in terms of a1, . . . , as,

α0 = lim
k→∞

1

2k log(2k)

∑
s,a1,...,as

log

 ∑
h,i0,...,ih+1

h∏
j=0

aij ,ij+1

 ,

summing for s, a1, . . . , as ∈ N such that
∑
ai ≤ k and for h ∈ N∪ {0},

(i0, . . . , ih+1) ∈ {0}×Nh×{s+ 1}, where the notation ai′,i means ai if
i− i′ is an odd positive integer and 0 otherwise. And by the following
computation α0 ' 0.56:
f := proc(n); if n = 2 ∗ floor((1/2) ∗ n) then f((1/2) ∗ n) + f((1/2) ∗
n− 1) else f((1/2) ∗ n− 1/2) end if end proc;
f(0) := 1;
s := seq(ln(f(n)), n = 0..16383);
α0 := evalf(sum(s[n], n = 8192..16383)/(8192 ∗ ln(8192)));

Proposition 21. The constant α0 defined in (31) is also the Lebesgue-

a.e. value of lim
s→∞

log qs(x(t))

s log 4
, where x(t) = [0; a1(t), a2(t), . . . ] for t =2

0.1a1(t)0a2(t)1a3(t) . . . in the interval
[
1
2
, 1
)
.

Proof. From [6, Remark 21], α0 log 2 = γ, defined in [8, Theorem 1.1].
Now by [6, Corollary 1.2], log 3

log 2
−α0 is the almost sure value of the local

dimension of the Bernoulli convolution η = η2,3 in base 2 with three
digits. Let ε1ε2 . . . be the canonical 2-expansion of t ∈

[
1
2
, 1
)
, and let

n = n(t, k) = ε12
k−1 + · · ·+ εk2

0.

By (16) one has

(32) N (n) +N (n− 1) = 2 · 3kη(Iε1...εk).
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Now for k = k(s) = a1(t) + · · · + as(t) one has N (n(t, k)) = qs(x(t)).

Using the inequality
1

C log n
≤ N (n)

N (n− 1)
≤ C log n proved in [6,

Lemma 9 (ii)], the relation (32) implies that

(33) lim
s→∞

log qs(x(t))

k(s)
= lim

k→∞

log
(
2 · 3kη(Iε1...εk)

)
k

and, k(s)being Lebesgue-almost surely equivalent to 2s, the local di-
mension of η at t, let dloc(t), satisfies

lim
s→∞

log qs(x(t))

s log 4
=

log 3

log 2
− dloc(t) = α0 for Lebesgue-a.e. t.

�

The Levy constant lim
s→∞

log qs(x)

s
=

π2

12 log 2
' 1.18657 for Lebesgue-

a.e. x, is larger than the value of lim
s→∞

log qs(x(t))

s
= α0 log 4 ' 0.78

for Lebesgue-a.e. t. Now it is well known that the partial quotients

ai(x) of Lebesgue-a.e. real x satisfy lims→∞
a1(x)+...as(x)

s
= ∞. For any

real x that satisfies the Levy condition and lims→∞
a1(x)+...as(x)

s
= ∞,

and for the real t such that x(t) = x, the l.h.s. in (33) tends to 0 hence
dloc(t) = log3

log 2
' 1.585 (the largest local dimension of η, according to

[7, Theorem 2.5]). Since log3
log 2
− α0 ' 1.025 and log3

log 2
− log 1+

√
5

2

log 2
' 0.891,

the graph of the singularity spectrum of η2,3 is

H-­‐dim({x	
  :	
  dloc(x)=λ}	
  

λ	
  
0.891	
   1.025	
   1,585	
  

1	
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