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Abstract

De Haas-van Alphen oscillations are studied for Fermi surfaces (FS) illustrating the model pro-
posed by Pippard in the early sixties, namely the linear chain of orbits coupled by magnetic
breakdown. This F'S topology is relevant for many multiband quasi-two dimensional (q-2D) or-
ganic metals such as k-(BEDT-TTF);Cu(NCS)2 and 6-(BEDT-TTF),CoBry(CgH4Cly) which are
considered in detail. Whereas the Lifshits-Kosevich model only involves a first order development
of field- and temperature-dependent damping factors, second order terms may have significant
contribution on the Fourier components amplitude for such g-2D systems at high magnetic field
and low temperature. The strength of these second order terms depends on the relative value of
the involved damping factors, which are in turns strongly dependent on parameters such as the
magnetic breakdown field, effective masses and, most of all, effective Landé factors. In addition,

the influence of field-dependent Onsager phase factors on the oscillation spectra is considered.



I. INTRODUCTION

While the Lifshits-Kosevich (LK) model™? nicely accounts for de Haas-Van Alphen os-
cillations spectra relevant to three-dimensional Fermi surfaces (FS), strong deviations are
observed for multiband two-dimensional metals, in particular at high magnetic field and low
temperature. This is the case, among others, of the starring x-(BEDT-TTF),Cu(NCS), and
the recently studied #-(BEDT-TTF),CoBrs(Ce¢H,Cly) charge transfer salts (where BEDT-
TTF stands for the bis-ethylenedithio-tetrathiafulvalene molecule). The F'S of these organic
metals®© is an illustration of the textbook model proposed by Pippard more than fifty
years ago to compute the Landau band structure induced by magnetic breakdown (MB) in
multiband metals” (see Fig. 1). Many experimental studies have demonstrated that such
F'S topology gives rise to dHvA oscillations spectra composed of linear combinations of the

356811 These frequencies corre-

frequencies linked to the basic orbit o and the MB orbit
spond not only to actual semiclassical MB orbits, few examples of which are displayed in
Fig. 1, or harmonics, but also to forbidden frequencies’ such as  — « that are not predicted
by the semiclassical model of Falicov-Stachowiak®12. Besides, even in the case where these
Fourier components correspond to MB orbits, their field and temperature dependence may
be at odds with this model. On the other hand, the Onsager phase factor of the oscillations
had not been considered until recently though, according to the pioneering works of Slutskin
and Kadigrobov'® and Kochkin'*, an additional field-dependent Onsager phase should be
introduced at each Bragg reflection (see Fig. 1). It is worthwhile to notice that the same
result was derived almost ten years later'® in order to account for the discrepancy between
calculations, which are valid for the low field range, and the experimental data for the lens

orbit of Cd'® which, as it is the case of all the orbits involving « in Fig. 1, undergoes such

Bragg reflections.

Recently, analytic tools have been provided to account for both field and temperature
dependence of the Fourier amplitudes and the Onsager phases relevant to the various fre-
quencies observed®®. These calculations are first summarized in Section II. Influence of
the various physical parameters involved in the oscillations spectra (effective masses, Dingle
temperatures, MB field and Landé factors) on the deviations from the semiclassical model

of Falicov-Stachowiak is considered in Section III. To that purpose, the two organic charge

transfer salts x-(BEDT-TTF),Cu(NCS), and 6-(BEDT-TTF),CoBry(CsH4Cly) are consid-
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ered.

II. MODEL

In this section, we first recall the model accounting for the field and temperature depen-
dence of the amplitude of the various Fourier components entering the oscillation spectra®®.

In the second step, the field-dependent Onsager phase® is considered.

A. Fourier amplitude

As displayed in Fig. 1, the FS is composed of the o quasi-two-dimensional closed tube
and a pair of quasi-one-dimensional sheets separated from the a orbit by a gap liable to
be overcome by MB. Numerous semi-classical MB orbits can be defined (n = «, 8, a + f,
20 — a, 2, etc.), the area of which are linear combinations of those relevant to the o and
orbits. The area of the latter is equal to that of the first Brillouin zone. Incidentally, it can
be remarked that 23 corresponds to both the classical orbit displayed in Fig. 1 and the 2"¢
harmonic of .

To account for this F'S, a two-band system with band extrema Ag(;) and effective masses
moqy (in units of the electron mass m.) is considered® as reported in Fig. 2. The band #0
gives rise to the quasi-one-dimensional part of the F'S of Fig. 1 whereas the a orbit is built on
the band #1. Assuming parabolic dispersion, the relevant frequency is F, = my(u — Aq)7.
The S orbit, generated by four tunnelings at the junction points, is built on both bands #0
and #1 and, still for a parabolic band, has a frequency corresponding to the first Brillouin
zone area, g = mq (1 —Ay) +mo(p—Ao) = ms(pn— Ap). In this case, my+m,, is identified
to the mass mg of the orbit 3.

To compute the oscillating part of the magnetization at fixed number N of quasi-particles,

we need to consider the oscillatory part of the free energy, defined by

F(T,N,B) =QT,u,B)+ Nu (1)

For a constant N, the oscillatory part of the grand potential €2 for a sample slab with

area A can be written
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FIG. 1. (Color online) Model Fermi surface relevant to the Pippard’s model in the extended
zone scheme. Pink solid lines depict the first Brillouin zone. Orange lines display the semi-classical
orbits considered for the data analysis and arrows indicate the quasi-particles path on the principal
orbits o and . Blue circles mark the turning points in the direction parallel to the chains. Blue

diamonds indicate the Bragg reflection points.
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FIG. 2. (Color online) Band dispersion scheme relevant to the Pippard’s model. Parallelogram in
black solid lines depicts the first Brillouin zone. The « orbit in built on band #1 with bottom

energy Ay. The magnetic breakdown orbit S is built on both band #0 with bottom energy Ag

and band #1.
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Damping factors can be expressed as R, ,(B,T) = R} (B,T)R} (B)R)\?(B)R; , where:

Rgp = pX, sinh ™" (pX,), (3)
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R,lﬁp = exp(—puom, TpB™"), (4)
Ry = (ipo)"(q0)"™, ()

R, , = cos(mg;my,/2). (6)

The field-and temperature-dependent variable (X,) and the constant (ug) are expressed
as X, = uom,, T/ B and ug = 2m2kpme(eh) " = 14.694 T/K. The tunneling (po) and reflection
(qo) probabilities are given by py = e /28 and p2 + ¢ = 12. ¢y = h/e is the magnetic
flux quantum, Tp is the Dingle temperature defined by Tp = h(27kp7)~!, where 771 is the
scattering rate, By is the MB field, m,, and g, are the effective masses and effective Landé
factor, respectively!®.

Frequencies F, can be written as F,, = m,(x — 4,) and are dependent on the chemical
potential p since they are proportional to the area enclosed by the orbits. Coefficients C;,
are the symmetry factors of orbits . Namely, C, = Cg = Cyp_o = 1 and Cyyp3 = Cop = 2.
Integers ng and n; are the number of MB-induced tunnelings and reflections, respectively.
¢y is the Onsager phase factor of the orbit 1, defined by the number of turning points, i.e.

7/2 times the number of extrema of the orbit along one direction (see Fig. 1). N is given

by dQ2/du = —N, and the chemical potential satisfies the following implicit equation:

B 1 } F,
= 1o — m—g N W_anRn,p(T) sm(27rp§77 + pen),

p=1 n

which can be rewritten as

1= po — m%ZMn(B)- (7)

where pi is the zero-field Fermi energy. For a compensated system, in which case N = 0,
it is equal to po = (moAg + maAs)/(mg + my). The oscillatory part of the magnetization

is defined as

_(bOuO aF<T7 N7 B) (8)
Akp 0B '

Solving Eq. 8 at the second order in R, ,(B,T') (the first order part corresponding to the

Mose [T] -

LK semi-classical result) yields, after some algebra, to an expansion in power terms of the

amplitudes



F,
Mose = Z Z Gy R, (B, T)sin (27Tp B +pg0n)

n p>1 TPMy

F,C,Cy . EF +p'F,
+ Z Z —nZnn Rnp(B T)R (B,T) sin 27T27777 P + pey, +p'gpn/
n,n' p,p'>1 me B
F —9F,
— sin (27#% + Py — p’wﬂ +-- (9)

where the next terms are third order. From this step onwards, frequencies F;, are evaluated
at p = po: F, = my,(pno — A,). According to the above expression, magnetization spectrum
can be expressed in terms of both classical and non-classical frequencies, still noted as F;, in

the following, and can be expanded as:

F
Moo = 3 A, sin (%p 2 p¢,7) (10)

n,p>1

It is important to stress that the amplitude A, involves not only the contribution of the
p"" harmonics of the 7 classical orbit, given by the LK formalism (4,, o R,,) but also higher
order corrections, calculated here at the second order in damping factors. The expressions

of the dominant Fourier components, considered for the data analysis, are:

F F 1 1 1
A, =—top Mt [—Ra Rus+ ~RuoRus+ 2Ry R = RooRas ] 11
P 1 —r 1dta2 + 6 24ta 3 + 20051 g yp1 + 5 824125 a1 (11)
F, F, 2
Ao = _27rma Ryo + m {Rig - gRa,lRa,B — RooRoi8,2 (12)
A= —15p F[RR+RR+QRR +2RR}(13)
g = p—_ 8,1 p—_ sltgs + Cligalips a1 layp1 5,11%25.1

s Fy
Ay = 5 [Ryg + 2Ras] + — |2 2 RyiRps — “RysRss— RuaRa
2 2mmg [ p2t 25’1] - mg Bl 3 B,1418,3 4 B,2413,4 240482

+ 2Ry 1Rop—01 — RpoRopo — RpaRap 1] (14)
Fg_qo
Ap_q = — anﬁ [Ro1Rp1+ RaoRatpi + RaaRaip1 + Rs1Rop—an] (15)
2F 0 Fiia 1
Apyo = — Rore {RQR O RuisaRarss — =R R_a] 16
B+ L + m— S +s2larp1 = 3 Rpsltas—an (16)
FQﬁfa FQﬁfa 1 1
Agg = — Ragoos — {—Ra Rao+ 5 RasFa 17
28 ——— 26—a,1 — 1ltg o + 3larp.2 (17)
Fog_24
Asg9q = — ;in; 2R, 2Rop1 + 2Rop_n2Rop1 + 2R0 1 Rog—a1 + Ra aBaip2
+ éRaQRB,Q + 535,232[3&2} . (18)



FIG. 3. Field-dependent part of the Onsager phase given by Eqs. 19 to 21 for the orbits 1 considered

in Egs. 11 to 18. For small fields B compared to the magnetic breakdown field By, the field-

r

dependent part vanishes while it goes to TLZ?T/4 at large fields, where n;

is the number of Bragg

reflections encountered by the quasi-particles during its path on the orbit 7.

The leading term of Eqgs. 11, 12, 13, 16 and 17 corresponds to the LK formalism. In the
specific case of Eq. 14, it involves the contributions of both the classical orbit 25 displayed
in Fig. 1 and the second harmonics of § which are accounted for by the damping factors
Ras1 and Rg o, respectively. In contrast, there is no first order term entering Eqs. 15 and
18 relevant to 5 — « and its second harmonics, respectively, since these Fourier components
correspond to ’forbidden frequencies’. Since, generally speaking, these equations involve
algebraic sums and products of damping factors, care must be taken in their sign. Namely,
the sign of the spin damping factor, which is the only one liable to be negative according to

Eq. 6, must be taken into account.

B. Onsager phase factor

Turn on now to the determination of the Onsager phase factors ¢, entering Eq. 10.

Within the semiclassical theory, a phase factor 7/2 is introduced at each turning point (see
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blue circles in Fig. 1) leading to the phase factor ¢, appearing in Eq. 2. More specifically,
o, = 2 for n = 2a, 26, f+ «, 2(8 + a) and 7 for n = a, (3, 26 — a. In addition to this
phase factor, an additional field-dependent phase w is added to ¢, each time a quasiparticle
is reflected at a MB junction (see blue diamonds in Fig. 1). Indeed, according to Refs.!315,
the matrix for the incoming and outgoing wave-function amplitudes at each junction point

is given by

—iw

qoe 1Po

ipo  goe™

where

By

w(B) = I +xIn(x) — x —arg'(iz), == 5

1 (20)

After a reflection, the quasi-particle amplitude takes a factor gy exp(—iw) and goexp(iw)
for quasi-particle path orientation clockwise and counter-clockwise, respectively. Even
though w goes to zero at low field, it takes noticeable values as the field is larger than B,

going to m/4 at large field. According to Eq. 19, the Onsager phase factor is given by

bp =y — nZw(B) (21)

where n; =2 forn = a and S+ a, ny, =-2forn = —« and 26 — o, n; = 4 for n =
2a, ny = -4 for n = 2(f — «) and n, = 0 for n = B and 27 since these latter components
only involve tunnelings. In that respect, it can be remarked that even though the Fourier
component with frequency Fyg arises from both the second harmonics of 8 and the 2/ orbit
displayed in Fig. 1, these two contributions have the same Onsager phase. Besides, for a
given 71 Fourier component, all the involved second order terms (see Eqs. 11 to 18) can be
viewed as arising from algebraic combinations of classical orbits yielding the same Onsager
phase. As a consequence, the index n; can be negative, due to algebraic combinations of the
individual phases present in the sine function of Eq. 9. The field dependence of ¢, reported
in Fig. 3 demonstrates that, excepted for § and 28, significant Onsager phase shifts should
be observed at high B/ By ratio.
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FIG. 4. Temperature dependence, at 50 T, of the Fourier amplitude linked to few of the compo-
nents relevant to Egs. 11 to 18 (solid lines) and corresponding predictions of the Lifshits-Kosevich
formalism (dashed lines). (a) Data for 6-(BEDT-TTF),CoBry(CgH4Cly). The frequencies are F,
= 944 T and mg = 4600 T. Effective masses are m, = 1.81 and mg = 3.52. The effective Landé
factors are g}, = gg = 1.9. The Dingle temperature and MB field are Tp, = Tpg = 0.79 K and By
= 35 T. (b) Data for k-(BEDT-TTF),Cu(NCS)s. The frequencies are F, = 600 T and Fjg = 3900
T. Effective masses are mqy = 3.2 and mg = 6.3. The effective Landé factors are g; = 1.5 and gj

= 1.6. The Dingle temperature and MB field are Tp, = Tpg = 0.5 K and By = 25 T.

ITI. CONSEQUENCES FOR OSCILLATIONS SPECTRA

Calculations reported in Section IT account for dHvA oscillations of #-(BEDT-TTF),CoBr,(C¢H4Cly)
in the temperature range 1.5 - 4.2 K in magnetic fields of up to 55 T>%. In particular, the
observed deviations from the LK model, including the field and temperature dependence of
the forbidden orbit’ 8 —a, and the field-dependent shift of the Onsager phase are reproduced
by the model. Nevertheless, as discussed below, the predicted behaviour is strongly depen-
dent on the various parameters involved (effective masses, Landé factors, MB field, etc.).
For this reason, further experiments on other compounds are needed to more extensively
check the model. While these experiments are being performed, the influence of the various
parameters can be examined. In the following, we consider, as realistic starting points, the
parameters relevant to the well known x-(BEDT-TTF),Cu(NCS), and the recently studied
6-(BEDT-TTF),CoBrs(CgH4Cly) organic metals.

According to Egs. 11 to 18, the physical parameters involved in the Fourier components’

10



1'06Illllllllllllll.l.l.lllllIIIIIII

(ET),CoBr,(C,H,CL,)]

8.0

1.04

(ET),Cu(SCN), %
p

In(A, BIT)

1.00

\2[3—(1
o (ET),CoBr,(CzH,Cl,) |

[ B
OICC) T S T T ST T
0 1 2 3 4 5 5

T (K)

FIG. 5. Temperature dependence of the apparent effective masses calculated from Eq. 23
for the a, B and 28 — « semiclassical orbits of k-(BEDT-TTF);Cu(NCS)2 and 6-(BEDT-
TTF)4CoBry(C¢H4Cly). Data are deduced from the mass plots reported in the insert and nor-

malized to the Lifshits-Kosevich predictions.

o

In{A_B/T)

n(A,B/T)

tn

FIG. 6. Field and temperature dependence of the Fourier amplitude A, in the framework of (a)
the Lifshits-Kosevich (LK) model and (b) Eq.11. The discrepancy between LK and Eq.11 is given

in (c).
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FIG. 7. Same as Fig. 6 for the harmonics 2a and 28. The insert compares the predictions of the

LK model (dotted lines) and Eq. 14 (solid lines) for the mass plots of 2.

amplitude are the frequencies F,, and Fj, effective masses m,, and mg, Dingle temperatures
Tpo and Tpg, Landé factors g;, and gz and MB field By. This set of parameters governs
the whole field and temperature dependence of the oscillatory spectrum within one constant
prefactor (7, see below).

For k-(BEDT-TTF),Cu(NCS),® 111923 reported frequency values are in the range F, =
597 + 625 T and Fj = 3800 <+ 3920 T. Effective masses are m, = 3.0 <+ 3.5 and mg = 5.6 +
7.1. Very scattered values of the MB field, ranging from By = 17 to By = 41 T, are deduced
from the data. Landé factors are g, = 1.5 and g5 = 1.6. Dingle temperatures, which are
the only sample-dependent parameters are close to 0.5 K within a few tenth of a kelvin. As
for §-(BEDT-TTF),CoBry(C¢H,Cly), these parameters are F,,= 944 + 4 T, F3 = 4600 £
10 T, mq = 1.81 £ 0.05, mg = 3.52 £ 0.19, By =35 £ 5T, g, = g5 = 1.9 £ 0.2, Tp =
0.79 4 0.10 K?5.

DHvA oscillations are generally deduced from magnetic torque measurements. In such a

12
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FIG. 8. Same as Fig. 7 for the magnetic breakdown orbit 5 + a.

case, oscillatory torque amplitudes Aj are related to dHvA amplitudes as A7 = 1A, B tan(6)
where 6 is the angle between the field direction and the normal to the conducting plane.
Besides, at high 7'/ B ratio, In(A,B/T) varies linearly with both the inverse magnetic field,
at a given temperature (Dingle plot), and temperature, at a given magnetic field (mass plot),
in the framework of the LK model. For these reasons the quantity In(A, B/T") is considered
throughout the following.

Fig. 4 compares predictions of the LK formalism and Eqgs. 11 to 18 for mass plots at
B = 50 T with parameters relevant to 6-(BEDT-TTF),CoBry(CsH4Cly) and x-(BEDT-
TTF)Cu(NCS),. A first finding is that the two models yield close data for the basic orbits
«a and S while discrepancies are observed for the harmonics 2a. Even stronger deviations
are observed for 5 + « , the field dependence of which exhibits a profound dip for both
compounds, albeit at a different temperature. Such a behaviour may have significant conse-

quences on the determination of effective masses. For example, according to the data of'?,
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FIG. 9. Field and temperature dependence of the Fourier amplitude linked to the magnetic break-
down (MB) orbit § + a predicted by Eq. 16. In (a) parameters are the same as in Fig. 4. In
particular, the effective Landé factor is g}, = 1.5. The first and second terms of Eq. 16 cancel each
other at specific couples of temperature and field values yielding a strong dip line. As g, increases,
the dip goes towards high fields. (b) For ¢¥ = 1.538, R% ., = 0 and the amplitude is mainly
governed by the second order term involving the product R,Rg. (c) For g} = 1.55, Rg;, and
R, Rs have an opposite sings. Hence, their difference never cancels. (d) For g, = 1.563, the field
dependence is dominated by the first order term since R} = 0. Therefore, the Lifshits-Kosevich
behaviour is recovered. As g’ further increases, e.g. for (e) g = 1.6, a behaviour similar to that
of (a) is obtained. (f) Apparent effective mass value deduced through Eq. 23 from the data in (a)
to (e) at B =50 T.

mg + mq = 9.0 even though mg,, = 6.6, only, in violation of the Falicov-Stachowiak model

predictions. As pointed out in?*, the Lifshits-Koscvich formula can be rewritten:

R(B)

sinh(m,z) (22)

Yn =

where y, = A, B/u T, © = uoT/B and R(B) stands for the temperature-independent
contribution of the damping factors, namely R(B) = —F,RPR)'PR; /7 (see Eqs. 4 to 6).

At a given magnetic field, an "apparent’ effective mass m;?” can be extracted from Eq. 22

14
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FIG. 10. Same as Fig. 7 for the ’forbidden orbit’ 5 — a. The insert compares the predictions of
the LK model for § + « (dashed lines) and Eq. 15 for 8 — « (solid lines). Same slope, hence same

effective mass is obtained in both cases at high temperature.

as:

1
1d2 Ldy\*|?
mor = [_ _y+2< _y>] (23)

y da? ydx

At a given field and temperature, the ’local value’ of m7#? can be deduced from mass

25 Of course, in the case where the LK model

plots, on the basis of the above equation
is actually valid, Eq. 23 yields m;P" = m,. As reported in Figs. 4 and 5, only a slight
discrepancy with the LK model is observed at low temperature for the basic and MB orbits
a, § and 28 — «. This is due to the very small value of the second order terms compared to
the first order term in Eqs. 11, 13 and 17. As a result, the apparent effective masses remain

very close to the LK predictions, within few percent, down to very low temperature.

Nevertheless, the influence of the spin Damping factor on the amplitude must be taken

15



into account. In the framework of the LK model, a zero amplitude is obtained for ) = 0, i.e.
gymy/(2cos0) = w(n +1/2) where n is an integer. Even though this feature, known as the
spin-zero phenomenon, is generally experimentally studied through the angle dependence of
the amplitude, such spin zeroes can be obtained by varying the effective mass, as well. For
example, this could be achieved by applying pressure?>262%. Considering the « orbit as an
example, strong dips are actually observed within the LK model at m,, values corresponding
to spin zeroes (see Fig. 6). Same feature is predicted by Eq. 11 since, as already mentioned,
the second order terms of Eq. 11 are small compared to the first order term. However,
since these high order terms have no reason to cancel at the same spin zero values as those
relevant to R, the observed field dependence within the dips, governed by these high order
terms, is very strong. Nevertheless, as above mentioned and evidenced in Fig. 6(c), only at
most few percent of discrepancy is observed far from the zeroes between the LK model and
Eq. 11. As a consequence, it can be concluded that the LK formalism conveniently accounts
for the data relevant to basic orbits, provided their spin damping factors are not too small.
This result is important since it indicates that the values reported in the literature for the

basic orbits, using the LK formula, are generally valid.

Data for harmonics 2« and 2 reported in Figs. 4 and 7 exhibit clear deviations from the
LK behaviour, in particular at low temperature, hence strong apparent deviations from the
LK effective masses. This behaviour is mainly due to the second order terms Rél and R%J
(see Egs. 12 and 14) which are of the same order of magnitude as the leading terms R, »
and Rg o, respectively. However, as pointed out®, the respective strength of these first and
second order terms are strongly dependent on the involved spin damping factors, hence on

the effective Landé factors.

The influence of the effective Landé factor, or in fact of the product g,m,/cos(f), is
further evidenced in the case of g + «, the field-dependent amplitude of which exhibits a
profound dip (see Fig. 8). At variance with the spin-zero phenomenon observed for basic
orbits, this dip is due to the cancellation of the first and second order terms of Eq. 16.
Indeed, putting aside the spin damping factors contribution, Rgs., is close to the product
RgR, appearing in Eq. 16. Nevertheless, in line with the data of Fig. 9, their respective
value strongly depend on the effective Landé factors. Otherwise, despite strong fluctuations
around the dips, the LK behaviour, hence the prediction of the Falicov-Stachowiak model

(ma + mg = mgay,) is recovered at high temperature. It must be pointed out that the
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occurrence of such dips has not been reported yet in experiments. This is not surprising
in the case of §-(BEDT-TTF),CoBry(CsH4Cly) since the temperature range explored is
below 4.2 K whereas the dip is observed at 9.3 K in Fig. 8. According to the data in
Fig. 9, the behaviour of k-(BEDT-TTF),Cu(NCS), is strongly dependent on the value of
ga (the g, range explored in Fig. 8 remains within the reported experimental uncertainty).
It must be pointed out that changing the value of g, is equivalent to change the value of
Gp+aMp+a/ cos(f), hence the value of the tilt angle . Such angle differences could explain
the discrepancy between the data of Refs. 8 (for which mgy, = mq +mg, in agreement with
the data in Fig. 9(d)) and 10 (where mgio/(ma + mp) = 0.73, which is more in line with
the data of Fig. 9(e)).

To conclude with mass plots let us consider the 'forbidden orbit” § — «, the data of which
are reported in Fig. 10. It can be remarked first that the high temperature slope of the
mass plots is the same as for the LK predictions of 8+ a. In other words, mg_, ~ mq +mg
at high temperature, in agreement with the numerical simulations of Ref. 29. In contrast,
strong deviations from the LK behaviour are observed at low temperature. Besides, as
pointed out in Ref. 23, the amplitude Ag_, is higher than Ag,, in the case of k-(BEDT-
TTF),Cu(NCS),. Again, this behaviour can be explained by the value of the spin damping
factor which is smaller than for 6-(BEDT-TTF),CoBry(CsHyCly): R, = -0.19 and -0.98,
respectively.

Finally, let us consider briefly the field-dependent Onsager phase factor introduced in
Eq. 21. Since significant phase shift can be observed at large magnetic field in Fig. 3, the
oscillation periodicity in 1/B could be questioned. An ’apparent’ oscillation frequency Fy,
can be defined as 1/ Forp =1 /B; — 1/B;y1 where B; and B,y are the fields at which two
successive oscillation maxima occur. FjPP can be evaluated through an implicit equation

deduced from Eq. 21:

app __ F’?
B = T (B — (Bl 2 (24)

As reported in Fig. 11 relevant to F, for k-(BEDT-TTF),Cu(NCS),, frequency variations
are small, even at very high field. As a result, owing to the limited field range in which oscil-
lations are observed (even not to mention experimental uncertainties), the periodicity in 1/B

is still observed and it can be checked that Fourier analysis yields clear peaks. These state-
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FIG. 11. Field dependence of the apparent frequency FP deduced from Eq. 24 for F,, = 600 T,

relevant to k-(BEDT-TTF),Cu(NCS)s, and various values of the magnetic breakdown field By.

ments are in agreement with the data of Ref. 6 relevant to -(BEDT-TTF),CoBr,(CgH4Cly).

IV. SUMMARY AND CONCLUSION

The field- and temperature-dependent amplitude and phase of de Haas-van Alphen os-
cillations relevant to the model Fermi surface by Pippard have been studied in the case of
the organic metals k-(BEDT-TTF),Cu(NCS), and 6-(BEDT-TTF),CoBry(CsHsCly). The
main feature of the analytic formulaes governing the Fourier components amplitude is the
presence of second order terms (the first order terms corresponding to the LK predictions).

Amplitude of the basic orbit o and the MB-induced g and 23 — « orbits, satisfactorily
follow the LK behaviour, provided the spin damping factor of the leading term is not too
small, i.e. far from spin-zeroes. This result, due to small value of the second order terms,
validates the data analysis performed within the LK model, widely reported in the literature.

In contrast, besides deviations from the LK behaviour at low temperature and high field,
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amplitude of the MB orbit 5+ « and harmonics may exhibit strong dips. Even though these
dips are strongly linked to the spin damping factors value, this behaviour is not due to spin-
zero phenomenon but to the cancellation of first and second order terms at peculiar values
of the magnetic field and temperature, instead. In particular, the discrepancies observed
in the reported data can be explained on the basis of different orientation of the magnetic
field with respect to the conducting plane (different 6 angle). At high temperature, the
LK behaviour is observed for all the semiclassical orbits and harmonics. In particular, the

effective mass follows the Falicov-Stachowiak model (mnaa+nﬁ 3 = NgMy + Ngmg).

As for the forbidden orbit’ S — «, which is only governed by second order terms, although
its Fourier amplitude strongly deviates from the LK behaviour at low temperature, its
effective mass is given by mg,, = m, + mg at high 7'/ B ratio, in agreement with previous

numerical simulations.

Finally, to have a full description of the oscillation spectrum, a field-dependent Onsager
phase must be taken into account for Fourier components involving Bragg reflections. Nev-
ertheless, although it can reach significant values, this additional phase have a little effect

on the frequencies deduced from Fourier analysis.
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