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We report integral cross sections for the Sð1D2Þ þ HDðj ¼ 0Þ ! DSþ H and HSþ D reaction

channels obtained through crossed-beam experiments reaching collision energies as low as 0.46 meV

and from adiabatic time-independent quantum-mechanical calculations. While good overall agreement

with experiment at energies above 10 meV is observed, neither the product channel branching ratio nor the

low-energy resonancelike features in the HSþ D channel can be theoretically reproduced. A nonadiabatic

treatment employing highly accurate singlet and triplet potential energy surfaces is clearly needed to

resolve the complex nature of the reaction dynamics.

DOI: 10.1103/PhysRevLett.109.133201 PACS numbers: 34.50.Lf, 31.15.xj, 31.50.�x, 37.20.+j

For theory to furnish a good description of elementary

gas-phase reaction dynamics requires the use of a highly

accurate potential energy surface (PES) describing the

passage from reagents to products. Recent progress in the

determination of PESs by ab initio methods [1] has al-

lowed quantum-mechanical (QM) or quasiclassical trajec-

tory treatments of the reaction dynamics to reproduce the

integral and differential cross sections (ICSs and DCSs)

obtained in high-resolution crossed-beam experiments for

prototypical four-atomHDþ OH! H2Oþ D [2] and six-

atom ClþCHD3!HClþCD3 systems [3,4]. This has

followed the exquisite agreement between theory and ex-

periment found for the benchmark three-atom Fþ HD!
HFþ D [5,6] and Fþ H2 ! HFþ H [7,8] reactions for

which resonance features have been fully rationalized.

However, all these studies have been performed at medium

to high collision energies to be able to surmount the

classical energy barriers, between 70 and 300 meV, which

characterize these reactions. The lowest collision energy

attained so far is ET ¼ 6 meV in the case of the Fþ H2

reaction for which substantial tunneling through the barrier

occurs [8]. An important question arises: Will the accuracy

of electronic structure calculations (currently recognized to

be within the 10–40 meV range) be sufficient to reproduce

experimental studies of reactive processes occurring at

very low collision energies? When only a few partial

waves, characterized by a given value of total angular

momentum J which is conserved throughout the collision,

contribute to the dynamics, individual quantum effects

become apparent and the slightest inaccuracy of the PES

can lead to dramatic differences in the theoretical results.

Multisurface effects arising from the open-shell nature of

the reactants may also start to play a dominant role as

recently outlined for the Fð2P1=2Þ þ H2ðj ¼ 0Þ reaction in

which a pronounced resonance peak is predicted in the

ICSs around ET ¼ 0:2–0:3 meV [9].

Despite the tremendous advances in the generation of

cold atomic and molecular species by Stark or Zeeman

deceleration, buffer-gas, or laser cooling [10,11], very few

experiments are able to approach the cold energy regime at

temperatures below T ¼ 1 K. One can cite the recent

buffer-gas cooling study of the Liþ CaH! LiHþ Ca
reaction at T ¼ 1 K [12] but experiments of this type

provide rate coefficients, not cross sections as a function

of ET , which constitute the most sensitive probes of

the underlying PESs. The thermal distribution at

T ¼ 1 K corresponds to a mean relative translational en-

ergy of 0.13 meV (hETi ¼ 3=2 k T, where k¼
8:617�10�5 eV�1K�1 is the Boltzmann constant).

Obtaining such low energies in single collision conditions

to yield reactive cross sections is particularly challenging.

Indeed, in a collision experiment between two beams of

colliding species sharing a reduced mass �, with labora-

tory frame velocities v1 and v2 and a beam-intersection

angle � defining a relative velocity vr, the collision energy

in the center-of-mass frame (the relative translational en-

ergy) is given by the equation ET ¼
1
2�vr

2 ¼ 1
2�ðv1

2 þ

v2
2 � 2v1v2 cos�Þ. To study a bimolecular reaction fully

amenable to time-independent (TI) QM calculations on an

accurate PES, i.e., a reaction preferentially involving a

H2(HD or D2) molecule which also has the advantage of

a favorable reduced mass �� 2–4� 10�3 kg mol�1, a
reactant relative velocity of approximately 100 m s�1

would have to be achieved, putting substantial constraint

on the respective values of v1, v2, and �.
Complex-forming reactions such as those of Oð1D2Þ,

Cð1D2Þ, and Sð1D2Þ atoms with H2, HD, and D2

isotopomers feature strongly bound intermediates in their
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ground-state PES, are barrierless, and possess large cross

sections. They are particularly good candidates for testing

theoretical methods at very low energies and have stimu-

lated considerable interest [13]. In this Letter, we describe

crossed-beam scattering experiments on the Sð1D2Þ þ

HDðj ¼ 0Þ ! DSþ H ð�H0
� ¼ �0:309 eVÞ and HSþ

D ð�H0
� ¼ �0:258 eVÞ reaction realized with a setup

combining cryogenically cooled fast-pulsed valves [14]

and a variable beam-intersection angle. The apparatus

was modified during the course of the study to attain a

minimum angle �min ¼ 12:5� instead of the initial value

of 22.5� [15,16], allowing us to reach ET ¼ 0:46 meV
(T ¼ 3:6 K). At the same time, we describe TI QM calcu-

lations performed on the ground-state 1A0 HSD PES. We

observe intriguing differences in the behaviors of theDSþ
H and HSþ D channels that cannot be explained by an

adiabatic treatment of the reaction dynamics.

Sð1D2Þ beams were generated by UV laser photolysis of

CS2 [17] seeded in Ne or He carrier gas just below the

nozzle of a first fast-pulsed valve operated at T ¼ 300 or

270 K and were characterized by 2þ 1 resonantly en-

hanced multiphoton ionization (REMPI) time-of-flight

mass spectrometry using the 3s23p4 1D2 ! 3s23p34p 1F3

transition at 288.179 nm. Neat HD beams were obtained

from a second fast-pulsed valve cooled down to T ¼ 60 or
45 K. Tests performed when recording HDðC1�; v ¼ 0 
X1�þ; v ¼ 0ÞRð0Þ and Rð1Þ 3þ 1 REMPI transitions near

302.18 nm showed that more than 98% of HD molecules

were in j ¼ 0. The recoiling H(D) atoms were detected

by 1þ 10 REMPI via excitation of the Lyman-� (2S1=2 !
2P

�

J) transition at 121.567 (121.534) nm followed by

threshold ionization with 364.7 nm photons. The branching

ratio �ðDSþ HÞ=�ðHSþ DÞ ¼ 1:31� 0:31 (at the 95%

confidence interval) was determined from the respective

Doppler spectra of the recoiling H and D atoms at ET ¼
13:8 meV and from 30 back-to-back measurements of the

ratio H/D at the respective maxima of the spectra for iden-

tical Lyman-� laser intensities. Insofar as the H spectra are

significantly broader than the D ones, the density-to-flux

conversion [18] was achieved by modeling the experimen-

tal spectra, assuming a statistical distribution of rotational

levels in DS/HS products and a polar distribution of recoil

angles [19].

Excitation functions for the product channels DSþ H
and HSþ D were obtained over the ranges ET ¼
1:63–54:2 meV and ET ¼ 0:46–5:63 meV using both

22.5� and 12.5� crossed-beam configurations. They are

plotted in Fig. 1 on the same scale with the aid of the
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FIG. 1 (color online). Experimental and theoretical integral cross sections (log-log units) for the reaction Sð1D2Þ þ HD as a function

of collision energy for individual DSþ H and HSþ D channels and for the total reaction flux. Experimental ICSs (left vertical scale in

arbitrary units, a.u.) for different crossed-beam conditions: down triangles vS ¼ 813 m s�1 with speed ratio (see [31]) S ¼ 76, vHD ¼
826 m s�1 with S > 30, �min ¼ 12:5�; squares vS ¼ 818 m s�1 with S ¼ 46, vHD ¼ 881 m s�1 with S > 30, �min ¼ 22:5�; up

triangles vS ¼ 1736 m s�1 with S ¼ 27, vHD ¼ 881 m s�1 with S > 30, �min ¼ 22:5�. Inset: details of the HSþ D channel (linear

scales): same symbols as above with another data set added: stars vS ¼ 776 m s�1 with S ¼ 43, vHD ¼ 826 m s�1 with S > 30,
�min ¼ 22:5�. For clarity, the statistical uncertainties at the 95% confidence interval are only shown in the inset. Dashed lines: linear

fits of the experimental total ICSs in the low- (1.63–5.63 meV) and high-energy (13.8–54.2 meV) domains. Theoretical ICSs (right

vertical scale): filled circles (not shown for total ICSs); the solid curves refer to the theoretical ICSs convoluted over the experimental

collision energy spread. Dash-dotted lines: linear fits of the theoretical total ICSs in the low- (0.86–3.45 meV) and high-energy

(5.8–28.5 meV) domains. Supplementary theoretical total ICSs (right vertical scale) obtained with the PES of Varandas and coworkers

[26]: filled diamonds.
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measured branching ratio. The total reaction flux deduced

from the DSþ H and HSþ D excitation functions and the

branching ratio is also reported. The figure demonstrates

the robustness of the excitation functions since ICSs ob-

tained with different beam conditions display the same

behavior in overlapping energy ranges. It can be seen

that both reaction channels follow two different regimes

marked by a strong change in the slopes. Between ET ¼
54:2 meV and ET � 10 meV, a similar behavior is ob-

served for both channels with only a slight increase of

the branching ratio. Around ET ¼ 10 meV, a sudden

change in the dynamics is observed. Whereas the

DSþ H channel continues to grow almost monotonically,

the HSþ D channel exhibits three peaks of increasing

contrast with decreasing ET , as shown in the inset of

Fig. 1 with magnified scales. The branching ratio increases

markedly in this range reaching values greater than 2 at the

lowest energies.

The TI QM calculations were performed by applying the

hyperspherical quantum reaction scattering methodology,

using the ab initio ground-state 1A0 PES calculated by Ho

et al. [20], which was complemented with accurate calcu-

lations of the long-range interactions [21]. Converged cross

sections were obtained on a fine grid up to ET ¼ 5 meV
(partial waves J ¼ 0–16) and then on a coarser grid up to

ET ¼ 28:5 meV (partial waves J ¼ 0–25), due to compu-

tational time increasing excessively with J. Indeed, the
consideration of three nonidentical atoms made the calcu-

lations extremely costly. Theoretical ICSs of the individual

channels as well as the total reaction flux are shown in

Fig. 1 alongside the experimental results. The convolution

of the theoretical results over the experimental energy

spread is also reported for a direct comparison. The scaling

of the experimental excitation functions in arbitrary units is

performed by a least-squared method at energies between

10 and 28.5 meVon the total ICSs. With such a scaling, the

agreement between experiment and theory appears good

for the total flux in the high-energy region, displaying a

level of convergence that we obtained in earlier studies of

the Sð1D2Þ þ H2 ! HSþ H reaction [15,16]. The low-

and high-energy slopes of the experimental and theoretical

excitation functions are almost identical for the total reac-

tion flux, �0:26 versus �0:28 at low energy and �0:57
versus �0:60 at high energy, although the crossing occurs

at slightly different collision energies, ET � 9:6 meV for

the experiment and ET � 5:7 meV for theory. The agree-

ment is less apparent when considering the individual

DSþ H and HSþ D channels. Although the theoretical

branching ratio �ðDSþ HÞ=�ðHSþ DÞ ¼ 1:72 at ET ¼
13:8 meV is only slightly higher than the upper error limit

of the experimental one, variations in both theoretical and

experimental values are uncorrelated throughout the whole

collision energy range. The branching ratio has been the

subject of much debate in previous experimental and theo-

retical papers treating Sð1D2Þ þ HD reaction dynamics

[17,19,22–25] while our own experimental values, which

attain 1.17 on average between ET ¼ 31–54:2 meV, are
noticeably different from the previous crossed-beam deter-

mination �ðDSþ HÞ=�ðHSþ DÞ ¼ 0:72� 0:07 between

ET ¼ 31 to 570 meV [17]. The present calculations are

unable to reproduce the three peaks observed in the ex-

perimental HSþ D channel. Note that the experiment

cannot confirm the peak predicted in the theoretical ICSs

in both channels, corresponding to a shape resonance for

J ¼ 19 at ET ¼ 7:3 meV (see Fig. 2), and still present after

partial-wave averaging since the experimental energy

spread at this collision energy smooths out this feature.

To determine the extent to which the discrepancies

between theory and experiment at low energy are due to

inaccuracies in the chosen PES, supplementary TI QM

calculations were performed at energies lower than ET ¼
5 meV, employing a PES calculated by Varandas and co-

workers [26]. The results do not differ substantially from

those obtained with the PES of Ho et al. [20] with differ-

ences in the total ICSs not exceeding 10% (see Fig. 1).

However, two shape resonances now appear for J ¼ 15
and 16 in both channels in the region of the experimental

peaks (see Fig. 2). Since the present theory treats the

collision dynamics adiabatically on the ground-electronic

PES, it is possible that the theory overestimates the total

ICSs due to electronic quenching to ground-state reactants

Sð3PJÞ þ HD. In addition, reaction can also occur through

intersystem crossing to triplet PESs which results in a
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FIG. 2 (color online). Partial-wave cross sections for selected

J values. (a) PES by Varandas and coworkers [26] SDþ H
channel; (b) idem SHþ D channel; (c) PES by Ho et al. [20],

SDþ H channel; and (d) idem SHþ D channel.
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modification of the branching ratio. Indeed, one 3A0 and
two degenerate 3A0 PESs arising from Sð3PJÞ þ HD
ground-state reactants are expected to play a role in the

reaction dynamics due to favorable crossings with the 1A0

PES in the entrance channel [27,28]. A complete time-

dependent (TD) QM treatment considering the four PESs

and their nonadiabatic couplings performed over the range

ET ¼ 10–400 meV has previously demonstrated the im-

portance of intersystem crossing [24]. Although this non-

adiabatic treatment in itself does not provide a quantitative

explanation for the phenomena observed here, it shows that

quenching preferentially affects the flux that would have

gone to produce DSþ H rather than HSþ D hence alter-

ing the branching ratio.

The explanation of the change of the reaction dynamics

observed around ET ¼ 10 meV in the experiment becomes

clear while considering the one-dimensional effective po-

tentials (see Fig. 3) associated with the PES of Ho et al.

These potentials have been calculated by adiabatically

separating the fast coordinates, r and �, from the collision

coordinate R [where (R, r, �) are the usual reactant Jacobi
coordinates]. All the terms in the Hamiltonian, except for

the radial collision kinetic energy, were diagonalized in a

basis of reactant states for a fixed R [21]. Interestingly, the

resulting average over internuclear distances and angles of

approach displays in general two barriers as a function of

R: the outer barrier is the usual centrifugal one; however,

the very sharp inner one seems to be a feature of the

system, appearing for many different partial waves and

on both 1A0 PESs considered. The inner barrier and the

shallow well between maxima, which support shape reso-

nances for particular J values, have a dynamical origin.

They result from the balance between the increasing at-

tractions to the insertion well and the collinear repulsive

barrier present on the PES at short distances [29]. As J
increases, the centrifugal barrier shifts to shorter internu-

clear distances and progressively merges with the inner

repulsive potential, provoking the disappearance of the

well. Two different capture mechanisms, associated with

the opening of the partial waves being controlled by one of

the barriers or the other, can be anticipated. For low J the

opening is controlled by the outer barrier, whereas for high

J the inner barrier is higher and eventually becomes the

only one. The transition, which happens for J ¼ 17 in the

surface of Ho et al., is identifiable from the pronounced

change in slope of the adiabatic total ICSs as shown

in Fig. 1.

The nature of the peaks in the experimental ICSs for the

HSþ D product channel and their connection with the

shape resonances obtained in the adiabatic calculations

remain open questions. Do they constitute resonances,

never previously observed for a reaction without an energy

barrier? And, if they are resonances, how can they appear

as peaks in the ICSs, features which have never been seen

experimentally? Peaks arising from partial-wave reso-

nances have to date only been observed in the state-to-state

DCSs corresponding to a particular HF quantum state for a

restricted set of scattering angles in the FþHD!FHþD
reaction [6] while appearing as a steplike feature in the

ICSs [5]. It is known that strengths, shapes, and energies of

resonance features as calculated by theoretical methods

remain very sensitive to the PESs and the QM methods

that are utilized. The different theoretical findings for the

shape resonances which survive partial-wave averaging

predicted by the two different PESs used in this study

furnish another example. In our present Sð1D2Þ þ HD!
HSþ D case, the peaks in the ICSs appear at ET ¼ 1:9,
3.4, and 4.7 meV, where �ET ðhalf-width at 1=eÞ ¼ 0:17,
0.26, and 0.33 meV, respectively. This is in sharp contrast

to the Fþ HD! HFþ D reaction where the partial-wave

resonances show up at more than 10-fold higher values in

ET and �ET , rendering them impossible to distinguish as

resolved peaks in the ICSs of the crossed-beam experi-

ments [30]. This explains why resonance features could be

still discernable in our low-energy ICS measurements.

Unfortunately, at these low energies the accuracy of the

ground-state 1A0 PES employed here, as well as the strict

adiabatic treatment, are not sufficient to provide TI QM

calculations in agreement with experiment.

In conclusion, a complete nonadiabatic TI QM treatment

involving singlet and triplet PESs is needed to elucidate the

low energy dynamics of this reaction. The task is extremely

challenging and the quality of the reactive PESs may have

to reach the spectroscopic accuracy already obtained for
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PESs describing van der Waals interactions resulting from

neutral species approaching together. Indeed, in a recent

study of COðj¼0ÞþH2ðj¼0Þ!COðj¼1ÞþH2ðj¼0Þ
inelastic collisions, we did detect the shape (orbiting)

resonances appearing in the post-threshold region of

the COðj ¼ 0! j ¼ 1Þ transition at ET ¼ 0:48 meV
(3:85 cm�1) but we could only find good agreement

when the TI QM calculations were performed on an

ab initio PES rescaled by a factor f ¼ 1:05, despite the

original PES being capable of reproducing the experimen-

tal energies of the infrared transitions of the complex with

0:1 cm�1 accuracy [31].
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