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Abstract

We investigate the origin of the scalar gradient skewness in isotropic
turbulence on which a mean scalar gradient is imposed. The problem of
the advection of an anisotropic scalar field is reformulated in terms of
the advection of an isotropic vector field. For this field triadic closure
equations are derived. It is shown how the scaling of the scalar gradient
skewness depends on the choice of the timescale used for the Lagrangian
decorrelation of the vector field. The persistent anisotropy in the small
scales for the third-order statistics is shown to be perfectly compatible
with Corrsin-Obukhov scaling for second-order quantities, since second-
and third-order scalar quantities are governed by a different triad correla-
tion timescale. Whereas the inertial range dynamics of second-order scalar
quantities are governed by the Lagrangian velocity correlation time, the
third-order quantities remain correlated over a time related to the large-
scale dynamics of the scalar field. It is argued that this time is determined
by the average time it takes for a fluid particle to travel between ramp-cliff
scalar structures.

1 Introduction

Statistical isotropy is a prerequisite for a large number of theoretical descrip-
tions of the dynamics of turbulent flows. Purely isotropic flows are however rare
in practice. Even in the absence of inhomogeneity, anisotropy, as introduced by
linear or nonlinear forcing mechanism such as density gradients, rotation, mag-
netic fields or imposed velocity gradients, leads to a dynamics which is even
harder to capture by statistical theory or models than the isotropic case. The
complexity of anisotropic turbulence is mainly rooted in the intricate interplay
between the nonlinearity of the Navier-Stokes equations and the anisotropic, lin-
ear forcing terms. In some special cases, when the timescale of the linear forcing
mechanism is much smaller than the nonlinear timescale, linear approximations
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can be used, such as rapid distortion theory [1], [2], in which nonlinearity is
ignored. Another approach is linear response theory, where the anisotropy is
treated as a perturbation of the isotropic, nonlinearity dominated state [3, 4].
However, a general theory of anisotropic turbulence is currently not available,
and each particular forcing mechanism leads to a dynamics with its own char-
acteristics (e.g.[5]). In this context, the significance of the theory of isotropic
turbulence is due to the fact that in a large number of cases the anisotropy
becomes less important when one focuses on small enough scales. This postu-
late of local isotropy [6] is a corner stone of the phenomenological description
of turbulence, because it states that at least the small scales of a wide range of
turbulent flows share some universal features.

The dynamics of a passive scalar in a turbulent flow, governed by a lin-
ear advection-diffusion equation, bares some similarities with the turbulence
problem. The simplest case of statistical anisotropy for the passive scalar is its
advection by an isotropic turbulence in the presence of a linear scalar concentra-
tion profile which is constant is time. This case, first studied by [7], has proven
to be far more difficult than could be expected initially. Indeed, it was observed
that the small scales of the passive scalar advected by a turbulent velocity field
displayed a persisting anisotropy, as measured by the scalar gradient skewness
[8, 9], thereby challenging the local isotropy postulate for scalar turbulence [10].
It was shown that this anisotropy was not induced by the anisotropic large scale
fluid flow, since it was also observed in nearly isotropic wind tunnel experiments
(e.g.[11]) and Direct Numerical Simulations at intermediate Reynolds numbers
[12]. Also, the persistent skewness did not seem to depend on the details of the
advecting flow since even in a “structureless” synthetic flow (delta-correlated
Gaussian noise), the same phenomenon was observed [13]. The situation tends
to be different from the small scale anisotropy in shear-flow. In that case a
non-zero transverse velocity derivative skewness was observed at low Reynolds
numbers [14], which seemed to vanish at large Reynolds numbers [15, 16]. This
is not so for the scalar gradient skewness, which does not seem to decrease for
high Reynolds (or Péclet) number. Several theoretical approaches have been
applied to analyze the origin of this persisting anisotropy. For instance, the
skewness was analyzed using the SO(3) method [17], and three-point correla-
tion functions were introduced in [18] and experimentally analyzed in [19] to
determine the origin of the scalar skewness. These studies have led to a partial
understanding of the persistent small-scale anisotropy of the passive scalar and
its relation to the postulate of local isotropy.

In the present work we will contribute to the understanding of the origin of
this small scale anisotropy. The novelty of the present work is two-fold. Firstly
we reformulate the anisotropic scalar problem as an isotropic vectorial problem.
Secondly we derive, using techniques of the Direct Interaction Approximation
(DIA) type, a closed expression for the scalar gradient skewness as a function of
second-order wavenumber spectra, which allows to show how the non-vanishing
scalar-gradient skewness is directly related to the Lagrangian correlation of the
scalar fluctuations.

In section 2 we introduce the governing equations and we recall the classical
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scaling of spectra and structure functions within the context of Kolmogorov-
Corrsin-Obukhov phenomenology. Then, in section 3 the kinematics of the
structure functions and their relation to wave-vector spectra is discussed, in-
troducing the diffusive displacement field to reformulate the anisotropic scalar
problem as an isotropic vectorial problem. Closed expressions are obtained for
the different quantities in section 4 and the details of this closure are given in
the appendices. The closure-expressions contain timescales which need to be
modeled. The influence of the choice of these timescales is discussed in section
5 where it will be argued that the non-vanishing skewness is compatible with
Corrsin-Obukhov phenomenology since different timescales govern the dynamics
of the second- and third-order scalar structure functions. Results from numerical
integration are reported in section 6 and some discussion on the interpretation
of the results is presented in section 7.

2 Structure functions and scaling

2.1 Structure functions

We will consider a passive scalar Θ(x, t) advected by an incompressible isotropic
velocity field u(x, t),

∂tΘ+ u · ∇Θ = D∆Θ. (1)

In the present study we only consider unity Prandtl number, Pr = ν/D, so
that the kinematic viscosity ν and the thermal diffusion coefficient D have the
same value. Here and in the following, the time- and coordinate-dependence of
the different quantities will be omitted from our notation, unless several time-
instants or coordinates appear in the same expression. We consider the case in
which the velocity field is turbulent, and the flow is statistically isotropic and
incompressible. The passive scalar consists of a mean stationary part, and a
fluctuation θ. The mean part is chosen to be given by a uniform scalar gradient
Γ = ∇〈Θ〉 and is defined to be zero at x = 0, so that

Θ = Γ · x+ θ. (2)

The equation for the scalar fluctuation is then,

∂tθ + u · ∇θ = D∆θ − Γ · u. (3)

For convenience we can choose the scalar gradient in the z-direction and of value
−1, so that the equation reads,

∂tθ + u · ∇θ = D∆θ + u3. (4)

This does not induce any loss of generality since the scalar equation is linear in
θ.

The statistical distribution of the passive scalar θ over different lengthscales
can be quantified by the scalar structure functions, given by

D
(n)
θ (x, r) = 〈δθ(x, r)n〉 (5)
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with
δθ(x, r) = θ(x)− θ(x+ r). (6)

where r is the separation distance between two points and the angular brackets
denote an ensemble average. In a statistically homogeneous scalar field (as is
the fluctuation field in our case) the averaged quantities will be independent of
x, so that

D
(n)
θ (x, r) = D

(n)
θ (r). (7)

In the isotropic case the angular dependence also vanishes so that the structure
function depends only on the modulus r. In addition, in this case all odd order

structure functions (such as D
(3)
θ (r)) are identically zero due to symmetry. In

the anisotropic case, which we consider here, the odd-order structure functions
do not necessarily vanish and the structure functions do not only depend on the
separation distance r, but also on the angle between the direction of the mean
gradient and the vector r. Let us, to characterize the anisotropy of the scalar
field, focus on two directions. First, the direction parallel to the direction of the
gradient, second, perpendicular to the gradient. The statistics corresponding to
these directions will be indicated by the subscripts ‖ and ⊥, respectively,

D
(n)
θ‖ (r) =

〈
δθ(r‖, t)

n
〉

D
(n)
θ⊥ (r) = 〈δθ(r⊥, t)n〉 , (8)

where r‖ = (r · eΓ)eΓ and r⊥ = r × eΓ and where eΓ is the unit vector in
the direction of the mean scalar gradient. It follows from axisymmetry that

D
(3)
θ⊥(r) and all other odd order perpendicular structure functions are zero. The

parallel quantity D
(3)
θ‖ (r), is however not zero by symmetry. Since this quantity

is zero in an isotropic scalar field, it can be used to measure the departure from
isotropy as a function of scale. In particular its normalized value, the parallel
skewness, is often used to measure the return to isotropy in the small scales.
This skewness is defined as

Sθ(r) =
D

(3)
θ‖ (r)(

D
(2)
θ‖ (r)

)3/2
. (9)

It is this gradient skewness which is persistent at high Reynolds numbers, as
discussed in the introduction, which seems to contradict the local isotropy hy-
pothesis.

Similarly, the velocity-field can be characterized by the velocity structure
functions,

D
(n)
u‖ (r) =

〈
δu(r‖, t)

n
〉

D
(n)
u⊥(r) = 〈δu(r⊥, t)n〉 , (10)

where δu(r) is the increment of one component of the velocity and the direc-
tions ⊥ and ‖ are now defined with respect to the direction of the considered
component of the velocity vector.
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2.2 wavenumber spectra and self-similar scaling

In this section we introduce wavenumber spectra, some of which are the Fourier-
space analogues of the structure functions discussed in the previous section.
The wavenumber distribution of kinetic energy and scalar variance are given,
respectively, by the energy and scalar spectra, defined such that∫

E(k)dk =
1

2
uiui∫

Eθ(k)dk = θ2. (11)

The scalar flux spectrum is equivalently defined such that∫
Fuθ(k)dk = u3θ. (12)

If Kolmogorov’s similarity hypothesis is satisfied [6], energy spectra should scale
in the inertial and dissipation range as

E(k) = ν5/4ε1/4Ẽ(kη), (13)

where Ẽ(kη) is a dimensionless function independent of the large-scale flow.
Plotting Ẽ(kη) should therefore collapse the results for different flows and
Reynolds numbers in the inertial and dissipation range. In the inertial range,
where E(k) is independent of the viscosity, dimensional analysis leads to

E(k) ∼ ε2/3k−5/3. (14)

Similarly for the velocity structure-functions we have,

D(n)
u (r) = (νε)n/4D̃(n)

u (r/η), (15)

and in the inertial range,

D(n)
u (r) ∼ (εr)n. (16)

If Corrsin-Obukhov phenomenology holds [20, 10], the scalar spectra and (both
parallel and perpendicular) scalar second-order structure functions should be-
have as

Eθ(k) = εθν
5/4ε3/4Ẽθ(kη)

D
(2)
θ (r) = εθ(νε)

1/2D̃
(2)
θ (r/η), (17)

which gives in the inertial-convective range,

Eθ(k) ∼ εθε
−1/3k−5/3

D
(2)
θ (r) ∼ εθε

−1/3r2/3, (18)
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where we assumed the scaling to be independant of ν and D. The scalar-velocity
cross-correlation spectrum is non-zero only if a mean scalar gradient is present.
Following [21], its scaling should be proportional to the strength of this gradient,
and further determined by ε and k,

Fuθ(k) = Γν7/4ε1/4F̃uθ
(kη); Fuθ(k) ∼ Γε1/3k−7/3. (19)

If we assume the third-order structure-function to be proportional to the scalar
gradient, it should dimensionally be proportional to the scalar dissipation εθ, to
give,

D
(3)
θ‖ (r) = Γεθν

5/4ε−3/4D̃
(3)
θ‖ (r/η) (20)

so that, if D
(3)
θ‖ (r) is to be independent of the viscosity and diffusivity in the

inertial range, it should scale as

D
(3)
θ‖ (r) ∼ Γεθε

−1/3r5/3. (21)

so that
Sθ(r) ∼ Γε

−1/2
θ ε1/6r2/3. (22)

This implies that the at very small scales the scalar gradient skewness should
tend to zero. This is not what is observed in experiments and simulations and
we will investigate the origin of this anomalous behaviour in the present work.

3 Kinematics of an advected vector field

3.1 Advection of an isotropic displacement vector-field

The equation for the advection of a passive scalar fluctuation, equation (3), con-
tains a source-term proportional to Γ·u. This source term for scalar fluctuations
is anisotropic, and so will be the scalar field. It is possible to reformulate this
anisotropic problem as an isotropic problem. The price to pay is that instead
of a scalar field, we will now have to consider an advected vector field. The
isotropic vector-field that we introduce is the diffusive displacement field. The
dynamics of this field is governed by the equation,

∂tχ+ u · ∇χ = D∆χ+ u. (23)

The quantity χ(x, t) can be interpreted physically as the displacement distance
of a fluid particle with respect to its initial position, but with a diffusive term
which limits the memory with respect to its initial position. A more extensive
description of the displacement vector and its relation to Lagrangian dynamics
can be found in [22]. By identifying χ3 = θ, we see that (4) describes the
evolution of one component of (23). Since (23) contains now an isotropic source
term (the last term of equation (23)), the statistics of the vector-field will be
isotropic if the initial conditions are. We will consider an initial field with
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zero fluctuations, which is obviously isotropic. The displacement vector-field
contains thus all the dynamics of the scalar fluctuations, and is, in the absence
of other effects, perfectly statistically isotropic.

The second- and third-order parallel and perpendicular structure functions
of the scalar can then be related to the second- and third-order correlation
functions,

Cij(r) = 〈χi(x)χj(x+ r)〉 (24)

Cijm(r) = 〈χi(x)χj(x)χm(x+ r)〉 , (25)

by considering the longitudinal and transversal components, according to the
following relations,

D
(2)
θ‖ (r) = 2

rirj
r2

(Cij(0)− Cij(r))

D
(2)
θ⊥(r) =

(
δij −

rirj
r2

)
(Cij(0)− Cij(r))

D
(3)
θ‖ (r) = −6

rirjrm
r3

Cijm(r). (26)

The unknown quantities Cij(r) and Cijm(r) determine thus the second- and
third-order structure functions. These quantities will be determined in section
4 and the appendices, using techniques of the Direct Interaction Approximation
type.

3.2 Wavenumber spectra

DIA is most conveniently defined in Fourier-space so that we introduce the
Fourier-transforms of the above correlation-functions,

Ψij(k) = F [Cij(r)] = χi(k)χj(−k) (27)

Ξijm(k) = F [Cijm(r)] = χi(−k) [χj ? χm] (k), (28)

where F indicates a Fourier transform, χi(k) = F [χi(x)], and ? denotes a
convolution. Expressions (26) become then

D
(2)
θ‖ (r) = 2

rirj
r2

∫
Ψij(k)

[
1− eik·r

]
dk

D
(2)
θ⊥(r) =

(
δij −

rirj
r2

)∫
Ψij(k)

[
1− eik·r

]
dk

D
(3)
θ‖ (r) = −6

rirjrm
r3

∫
Ξijm(k)eik·rdk. (29)

In order to simplify these expressions, we will express them using symmetry
arguments (see for example the discussion on tensorial representation in [23].
The general form of the mirror-symmetric isotropic tensor Ψij(k) only depends
on ki and δij and we can therefore write it as

Ψij(k) = Pij(k)
Es(k)

4πk2
+Πij(k)

Ec(k)

4πk2
. (30)
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with

Pij(k) = δij −
kikj
k2

Πij(k) =
kikj
k2

. (31)

In this description, Es(k) is associated to the variance distribution of the solenoidal
part of the vector field and Ec(k) to the compressible (or potential) part. Sim-
ilarly, Ξijm(k) can be written as

Ξijm(k) = ΞI(k)Pmij(k) + ΞII(k)kmPij(k) + ΞIII(k)kmΠij(k) (32)

where Pmij(k) = kiPmj + kjPmi and where we used that Ξijm(k) should be
symmetric in the indices i, j. This implies for the spectra ΞI(k), ΞII(k) and
ΞIII(k),

ΞI(k) =
1

4k2
Pmij(k)Ξijm(k)

ΞII(k) =
1

2k2
kmPij(k)Ξijm(k)

ΞIII(k) =
1

k2
kmΠij(k)Ξijm(k). (33)

We further introduce the velocity-displacement correlation

Fij(k)δ(k + k′) = ui(k)χj(k′), (34)

which can be expressed in an isotropic flow as

Fij(k) = Pij(k)
F (k)

4πk2
. (35)

Since the scalar corresponds to one component of the displacement vector-field,
the scalar spectrum and scalar flux spectrum are related to Ψij and Fij by the
following relations:

Fuθ(k) =
1

3
F (k) (36)

Eθ(k) =
2

3
Es(k) +

1

3
Ec(k). (37)

Substituting (30) and (32) into expressions (29), one obtains the following rela-
tions for the second- and third-order structure functions,

D
(2)
θ‖ (r) =

2

3
χiχi −

∫
Es(k)f(kr)dk −

∫
Ec(k)g(kr)dk

D
(2)
θ⊥(r) =

2

3
χiχi −

1

2

∫
Es(k)h(kr)dk − 1

2

∫
Ec(k)f(kr)dk

D
(3)
θ‖ (r) = −12π

∫
k3

[
j(kr)

(
2ΞI(k) + ΞII(k)

)
+ l(kr)ΞIII(k)

]
dk (38)
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with

f(x) = −4
x cos (x)− sin (x)

x3
(39)

g(x) = 2
2x cos (x) + x2 sin (x)− 2 sin (x)

x3
(40)

h(x) = 4
x2 sin (x) + x cos (x)− sin (x)

x3

j(x) = −4i
−3 sin(x) + x2 sin(x) + 3x cos(x)

x5
(41)

l(x) = −2i
x3 cos(x) + 6 sin(x)− 6x cos(x)− 3x2 sin(x)

x5
. (42)

The derivation of these relations roughly follows the lines in [24]. Up to here, the
derivation was purely kinematic and the expressions in this section are exact.
The second- and third-order structure functions are expressed as functions of
the scalar wave-number spectra Es(k), Ec(k), ΞI(k), ΞII(k) and ΞIII(k). These
will be determined in section 4.

The anisotropic character of the scalar correlations can be made more explicit
by the following relation:

Eθ(k) =

∫ 2π

0

∫ π

0

Ψ33(k)k
2 sin θdθdφ. (43)

For convenience the angle θ is defined with respect to the direction of the mean
scalar gradient and we introduce µ = cos θ. The anisotropic spectrum char-
acterizing the scalar variance is thus Ψ33(k), which can be written, using (30)
as

Ψ33(k)(k, µ) =
1

4πk2
(
(1− µ2)Es(k) + µ2Ec(k)

)
(44)

so that the isotropic part of the scalar spectrum is given by Es(k) and the
anisotropic part is fully described by the quantity Ec(k)−Es(k). Similarly the
velocity-scalar correlation is determined by F33(k), that can be written with
(35) as

F33(k)(k, µ) =
1

4πk2
(1− µ2)F (k). (45)

For the two-point triple correlation, expression (25), we see that it is given by
two scalar functions of the wavenumber: ΞIII(k) and (2ΞI(k) + ΞII(k)),

Ξ333(k) = (2ΞI(k) + ΞII(k))µ(1− µ2) + ΞIII(k)µ3. (46)

The description of the passive scalar fluctuations as a component of the isotropic
displacement vector is hereby related to other approaches. For instance, expres-
sions (44) and (45) can be obtained if the scalar spectrum is expanded as a sum
of Legendre polynomials [25], as was done for the scalar spectrum and cospec-
trum by [26] and [27]. Also, a link can be made with the SO(3) decomposition
[28, 27]. We think that the use of the scalar displacement field helps to obtain
a better intuition of the character of the anisotropy in the present case, since
the field is isotropic and has a physical interpretation.
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3.3 Scalar gradients

The scalar gradient statistics can be obtained by taking the limit,(
∂θ

∂x‖

)2

= lim
r→0

S
(2)
‖ (r)/r2 (47)

(
∂θ

∂x⊥

)2

= lim
r→0

S
(2)
⊥ (r)/r2 (48)

These limits can be determined analytically by developing f(x) and g(x) and
h(x) as a Taylor series for small x, leading to(

∂θ

∂x‖

)2

=
1

15

∫
2k2Es(k) + 3k2Ec(k)dk (49)

(
∂θ

∂x⊥

)2

=
1

15

∫
4k2Es(k) + k2Ec(k)dk (50)

The ratio of the variance of the gradients in the two directions is then given by(
∂θ
∂x‖

)2

(
∂θ
∂x⊥

)2
= 1 +

2
∫
k2(Ec(k)− Es(k))dk∫

k2(4Es(k) + Ec(k))dk
. (51)

This ratio, which measures the small-scale isotropy, tends thus to unity (indi-
cating isotropy) if the spectra Ec(k) and Es(k) are close enough.

4 Closed expressions for the second-order and
third-order correlations

The starting point to obtain closed expressions is the equation for χi, expression
(23), which we write in Fourier space.[

∂t +Dk2
]
χi(k) = −ikm [um ? χi] (k) + ui(k). (52)

The equation for Ψij(k) can be derived from this equation by multiplying (23)
by χj(k

′), then multiplying the equation for χj(k
′) by χi(k), and averaging the

sum of the two equations and invoking homogeneity. The resulting expression
is [

∂t + 2Dk2
]
Ψij(k) = Tij(k) + 2Fij(k) (53)

with

Tij(k) = −2ikm

∫∫
δ(k − p− q)um(p)χi(q)χj(−k)dpdq. (54)
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It is now possible to derive the evolution equation for Es(k) and Ec(k) by
multiplying (53) by either the operators Pij or Πij . This yields[

∂t + 2Dk2
]
Es(k) = 2πk2Pij(k)Tij(k) + 2F (k) (55)[

∂t + 2Dk2
]
Ec(k) = 4πk2Πij(k)Tij(k). (56)

We see that the production term, proportional to F (k) only appears in the
solenoidal part. The unclosed term Tij(k) is evaluated using the Eulerian
DIA technique which is subsequently simplified by assuming exponential time-
dependence of two-time correlations, with a carefully determined Lagrangian
timescale, rendering it in agreement with Lagrangian theories such as the La-
grangian History DIA [29] or the Lagrangian Renormalized Approximation [30].
The procedure is outlined in detail in section 3 of [22], of which a summary is
presented in appendix A. The resulting expression is given in appendix B. The
closed expressions for ΞI(k), ΞII(k) and ΞIII(k) are given in appendix C

The closed expression for Tij(k) allows to solve numerically the evolution
equations for Es(k) and Ec(k), expressions (55), and these are integrated to-
gether with the equation for E(k) and F (k)[

∂t + 2νk2
]
E(k) = TE(k) + IE(k) (57)[

∂t + (D + ν)k2
]
F (k) = TF (k) + IF (k). (58)

The exact expressions for TE(k) and TF (k) are derived from the Navier-Stokes
equations, [

∂t + νk2
]
ui(k) = − i

2
Pijm(k) [uj ? um] (k) + fi(k). (59)

where

fi(k) =
ui(k)

2E(k)
H(kf − k) (60)

with H(x) the Heaviside function and kf the wavenumber below which the
forcing is active. This forcing yields, in the equations (57) and (58) the following
forcing terms:

IE(k) = H(kf − k)

IF (k) = H(kf − k)
F (k)

2E(k)
. (61)

These equations are closed using the Lagrangian Markovianized Field Approx-
imation (LMFA, [31], 2013), having similarities with the Test-Field Model [32],
and expressions are given in appendix D.

5 Choice of the timescales

The choice of the timescales is, perhaps, the most delicate issue in the use of tri-
adic closures, in particular when the time-history is involved in the closure, as is
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the case in the DIA. In order to obtain statistics in agreement with Kolmogorov-
Corrsin-Obukhov phenomenology, one needs to use timescales which are com-
patible with the Lagrangian character of the time-correlations. An incorrect
choice of the reference frame can completely change the resulting statistics [33].
In Markovian closures, such as the Eddy-Damped Quasi-Normal Markovian
(EDQNM) closure or the LMFA closure used here, the Lagrangian character
must be taken into account in the timescale governing the triad-interactions.
This triad-time is intimately related to the time a fluid or scalar structure of
a certain size remains correlated to a fluid trajectory. We will first show how
these timescales appear in the general structure of the closed equations. Then,
by dimensional and physical arguments, we will illustrate how the choice of these
timescales affects the scaling behavior of the different wavenumber spectra in a
long inertial range.

The evolution of E(k) is given by the Lin-equation (57), in which the non-
linear transfer is closed by a closure theory. The resulting expression is of the
form

TE(k) =

∫∫
ΘE(k, p, q)f [E(k), E(p), E(q),k,p, q] dpdq. (62)

We see that the integrand of this equation consists of the product of the triad-
timescale ΘE(k, p, q) with a function of wavevectors and energy spectra. Clearly,
a large value of ΘE(k, p, q) will increase the transfer TE(k) and a small value
will decrease it.

Similarly, the nonlinear term of the equation for F (k) is given by

TF (k) =

∫∫
ΘF (k, p, q)f [E(k), E(p), E(q), F (k), F (p), F (q),k,p, q] dpdq. (63)

The dynamics of Es(k) and Ec(k) are given by the transfer T s(k) and T c(k),
which are both of the form

T s,c(k) =

∫∫
Θs,c(k, p, q)f [E(k), E(p), E(q),

Es(k), Ec(k), Es(p), Ec(p), Es(q), Ec(q), F (k), F (p), F (q),k,p, q] dpdq. (64)

Finally, ΞI(k), ΞII(k) and ΞIII(k) are of the form

ΞI(k) =

∫∫
ΘΞ(k, p, q)f [Es(k), Ec(k), Es(p),

Ec(p), Es(q), Ec(q), F (k), F (p), F (q),k,p, q] dpdq, (65)

in which the timescales ΘE(k), ΘF (k), Θs,c(k, p, q) and ΘΞ(k, p, q), in the long-
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time limit, are given by

ΘE(k, p, q) =
1

η(k) + η(p) + η(q)

ΘF (k, p, q) =
1

ηθ(k) + η(p) + η(q)

Θs,c(k, p, q) =
1

ηθ(k) + η(p) + ηθ(q)

ΘΞ(k, p, q) =
1

ηθ(k) + ηθ(p) + ηθ(q)
. (66)

This precise form appears though the assumption of an exponential time-dependence
of the two-time correlations plus a fluctuation-dissipation theorem for the La-
grangian velocity and scalar correlations.

The timescale η(k)−1 is determined through a procedure outlined in [31] and
behaves in the inertial range proportional to ε−1/3k−2/3. This scaling is rather
well-accepted in the field of turbulence research. The choice of ηθ(k) is less well

documented. We will focus on two possibilities: first ηθ(k) ∼ T −1 ∼ ε1/3k
2/3
0 ,

independent of the wavenumber and with k0 corresponding to the energy con-
taining range of the spectrum second, ηθ(k) ∼ η(k) in the inertial range. If we
consider k, p, q all in the inertial range and comparable in magnitude: p = αk,
q = βk, with α, β = O(1) we have

ΘE(k, p, q) =
k−2/3

ε1/3(1 + α2/3 + β2/3)

ΘF (k, p, q) ≈ k−2/3

ε1/3(α2/3 + β2/3)

Θs(k, p, q) ≈ k−2/3

ε1/3β2/3

ΘΞ(k, p, q) =
1

3ε1/3k
2/3
0

, (67)

which shows that,

ΘE(k, p, q) ∼ ΘF (k, p, q) ∼ Θs(k, p, q) ∼ ε−1/3k−2/3

ΘΞ(k, p, q) ∼ k0. (68)

We see that, apart from ΘΞ(k, p, q), all triad timescales are proportional to
k−2/3. In the case in which ηθ(k) ∼ η(k), we have,

ΘE(k, p, q) ∼ ΘF (k, p, q) ∼ Θs(k, p, q) ∼ ΘΞ(k, p, q) ∼ k−2/3, (69)

and for this choice ΘΞ(k, p, q) behaves similar to the other three triad times.
This shows that the choice of the ηθ(k) in the inertial range changes the scaling
of ΘΞ(k, p, q), but does not influence the scaling of the other triad times (but

13



changes their magnitude). This is an important observation, because it shows
how the scaling of the third-order scalar structure function is independent of
the scaling of the second-order structure function. We will show in the following
that this can lead to an anomalous value of the scalar gradient skewness, while
the second-order structure functions scale in agreement with Corrsin-Obukhov
phenomenology.

In the following sections we will use

η(k) =
E(k)

F 0(k)
+ νk2, (70)

where F 0(k) is the velocity-displacement correlation spectrum for a value of
zero diffusivity. This frequency is proportional to ε1/3k2/3 in the inertial range
and to νk2 in the dissipation range. For the triad-frequency corresponding to
the scalar field we choose

ηθ(k) = T −1, (71)

where the integral timescale is defined as

T =
9π

16

∫
k−1E(k)dk

(
∫
E(k)dk)3/2

. (72)

This choice, ηθ(k) = T −1, can be justified phenomenologically by considering
the Lagrangian DIA closure for linearly forced Burgers’ turbulence [34],

∂tu+ u∂xu = αu. (73)

According to Lagrangian DIA, in the case of α = 0 the timescale governing the
dynamics is proportional to the entire time-history of the flow. In other words,
following a Lagrangian trajectory, the velocity does not decorrelate. However,
if α > 0, the asymptotic limit of the timescale is α−1, corresponding to the
time it takes for a fluid particle to travel between two shocks. In the case of
the passive scalar, the production term on the righthandside of equation (3)
can be argued to play the same role as the forcing term on the righthandside
of (73), and it is perhaps not fortuitous that both Burgers’ equation and the
scalar fluctuations in the presence of a mean gradient give birth to ramp-cliff
structures (generally called shocks in the case of Burgers’ turbulence). Indeed,
these ramp-cliff structures play the same role for the scalar as the shocks play
for the Burgers velocity field. Once a fluid particle passes through a ramp-cliff
structure, the scalar will decorrelate from the trajectory. Therefore, whereas
in isotropic scalar turbulence the scalar fluctuations will remain correlated to a
trajectory over a timescale of the order of the diffusive time [29], in the presence
of a mean scalar gradient the correlation will be limited by the time it takes the
flow to build up a ramp-cliff structure.

A further study on the similarity between the dynamics of Burgers’ turbu-
lence and the scalar in the presence of a mean gradient is currently in progress.
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Figure 1: Left: results for the normalized energy spectrum Ẽ(kη) =
E(kη)ν−5/4ε−1/4. Right: results for the normalized second-order longitudinal

structure function D̃
(2)
u (r/η). All results are shown for the Reynolds numbers

Rλ = 102, 103, 104.

The choice (71) is essential to obtain agreement with experimental and numer-
ical observations of the scalar gradient skewness. To illustrate this we will also,
in section 6.4 present results for the choice ηθ(k) = η(k), to determine the
sensitivity of the results on the choice of the timescale.

6 Numerical Results

Equations (55), (56), (57) and (58) are integrated numerically on a logarith-
mically spaced grid with 15 wavenumbers per decade for Taylor-scale Reynolds
numbers Rλ = 102, 103, 104. Due to the presence of the large scale forcing (61),
with kf = 2.5, the system tends to a steady state in which the energy input is
balanced by the viscous dissipation. It is during this steady state that all the
statistics are evaluated. The wavenumber spectra and structure functions are
all plotted in normalized units as discussed in section 2.2.

6.1 Results for the velocity field

In Figure 1, left, we show the energy spectra Ẽ(kη), normalized by Kolmogorov
variables, for three different Reynolds numbers, Rλ = 102, 103 and 104. In
the following all results will be presented for these three cases. The spectra
perfectly collapse, as expected. In Figure 1, right, we show the second-order
structure functions for longitudinal velocity fluctuations, again normalized by
Kolmogorov variables, for three different Reynolds numbers, Rλ = 102, 103 and
104. A clear scaling proportional to r2/3 is observed and the small scales collapse
in Kolmogorov variables.

In Figure 2, left, we show the third-order structure functions and in Figure 2,
right, the velocity increment skewness. These quantities have been discussed in
detail in [35] as obtained from EDQNM computations, and we will not discuss
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Figure 2: Left: normalized third-order longitudinal structure function,

D̃
(3)
u (r/η). Right: longitudinal increment skewness −S(r/η).

them here further. All we say here is that the expected scaling is observed,
but that for the velocity increment skewness a very large Reynolds number is
needed to observe asymptotic scaling.

6.2 Scalar Wavenumber spectra

In Figure 3 we show the results for the spectra Es(k) and Ec(k). Both spec-
tra scale proportional to k−5/3 and the difference between the two spectra is
small. Only in the smallest wavenumbers a difference between the two spectra
is observed. The collapse in the dissipation range is almost perfect. As we will
see in section 6.3, this shows that the small scale anisotropy, as measured by
second-order quantities, is small.

In Figure 4, We show the scalar spectrum Eθ(k) ≡ 2Es(k) + Ec(k). Since
Es(k) and Ec(k) showed very similar behavior, it is not surprising that Eθ(k)
is qualitatively identical to them. Again a clear k−5/3 scaling shows the agree-
ment with Corrsin-Obukhov phenomenology. In Figure 4, right, we show the
behaviour of the scalar flux spectrum. As in previous studies [36, 37, 38], a
clear k−7/3 scaling is observed, confirming the dimensional arguments by Lum-
ley, discussed in section 2.2.

6.3 Scalar increment statistics and anisotropy

In Figure 5 we show the second-order scalar structure functions for separation
vectors parallel with and perpendicular to the direction of the mean scalar
gradient. The behaviour of both is very similar. A clear r2/3 scaling range
is observed. The normalization allows to collapse the graphs almost perfectly
for the smallest separation distances. At these values of r/η, the structure
functions are proportional to r2, as is expected since at these scales the scalar
field becomes smooth, so that the increments scale proportional to r.

In Figure 6 we show the third-order scalar structure function. Two different
normalizations are used. In Figure 6, left, the normalization proposed in expres-
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sion (20) is used. In Figure 6, right, we use the normalization (76) which we will
suggest in section 7. This latter normalization contains the integral timescale,
which we used in the definition of the triad-correlation timescale in section 5.
Clearly, this latter normalization collapses the results much better. The scaling
in the inertial range is proportional to r.

To quantify the anisotropy of the scalar field, we show in Figure 7, left, the
ratio of the parallel and the perpendicular scalar structure functions. The value
is not far from unity. Even in the largest scales, the anisotropy is under 10% as
measured by this ratio. In the smallest scales the ratio tends to unity, except
for the lowest Reynolds number, where a small anisotropy of a few percent is
measured. According to these results, Corrsin-Obukhov phenomenology seems
to hold approximately.

The scalar gradient skewness is shown in Figure 7, right. An approximate
plateau is observed in the inertial range, also observed in experiments, and the
small scale limit tends to a value of approximately −Sθ(r) ≈ 2, this limit gives
the value of the scalar-gradient skewness, which does saturate at a non-zero
value.

The Reynolds number dependence of the ratio of the mean-square parallel
scalar gradients to the mean-square perpendicular gradients is displayed in Fig-
ure 8, left. This quantity corresponds to the small r limit of Figure 7. The ratio
tends rapidly to unity. This tendency can be explained from the results for the
spectra Es(k) and Ec(k), in Figure 3 and relation (51).

In Figure 8, right we show the parallel gradient skewness. This quantity
roughly remains constant as a function of the Reynolds number, indicating a
small scale anisotropy for the third-order correlations. It seems that small scale
isotropy of second-order scalar increments is independent of the persistence of
the scalar gradient skewness.
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6.4 Influence of the timescale

We now show the influence of the scalar timescale on the results. In the previ-
ous section we used for the scalar timescale, ηθ(k)

−1 = T . The difference with
the results when ηθ(k) = η(k) used are shown in Figure 9 and 10. In Figure 9
we observe that when the timescale is changed the scaling of the second-order
structure function does not change, as was anticipated in section 5. However,
its magnitude does. The third-order structure function changes its scaling dras-
tically. If the velocity timescale is used for the scalar, the scaling changes from
r1 to r5/3. This implies also that the scalar increment skewness changes, as is
illustrated in Figure 10. Clearly, to obtain agreement with scaling observed in
experiments and simulations the scalar timescale should be proportional to the
integral timescale or another timescale, independent of the wavenumber in the
inertial range.
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7 Discussion and conclusion

The main result of the present investigation is the clear observation that second-
and third-order scalar correlations are not governed by the same dynamics.
Where the origin of this difference lies can be most clearly seen as follows. The
convolution products in the Navier-Stokes and scalar equations most naturally
introduce the interaction between three-wave modes, or triads. The triads which
determine the dynamics of Es(k) and Ec(k) (and thereby the scalar spectrum
Eθ(k) and the second-order scalar structure functions) are however not the same
as those which determine the functions Ξ(k) (which determine the third-order
scalar structure function). If we consider the dynamics of the scalar field, we see
from equation (54) that the triads intervening in the dynamics of the second-
order quantities are of the form

τijm(k,p, q) = δ(k − p− q)χi(−k)uj(p)χm(q). (74)

For the dynamics of the third-order gradient correlations we see from (28) that
the triads are

τ ′ijm(k,p, q) = δ(k − p− q)χi(−k)χj(p)χm(q). (75)

Since we consider the statistical average, these quantities are not simply triple
products, but they are triple correlations. It is the correlation time of the triads
which will determine the dynamics. It was shown by [33], that one should con-
sider these time-correlations in a Lagrangian frame. Since the scalar, obviously,
behaves differently from the velocity, the triad containing a velocity compo-
nent does not decorrelate on the same timescale as the triad containing only
scalar modes. As the scalar is passive, it will not decorrelate from a trajectory,
except under the influence of diffusion, or by a forcing term in the equations,
such as the Γ · u term in equation (3). In physical space one can understand
the correlation-time of a scalar blob on a Lagrangian trajectory to be limited
by the time it takes a fluid particle to encounter a ramp-cliff structure. This
will obviously not change the correlation-time of the velocity, since the scalar is
passive, but it will limit the correlation of the scalar in a similar way as shocks
in Burgers’ turbulence limit the Lagrangian correlation time of the velocity. In
Navier-Stokes turbulence, the velocity will decorrelate not only through forc-
ing terms or viscosity, but also through the influence of pressure [29]. These
are the reasons that the Lagrangian correlation timescales associated with τijm
and τ ′ijm are different and this is the reason for the persistent scalar gradient
skewness.

The implication for the scaling of the third-order structure functions is that
these are now proportional to the integral timescale. Dimensional analysis,
imposing the third-order structure function to be proportional to the integral
timescale T and the value of the mean scalar gradient Γ, leads then to the
following scaling in the inertial range,

D
(3)
θ‖ (r) = ΓεθT ν3/4ε−1/4D̃

(3)
θ‖ (r/η), (76)
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and we have in the inertial range,

D
(3)
θ‖ (r) = ΓεθT r. (77)

This scaling allowed to collapse the results in Figure 6. In experiments and DNS,
this is also what is observed, which provides support for the results obtained,
and assumptions made in the present investigation.

A DIA procedure and single-time simplification

The procedure we use to obtain closed expressions for the different triple cor-
relations is related to the Eulerian DIA. A subsequent simplification allows to
obtain single-time expressions which are compatible with K41 phenomenology if
a Lagrangian correlation timescale is chosen. An outline of the procedure is here
given. Both the velocity and the displacement variable are expanded around a

state u
(0)
i (and χ

(0)
i ) in which the mode-coupling of a particular triad k, p, q is

removed. The nonlinear coupling of this single mode, indicated by superscript
(1) is then treated as a small perturbation on this state:

ui → u
(0)
i + u

(1)
i

χi → χ
(0)
i + χ

(1)
i . (78)

The influence of this perturbation through nonlinear coupling and viscosity and
diffusion is then [39], [40]:

u
(1)
j (p, t) = −iPjab(p)

∫ t

0

G(p, t, s)
[
u(0)
a (k, s)u

(0)
b (−q, s)

]
ds (79)

χ
(1)
i (−k, t) = ika

∫ t

0

Gχ(k, t, s)
[
u(0)
a (−p, s)χ

(0)
i (−q, s) + u(0)

a (−q, s)χ
(0)
i (−p, s)

]
ds,

(80)

in which G(k, t, s) and Gχ(k, t, s) are the response function of the velocity and
displacement field, respectively. These response functions are here determined
in a way different from Eulerian DIA. The expressions (79) are substituted in
the triple correlations and the weak-dependence hypothesis allows to write the
fourth order correlations as products of two-time second-order correlations such
as E(k, t, s)δ(k + k′) = 2πk2ui(k, t)ui(k′, s)

It is here, following [22], that we replace these quantities by their analogues
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defined on Lagrangian trajectories,

E(k, t, s) → E(k, t|s)
G(k, t, s) → G(k, t|s)
F (k, t, s) → F ′(k, t|s)
F (k, s, t) → F ′′(k, t|s)
Es(k, t, s) → Es(k, t|s)
Ec(k, t, s) → Ec(k, t|s), (81)

with

F ′(k, t|s)δ(k + k′) = 2πk2ui(k, t)χi(k′, t|s)
F ′′(k, t|s)δ(k + k′) = 2πk2ui(k, t|s)χi(k′, t). (82)

We use the further assumption that the two-time quantities decay exponentially
in time by posing

G(k, t|s) = H(t− s) exp[−(t− s)η(k)] (83)

Gχ(k, t|s) = H(t− s) exp[−(t− s)ηθ(k)] (84)

E(k, t|s) = E(k, t)[G(k, t|s) +G(k, s|t)] (85)

F ′(k, t|s) = F (k, t)[G(k, s|t) +G(k, t|s)] (86)

F ′′(k, t|s) = F (k, t)[Gχ(k, s|t) +Gχ(k, t|s)] (87)

Es(k, t|s) = E(k, t)[Gχ(k, t|s) +Gχ(k, s|t)] (88)

Ec(k, t|s) = E(k, t)[Gχ(k, t|s) +Gχ(k, s|t)] (89)

so that ∫ t

−∞
ds G(p, t|s)E(q, t|s)F ′′(k, t|s) = ΘF (kpq)E(q, t)F (k, t)

(90)

with

ΘF (kpq) =
1

ηθ(k) + η(p) + η(q)
, (91)

in which ηθ(k) and η(k) need to be determined. This procedure allows to obtain
closed expressions for all correlations containing the velocity and displacement
vector. Further details can be found in [22].

B A model for the transfer of the advected vec-
tor field

The DIA approximation of Tij(k) is given by

Tij(k) = −2ikm

∫∫
δ(k − p− q) [

um(p)(1)χi(q)χj(−k) + um(p)χi(q)(1)χj(−k) + um(p)χi(q)χj(−k)(1) ] dpdq, (92)
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where the superscripts indicate the first order DIA correction, given by expres-
sions (79) and (80). The DIA quantity expression for Tij(k) is obtained using
the procedure outlined in section A, yielding,

Tij(k) = km

∫∫
δ(k − p− q) [Θs,c(k, p, q, t) (93)

− Pmab(p)Faj(k)Fbi(q) (94)

− qaFaj(k)Fmi(p) (95)

− qaΦam(p)Ψij(k) (96)

+ kaΦam(p)Ψji(q) (97)

+ kaFai(q)Fmj(p) ] dpdq, (98)

which gives, for the transfer of the solenoidal and compressible part, respectively,
of the displacement vector variance,

T s ≡ 2πk2Pij(k)Tij(k) (99)

=
1

4

∫∫
∆

Θs(k, p, q, t) [ (100)

− (xy + z3 − z + zx2)p3F (k)F (q) (101)

− z(x+ yz)q3F (k)F (p) (102)

− 2(1− z2)kq2Ψs(k)E(p) (103)

+ (1− z2)(1 + y2)k3Ψs(q)E(p) (104)

+ (1− z2)(1− y2)k3Ψc(q)E(p) (105)

+ (−xyz − y2z2)k3F (p)F (q) ]
dp

p

dq

q
(106)

and

T c ≡ 4πk2Πij(k)Tij(k) (107)

=
1

2

∫∫
∆

Θc(k, p, q, t) [ (108)

− (1− z2)kq2Ψc(k)E(p) (109)

+ (1− z2)(1− y2)k3Ψs(q)E(p) (110)

+ (1− z2)(y2)k3Ψc(q)E(p) (111)

+ (1− z2)(1− y2)k3F (p)F (q) ]
dp

p

dq

q
. (112)

The symbol ∆ indicates the domain in the pq-plane in which k, p, q can form a
triangle (in other words |p− q| ≤ k ≤ |p+ q|) and x, y, z are given by

x = −piqi/(pq)

y = kiqi/(kq)

z = kipi/(kp). (113)
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C A model for the displacement triple correla-
tion

The closed expressions for ΞI(k),ΞII(k) and ΞIII(k) are obtained by the same
procedure outlined in the previous section, leading to

S
(3)
‖ (r) = −6

rirjrm
r3

∫
Ξijm(k)

[
1− eik·r

]
dk,

= −3ir

∫
ΘΞ(k, p, q)j(kr)

[− y(x+ yz)p3F (k)Es(q)

+ y(x+ yz)p3F (k)Ec(q)

− (z + xy)p3F (q)Es(k)

+
1

2
(1− 2xyz − 3y2z2 + y2 − z2)k3F (p)Es(q)

+
1

2
(1 + 2xyz + 3y2z2 − y2 − z2)k3F (p)Ec(q)]

+ ΘΞ(k, p, q)l(kr)

[− (z + xy)p3F (q)Ec(k)

+ (1− z2)(1− y2)k3F (p)Es(q)

+ (1− z2)y2k3F (p)Ec(q)]
dp

p

dq

q
dk (114)

D Closure of the energy and scalar flux spec-
trum

A standard closure expression for the energy transfer in the Lin-equation is∫∫
∆

ΘE(kpq)[xy + z3]pE(q)
[
k2E(p)− p2E(k)

] dpdq
pq

. (115)

This form is common to a number of closures such as EDQNM, DIA, Test-Field-
Model, LMFA closure. The closure for the scalar flux spectrum is

[
∂

∂t
+ (ν +D)k2]F (k) =

8∑
i=1

Ti(k) + E(k) (116)
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with

T1(k) = −1

8

∫
∆

ΘF (kpq)f1(k, p, q)p
3E(q)F (k)

dp

p

dq

q
(117)

T2(k) = −1

8

∫
∆

ΘF (kpq)f2(k, p, q)q
3E(p)F (k)

dp

p

dq

q
(118)

T3(k) = +
1

8

∫
∆

ΘF (kpq)f3(k, p, q)k
3E(p)F (q)

dp

p

dq

q
(119)

T4(k) = +
1

8

∫
∆

ΘF (kpq)f4(k, p, q)k
3E(q)F (p)

dp

p

dq

q
(120)

T5(k) = −1

4

∫
∆

ΘF (qpk)f5(k, p, q)p
3E(k)F (q)

dp

p

dq

q
(121)

T6(k) = +
1

4

∫
∆

ΘF (qpk)f6(k, p, q)k
3E(p)F (q)

dp

p

dq

q
(122)

T7(k) = −1

4

∫
∆

ΘF (qpk)f7(k, p, q)q
3E(k)F (p)

dp

p

dq

q
(123)

T8(k) = −1

4

∫
∆

ΘF (qpk)f8(k, p, q)q
3E(p)F (k)

dp

p

dq

q
. (124)

with

f1 = (kp)−1P123(k)P214(p)P34(q) = 2(xy + z3) (125)

f2 = (kq)−1P123(k)P24(p)P314(q) = 2(xz + y3) (126)

f3 = (k)−2k1P234(k)P13(p)P24(q) = 1− xyz − 2y2z2 + y2 − z2 (127)

f4 = (k)−2k1P234(k)P23(p)P14(q) = 1− xyz − 2y2z2 − y2 + z2 (128)

f5 = (kp)−1k1P23(k)P124(p)P34(q) = xy + z3 − z + zx2 (129)

f6 = (k)−2k1P234(k)P13(p)P24(q) = f3 (130)

f7 = (kq)−1k1P23(k)P13(p)q2 = z(x+ yz) (131)

f8 = 2(kq)−1k1P12(p)q2 = 2(y + xz). (132)

Note that f4 and f2 are not needed when symmetry is used to show that T1(k) =
T2(k) and T3(k) = T4(k). Since f6 = f3, we eventually only need five different
factors. This form [36, 22] is a corrected form of the expression by [26], see also
[41].
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