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We study the existence of solutions to the fractional elliptic equation (E1) (-∆) α u + ǫg(|∇u|) = ν in an open bounded regular domain Ω of R N (N ≥ 2), subject to the condition (E2) u = 0 in Ω c , where ǫ = 1 or -1, (-∆) α denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R + → R + is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is subcritical. Furthermore, the asymptotic behavior and uniqueness of solutions are described when ǫ = 1, ν is Dirac mass and g(s) = s p with p ∈ (0, N N -2α+1 ).

Introduction

Let Ω ⊂ R N (N ≥ 2) be an open bounded C 2 domain and g : R + → R + be a continuous function. The purpose of this paper is to study the existence of weak solutions to the semilinear fractional elliptic problem with α ∈ (1/2, 1),

(-∆) α u + ǫg(|∇u|) = ν in Ω, u = 0 in Ω c , (1.1) 
where ǫ = 1 or -1 and ν ∈ M(Ω, ρ β ) with β ∈ [0, 2α -1). Here ρ(x) = dist(x, Ω c ) and M(Ω, ρ β ) is the space of Radon measures in Ω satisfying

Ω ρ β d|ν| < +∞. (1.2)
In particular, we denote M b (Ω) = M(Ω, ρ 0 ). The associated positive cones are respectively M + (Ω, ρ β ) and M b + (Ω). According to the value of ǫ, we speak of an absorbing nonlinearity the case ǫ = 1 and a source nonlinearity the case ǫ = -1. The operator (-∆) α is the fractional Laplacian defined as

(-∆) α u(x) = lim ε→0 + (-∆) α ε u(x),
where for ε > 0,

(-∆) α ε u(x) = - R N u(z) -u(x) |z -x| N +2α χ ε (|x -z|)dz (1.3)
and

χ ε (t) = 0, if t ∈ [0, ε],
1, if t > ε.

In a pioneering work, Brezis [START_REF] Brezis | Some variational problems of the Thomas-Fermi type, Variational inequalities and complementarity problems[END_REF] (also see Bénilan and Brezis [START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation[END_REF]) studied the existence and uniqueness of the solution to the semilinear Dirichlet elliptic problem -∆u + h(u) = ν in Ω,

u = 0 on ∂Ω, (1.4) 
where ν is a bounded measure in Ω and the function h is nondecreasing, positive on (0, +∞) and satisfies that +∞ 1 (h(s) -h(-s))s -2 N-1 N-2 ds < +∞.

Later on, Véron [START_REF] Véron | Elliptic equations involving Measures[END_REF] improved this result in replacing the Laplacian by more general uniformly elliptic second order differential operator, where ν ∈ M(Ω, ρ β ) with β ∈ [0, 1] and h is a nondecreasing function satisfying +∞ 1 (h(s) -h(-s))s -2 N+β-1 N+β-2 ds < +∞.

The general semilinear elliptic problems involving measures such as the equations involving boundary measures have been intensively studied; it was initiated by Gmira and Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] and then this subject has being extended in various ways, see [START_REF] Bidaut-Véron | Quasilinear Lane-Emden equations with absorption and measure data[END_REF][START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF][START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF][START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case[END_REF][START_REF] Marcus | Removable singularities and boundary traces[END_REF][START_REF] Marcus | The boundary trace and generalized B.V.P. for semilinear elliptic equations with coercive absorption[END_REF] for details and [START_REF] Marcus | Nonlinear second order elliptic equations involving measures[END_REF] for a general panorama. In a recent work, Nguyen-Phuoc and Véron [START_REF] Nguyen-Phuoc | Boundary singularities of solutions to elliptic viscous HamiltonJacobi equations[END_REF] obtained the existence of solutions to the viscous Hamilton-Jacobi equation

-∆u + h(|∇u|) = ν in Ω, u = 0 on ∂Ω, (1.5) 
when ν ∈ M b (Ω), h is a continuous nondecreasing function vanishing at 0 which satisfies

+∞ 1 h(s)s -2N-1 N-1 ds < +∞.
During the last years there has also been a renewed and increasing interest in the study of linear and nonlinear integro-differential operators, especially, the fractional Laplacian, motivated by great applications in physics and by important links on the theory of Lévy processes, refer to [START_REF] Caffarelli | Regularity theory for fully non-linear integrodifferential equations[END_REF][START_REF] Chen | Singular solutions of fractional elliptic equations with absorption[END_REF][START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF][START_REF] Chen | Large solution to elliptic equations involving fractional Laplacian[END_REF][START_REF] Felmer | Fundamental solutions and Liouville type theorems for nonlinear integral operators[END_REF][START_REF] Ros-Oton | The Dirichlet problem for the fractional laplacian: regularity up to the boundary[END_REF][START_REF] Sire | Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result[END_REF][START_REF] Silvestre | Regularity of the obstacle problem for a fractional power of the laplace operator[END_REF]. Many estimates of its Green kernel and generation formula can be found in the references [START_REF] Bogdan | Gradient estimates for harmonic and q-harmonic funcitons of Symmetric stable processes[END_REF][START_REF] Chen | Estimates on Green functions and poisson kernels for symmetric stable process[END_REF]. Recently, Chen and Véron [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF] studied the semilinear fractional elliptic equation

(-∆) α u + h(u) = ν in Ω, u = 0 in Ω c , (1.6) 
where ν ∈ M(Ω, ρ β ) with β ∈ [0, α]. We proved the existence and uniqueness of the solution to (1.6) when the function h is nondecreasing and satisfies

+∞ 1 (h(s) -h(-s))s -1-k α,β ds < +∞,
where

k α,β = N N -2α , if β ∈ [0, N-2α N α], N +α N -2α+β , if β ∈ ( N-2α N α, α].
(1.7)

Our interest in this article is to investigate the existence of weak solutions to fractional equations involving nonlinearity in the gradient term and with Radon measure. In order the fractional Laplacian be the dominant operator in terms of order of differentiation, it is natural to assume that α ∈ (1/2, 1).

Definition 1.1 We say that u is a weak solution of (1.1), if u ∈ L 1 (Ω), |∇u| ∈ L 1 loc (Ω), g(|∇u|) ∈ L 1 (Ω, ρ α dx)
and

Ω [u(-∆) α ξ + ǫg(|∇u|)ξ]dx = Ω ξdν, ∀ ξ ∈ X α , (1.8) 
where X α ⊂ C(R N ) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω, (ii) (-∆) α ξ(x) exists for all x ∈ Ω and |(-∆) α ξ(x)| ≤ C for some C > 0, (iii) there exist ϕ ∈ L 1 (Ω, ρ α dx) and ε 0 > 0 such that |(-∆) α ε ξ| ≤ ϕ a.e. in Ω, for all ε ∈ (0, ε 0 ].
We denote by G α the Green kernel of (-∆) α in Ω and by G α [.] the associated Green operator defined by

G α [ν](x) = Ω G α (x, y)dν(y), ∀ ν ∈ M(Ω, ρ α ). (1.9)
Using bounds of G α [ν], we obtain in section 2 some crucial estimates which will play an important role in our construction of weak solutions. Our main result in the case ǫ = 1 is the following.

Theorem 1.1 Assume that ǫ = 1 and g : R + → R + is a continuous function verifying g(0) = 0 and

+∞ 1 g(s)s -1-p * α ds < +∞, (1.10) 
where

p * α = N N -2α + 1 . (1.11)
Then for any ν ∈ M + (Ω, ρ β ) with β ∈ [0, 2α -1), problem (1.1) admits a nonnegative weak solution u ν which satisfies

u ν ≤ G α [ν]. (1.12)
As in the case α = 1, uniqueness remains an open question. We remark that the critical value p * α is independent of β. A similar fact was first observed when dealing with problem (1.6) where the critical value k α,β defined by (1.7) does not depend on β when β ∈ [0, N -2α N α]. When ǫ = -1, we have to consider the critical value p * α,β which depends truly on β and is expressed by

p * α,β = N N -2α + 1 + β . (1.13)
We observe that p * α,0 = p * α and p * α,β < p * α when β > 0. In the source case, the assumptions on g are of a different nature from in the absorption case, namely (G) g : R + → R + is a continuous function which satisfies g(s) ≤ c 1 s p + σ 0 , ∀s ≥ 0, (1.14) for some p ∈ (0, p * α,β ), where c 1 > 0 and σ 0 > 0. Our main result concerning the source case is the following.

Theorem 1.2 Assume that ǫ = -1, ν ∈ M(Ω, ρ β ) with β ∈ [0, 2α -1) is nonnegative, g satisfies (G) and (i) p ∈ (0, 1), or (ii) p = 1 and c 1 is small enough, or (iii) p ∈ (1, p * α,β
), σ 0 and ν M(Ω,ρ β ) are small enough. Then problem (1.1) admits a weak nonnegative solution u ν which satisfies

u ν ≥ G α [ν].
(1.15)

We note that Bidaut-Véron, García-Huidobro and Véron in [START_REF] Bidaut-Véron | Remarks on some quasilinear equations with gradient terms and measure data[END_REF] obtained the existence of a renormalized solution of

-∆ p u = |∇u| q + ν in Ω, when ν ∈ M b (Ω).
We make use of some idea in [START_REF] Bidaut-Véron | Remarks on some quasilinear equations with gradient terms and measure data[END_REF] in the proof of Theorem 1.2 and extend some results in [START_REF] Bidaut-Véron | Remarks on some quasilinear equations with gradient terms and measure data[END_REF] to elliptic equations involving (-∆) α with α ∈ (1/2, 1) and ν ∈ M(Ω, ρ β ) with β ∈ [0, 2α -1).

In the last section, we assume that Ω contains 0 and give pointwise estimates of the positive solutions

(-∆) α u + |∇u| p = δ 0 in Ω, u = 0 in Ω c , (1.16) 
when 0 < p < p * α . Combining properties of the Riesz kernel with a bootstrap argument, we prove that any weak solution of (1.16) is regular outside 0 and is actually a classical solution of

(-∆) α u + |∇u| p = 0 in Ω \ {0}, u = 0 in Ω c .
(1.17)

These pointwise estimates are quite easy to establish in the case α = 1, but much more delicate when the diffusion operator is non-local. We give sharp asymptotics of the behaviour of u near 0 and prove that the solution of (1.16) is unique in the class of positive solutions. The paper is organized as follows. In Section 2, we study the Green operator and prove the key estimate

∇G α [ν] M p * α (Ω,ρ α dx) ≤ c 2 ν M(Ω,ρ β )
Section 3 is devoted to prove Theorem 1.1 and Theorem 1.2. In Section 4, we consider the case where ǫ = 1 in (1.1) and ν is a Dirac mass. We obtain precise asymptotic estimate and derive uniqueness.

Aknowledgements. The authors are grateful to Marie-Françoise Bidaut-Véron for useful discussions in the preparation of this work.

Preliminaries

Marcinkiewicz type estimates

In this subsection, we recall some definitions and properties of Marcinkiewicz spaces.

Definition 2.1 Let Θ ⊂ R N be a domain and µ be a positive Borel measure in Θ. For κ > 1, κ ′ = κ/(κ -1) and u ∈ L 1 loc (Θ, dµ), we set

u M κ (Θ,dµ) = inf c ∈ [0, ∞] : E |u|dµ ≤ c E dµ 1 κ ′ , ∀E ⊂ Θ, E Borel (2.1) and M κ (Θ, dµ) = {u ∈ L 1 loc (Θ, dµ) : u M κ (Θ,dµ) < ∞}. (2.2) 
M κ (Θ, dµ) is called the Marcinkiewicz space of exponent κ, or weak L κ -space and . M κ (Θ,dµ) is a quasi-norm. Proposition 2.1 [START_REF] Ph | A semilinear elliptic equation in L 1 (R N )[END_REF][START_REF] Cignoli | An Introduction to Functional Analysis[END_REF] Assume that 1 ≤ q < κ < ∞ and u ∈ L 1 loc (Θ, dµ). Then there exists c 3 > 0 dependent of q, κ such that

E |u| q dµ ≤ c 3 u M κ (Θ,dµ) E dµ 1-q/κ , for any Borel set E of Θ.
The next estimate is the key-stone in the proof of Theorem 1.1.

Proposition 2.2 Let Ω ⊂ R N (N ≥ 2) be a bounded C 2 domain and ν ∈ M(Ω, ρ β ) with β ∈ [0, 2α -1]. Then there exists c 2 > 0 such that ∇G α [|ν|] M p * α (Ω,ρ α dx) ≤ c 2 ν M(Ω,ρ β ) , (2.3) 
where ∇G α [|ν|](x) = Ω ∇ x G α (x, y)d|ν(y)| and p * α is given by (1.11).

Proof. For λ > 0 and y ∈ Ω, we set

ω λ (y) = {x ∈ Ω \ {y} : |∇ x G α (x, y)|ρ α (x) > λ} , m λ (y) = ω λ (y)
dx.

From [START_REF] Chen | Estimates on Green functions and poisson kernels for symmetric stable process[END_REF], there exists c 4 > 0 such that for any (x, y) ∈ Ω × Ω with x = y,

G α (x, y) ≤ c 4 min 1 |x -y| N -2α , ρ α (x) |x -y| N -α , ρ α (y) |x -y| N -α , (2.4) 
G α (x, y) ≤ c 4 ρ α (y) ρ α (x)|x -y| N -2α ,
and by Corollary 3.3 in [START_REF] Bogdan | Gradient estimates for harmonic and q-harmonic funcitons of Symmetric stable processes[END_REF], we have

|∇ x G α (x, y)| ≤ N G α (x, y) max 1 |x -y| , 1 ρ(x) . (2.5) 
This implies that for any τ ∈ [0, 1]

G α (x, y) ≤ c 4 ( ρ α (y) |x -y| N -α ) τ ( ρ α (x) |x -y| N -α ) 1-τ = c 4 ρ ατ (y)ρ α(1-τ ) (x) |x -y| N -α ,
and then

|∇ x G α (x, y)| ≤ c 5 max ρ α (y) ρ α (x)|x -y| N -2α+1 , ρ ατ (y)ρ α(1-τ )-1 (x) |x -y| N -α . (2.6) Letting τ = 2α-1 α N -α N -2α+1 ∈ (0, 1), we derive |∇ x G α (x, y)|ρ α (x) ≤ c 5 max    ρ 2α-1 (y)ρ 1-α Ω |x -y| N -2α+1 , ρ (2α-1)(N-α) N-2α+1 (y)ρ (2α-1)(1-α) N-2α+1 Ω |x -y| N -α    .
where ρ Ω = sup z∈Ω ρ(z). There exists some c 6 > 0 such that

ω λ (y) ⊂ x ∈ Ω : |x -y| ≤ c 6 ρ 2α-1 N-2α+1 (y) max{λ -1 N-2α+1 , λ -1 N-α } .
By N -2α + 1 > N -α, we deduce that for any λ > 1, there holds

ω λ (y) ⊂ {x ∈ Ω : |x -y| ≤ c 6 ρ 2α-1 N-2α+1 (y)λ -1 N-2α+1 }. (2.7) As a consequence, m λ (y) ≤ c 7 ρ (2α-1)p * α (y)λ -p * α ,
where c 7 > 0 independent of y and λ.

Let E ⊂ Ω be a Borel set and λ > 1, then

E |∇ x G α (x, y)|ρ α (x)dx ≤ ω λ (y) |∇ x G α (x, y)|ρ α (x)dx + λ E dx.
Noting that

ω λ (y) |∇ x G α (x, y)|ρ α (x)dx = - ∞ λ sdm s (y) = λm λ (y) + ∞ λ m s (y)ds ≤ c 8 ρ (2α-1)p * α (y)λ 1-p * α ,
for some c 8 > 0, we derive

E |∇ x G α (x, y)|ρ α (x)dx ≤ c 8 ρ (2α-1)p * α (y)λ 1-p * α + λ E dx. Choosing λ = ρ 2α-1 (y)( E dx) -1 p * α yields E |∇ x G α (x, y)|ρ α (x)dx ≤ (c 8 + 1)ρ 2α-1 (y)( E dx) p * α -1 p * α , ∀y ∈ Ω.
Therefore,

E |∇G α [|ν|](x)|ρ α (x)dx = Ω E |∇ x G α (x, y)|ρ α (x)dxd|ν(y)| ≤ Ω ρ 2α-1 (y) ρ 1-2α (y) E |∇ x G α (x, y)|ρ α (x)dx d|ν(y)| ≤ (c 8 + 1) Ω ρ β (y)ρ 2α-1-β (y)d|ν(y)| E dx p * α -1 p * α ≤ (c 8 + 1)ρ 2α-1-β Ω ν M(Ω,ρ β ) E dx p * α -1 p * α .
(2.8) As a consequence,

∇G α [|ν|] M p * α (Ω,ρ α dx) ≤ c 2 ν M(Ω,ρ β ) ,
which ends the proof.

Proposition 2.3 [13] Assume that ν ∈ L 1 (Ω, ρ β dx) with 0 ≤ β ≤ α. Then for p ∈ (1, N N -2α+β ), there exists c 9 > 0 such that for any ν ∈ L 1 (Ω, ρ β dx) G α [ν] W 2α-γ,p (Ω) ≤ c 9 ν L 1 (Ω,ρ β dx) , (2.9) 
where

p ′ = p p-1 , γ = β + N p ′ if β > 0 and γ > N p ′ if β = 0. Proposition 2.4 If 0 ≤ β < 2α -1, then the mapping ν → |∇G α [ν]| is compact from L 1 (Ω, ρ β dx) into L q (Ω) for any q ∈ [1, p * α,β
) and there exists c 10 > 0 such that

Ω |∇G α [ν](x)| q dx 1 q ≤ c 10 Ω |ν(x)|ρ β (x)dx, (2.10) 
where p * α,β is given by (1.13).

Proof.

For ν ∈ L 1 (Ω, ρ β dx) with 0 ≤ β < 2α -1 < α , we obtain from Proposition 2.3 that G α [ν] ∈ W 2α-γ,p (Ω), where p ∈ (1, p * α,β ) and 2α -γ > 1. Therefore, |∇G α [ν]| ∈ W 2α-γ-1,p (Ω) and ∇G α [ν] W 2α-γ-1,p (Ω) ≤ c 9 ν L 1 (Ω,ρ β dx) . (2.11) By [23, Corollary 7.2], the embedding of W 2α-γ-1,p (Ω) into L q (Ω) is com- pact for q ∈ [1, N p N -(2α-γ-1)p ). When β > 0, N p N -(2α -γ -1)p = N p N -(2α -β -N p-1 p -1)p = N N -2α + 1 + β = p * α,β . When β = 0, lim γ→( N p ′ ) + N p N -(2α -γ -1)p = N p N -(2α -N p-1 p -1)p = N N -2α + 1 = p * α,0 .
Then the mapping ν

→ |∇G α [ν]| is compact from L 1 (Ω, ρ β dx) into L q (Ω)
for any q ∈ [1, p * α,β ). Inequality (2.10) follows by (2.11) and the continuity of the embedding of W 2α-γ-1,p (Ω) into L q (Ω).

Remark. If ν ∈ L 1 (Ω, ρ β dx) with 0 ≤ β < 2α -1 and u is the solution of (-∆) α u = ν in Ω, u = 0 in Ω c , then for any q ∈ [1, p * α,β ), Ω |∇u| q dx 1 q ≤ c 10 Ω |ν(x)|ρ β (x)dx.

Classical solutions

In this subsection we consider the question of existence of classical solutions to problem

(-∆) α u + h(|∇u|) = f in Ω, u = 0 in Ω c . (2.12) Theorem 2.1 Assume h ∈ C θ (R + ) ∩ L ∞ (R + ) for some θ ∈ (0, 1] and f ∈ C θ ( Ω).
Then problem (2.12) admits a unique classical solution u. Moreover,

(i) if f -h(0) ≥ 0 in Ω, then u ≥ 0;
(ii) the mappings h → u and f → u are respectively nonincreasing and nondecreasing.

Proof. We divide the proof into several steps.

Step 1. Existence. We define the operator T by

T u = G α [f -h(|∇u|)] , ∀u ∈ W 1,1 0 (Ω). Using (2.6) with τ = 0 yields T u W 1,1 (Ω) ≤ G α [f ] W 1,1 (Ω) + G α [h(|∇u|)] W 1,1 (Ω) ≤ f L ∞ (Ω) + h(|∇u|) L ∞ (Ω) Ω G α (•, y)dy W 1,1 (Ω) = c 11 f L ∞ (Ω) + h L ∞ (R + ) , (2.13) 
where

c 11 = Ω G α (•, y)dy W 1,1 (Ω) . Thus T maps W 1,1 0 (Ω) into itself. Clearly, if u n → u in W 1,1 0 (Ω) as n → ∞, then h(|∇u n |) → h(|∇u|) in L 1 (Ω), thus T is continuous. We claim that T is a compact operator. In fact, for u ∈ W 1,1 0 (Ω), we see that f -h(|∇u|) ∈ L 1 (Ω) and then, by Propo- sition 2.3, it implies that T u ∈ W 2α-γ,p 0 (Ω) where γ ∈ ( N (p-1) p , 2α -1) and 2α -1 > N (p-1) p > 0 for p ∈ (1, N N -2α+1 ). Since the embedding W 2α-γ,p 0 (Ω) ֒→ W 1,1 0 (Ω) is compact, T is a compact operator. Let O = {u ∈ W 1,1 0 (Ω) : u W 1,1 (Ω) ≤ c 10 ( f L ∞ (Ω) + h L ∞ (R + )
)}, which is a closed and convex set of W 1,1 0 (Ω). Combining with (2.13), there holds

T (O) ⊂ O.
It follows by Schauder's fixed point theorem that there exists some u ∈ W 1,1 0 (Ω) such that T u = u.

Next we show that u is a classical solution of (2.12). Let open set O satisfy O ⊂ Ō ⊂ Ω. By Proposition 2.3 in [START_REF] Ros-Oton | The Dirichlet problem for the fractional laplacian: regularity up to the boundary[END_REF], for any σ ∈ (0, 2α), there exists c 12 > 0 such that

u C σ (O) ≤ c 12 { h(|∇u|) L ∞ (Ω) + f L ∞ (Ω) },
and by choosing σ = 2α+1 2 ∈ (1, 2α), then |∇u| C σ-1 (O) ≤ c 12 { h(|∇u|) L ∞ (Ω) + f L ∞ (Ω) },
and then applied [26, Corollary 2.4], u is C 2α+ǫ 0 locally in Ω for some ǫ 0 > 0. Then u is a classical solution of (2.12). Moreover, from [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF], we have

Ω [u(-∆) α ξ + h(|∇u|)ξ]dx = Ω ξf dx, ∀ξ ∈ X α .
(2.14)

Step 2. Proof of (i). If u is not nonnegative, then there exists x 0 ∈ Ω such that u(x 0 ) = min x∈Ω u(x) < 0, then ∇u(x 0 ) = 0 and (-∆) α u(x 0 ) < 0. Since u is the classical solution of (2.12), (-∆) α u(x 0 ) = f (x 0 ) -h(0) ≥ 0, which is a contradiction.

Step 3. Proof of (ii). We just give the proof of the first argument, the proof of the second being similar. Let h 1 and h 2 satisfy our hypotheses for h and h 1 ≤ h 2 . Denote u 1 and u 2 the solutions of (2.12) with h replaced by h 1 and h 2 respectively. If there exists x 0 ∈ Ω such that

(u 1 -u 2 )(x 0 ) = min x∈Ω {(u 1 -u 2 )(x)} < 0. Then (-∆) α (u 1 -u 2 )(x 0 ) < 0, ∇u 1 (x 0 ) = ∇u 2 (x 0 ).
This implies

(-∆) α (u 1 -u 2 )(x 0 ) + h 1 (|∇u 1 (x 0 )|) -h 2 (|∇u 2 (x 0 )|) < 0. (2.15) 
However,

(-∆) α (u 1 -u 2 )(x 0 ) + h 1 (|∇u 1 (x 0 )|) -h 2 (|∇u 2 (x 0 )|) = f (x 0 ) -f (x 0 ) = 0, contradiction. Then u 1 ≥ u 2 .
Uniqueness follows from Step 3.

3 Proof of Theorems 1.1 and 1.2

The absorption case

In this subsection, we prove the existence of a weak solution to (1.1) when ǫ = 1. To this end, we give below an auxiliary lemma.

Lemma 3.1 Assume that g : R + → R + is continuous and (1.10) holds with p * α . Then there is a sequence real positive numbers {T n } such that

lim n→∞ T n = ∞ and lim n→∞ g(T n )T -p * α n = 0.
Proof. Let {s n } be a sequence of real positive numbers converging to ∞. We observe

2sn sn g(t)t -1-p * α dt ≥ min t∈[sn,2sn] g(t)(2s n ) -1-p * α 2sn sn dt = 2 -1-p * α s -p * α n min t∈[sn,2sn] g(t)
and by (1.10),

lim n→∞ 2sn sn g(t)t -1-p * α dt = 0.
Then we choose T n ∈ [s n , 2s n ] such that g(T n ) = min t∈[sn,2sn] g(t) and then the claim follows.

Proof of Theorem 1.1. Let β ∈ [0, 2α -1), we define the space

C β ( Ω) = {ζ ∈ C( Ω) : ρ -β ζ ∈ C( Ω)}
endowed with the norm

ζ C β ( Ω) = ρ -β ζ C( Ω) .
Let {ν n } ⊂ C 1 ( Ω) be a sequence of nonnegative functions such that ν n → ν in sense of duality with C β ( Ω), that is,

lim n→∞ Ω ζν n dx = Ω ζdν, ∀ζ ∈ C β ( Ω). (3.1) 
By the Banach-Steinhaus Theorem, ν n M(Ω,ρ β ) is bounded independently of n. We consider a sequence {g n } of C 1 nonnegative functions defined on R + such that g n (0) = 0 and

g n ≤ g n+1 ≤ g, sup s∈R + g n (s) = n and lim n→∞ g n -g L ∞ loc (R + ) = 0. (3.2)
By Theorem 2.1, there exists a unique nonnegative solution u n of (1.1) with data ν n and g n instead of ν and g, and there holds

Ω (u n + g n (|∇u n |)η 1 ) dx = Ω ν n η 1 dx ≤ C ν M(Ω,ρ β ) , (3.3) 
where

η 1 = G α [1]. Therefore, g n (|∇u n |) M(Ω,ρ α ) is bounded independently of n. For ε > 0 and ξ ε = (η 1 + ε) β α -ε β α ∈ X α which is concave in the interval [0, η 1 (ω)], where η 1 (ω) = max x∈Ω η 1 (x). By [13, Lemma 2.3 (ii)], we see that (-∆) α ξ ε = β α (η 1 + ε) 1 α (-∆) α η 1 - β(β -α) α 2 (η 1 + ε) β-2α α Ω (η 1 (y) -η 1 (x)) 2 |y -x| N +2α dy ≥ β α (η 1 + ε) β-α α ,
and

ξ ε ∈ X α . Since Ω (u n (-∆) α ξ ε + g n (|∇u n |)ξ ε ) dx = Ω ξ ε ν n dx, we obtain Ω β α u n (η 1 + ε) β-α α + g n (|∇u n |)ξ ε dx ≤ Ω ξ ε ν n dx.
If we let ε → 0, it yields

Ω β α u n η β-α α 1 + g n (|∇u n |)η β α 1 dx ≤ Ω η β α 1 ν n dx.
Using [13, Lemma 2.3], we derive the estimate

Ω u n ρ β-α + g n (|∇u n |)ρ β dx ≤ c 13 ν n M(Ω,ρ β ) ≤ c 14 ν M(Ω,ρ β ) . (3.4) Thus {g n (|∇u n |)} is uniformly bounded in L 1 (Ω, ρ β dx). Since u n = G[ν n - g n (|∇u n |)],
there holds

|∇u n | M p * α (Ω,ρ α dx) ≤ ν n M(Ω,ρ β ) + g n (|∇u n |) M(Ω,ρ β ) ≤ c 15 ν M(Ω,ρ β ) . Since ν n -g n (|∇u n |) is uniformly bounded in L 1 (Ω, ρ β dx), we use Proposition 2.4 to obtain that the sequences {u n }, {|∇u n |} are relatively compact in L q (Ω) for q ∈ [1, N N -2α+β
) and q ∈ [1, p * α,β ), respectively. Thus, there exist a sub-sequence {u n k } and some u ∈ L q (Ω) with q ∈ [1, N N -2α+β ) such that (i) u n k → u a.e. in Ω and in L q (Ω) with q ∈ [1, N N -2α+β ); (ii) |∇u n k | → |∇u| a.e. in Ω and in L q (Ω) with q ∈ [1, p * α,β ). Therefore, g n k (|∇u n k |) → g(|∇u|) a.e. in Ω. For λ > 0, we denote

S λ = {x ∈ Ω : |∇u n k (x)| > λ} and ω(λ) = S λ ρ α (x)dx.
Then for any Borel set E ⊂ Ω, we have that 

E g n k (|∇u n k |)|ρ α (x)dx ≤ E g(|∇u n k |)|ρ α (x)dx = E∩S c λ g(|∇u n k |)ρ α (x)dx + E∩S λ g(|∇u n k |)ρ α (x)dx ≤ g(λ) E ρ α (x)dx + S λ g(|∇u n k |)ρ α (x)dx ≤ g(λ) E ρ α (x)dx - ∞ λ g(s)dω(s),
≤ g(λ)ω(λ) -g(T n )ω(T n ) + c 16 Tn λ s -p * α dg(s) ≤ g(λ)ω(λ) -g(T n )ω(T n ) + c 16 T n -p * α g(T n ) -λ -p * α g(λ) + c 16 p * α + 1 Tn λ s -1-p * α g(s)ds.
By assumption (1.10) and Lemma 3.1, it follows

lim n→∞ T -p * α n g(T n ) = 0. (3.5)
Along with g(λ)ω(λ) ≤ c 16 λ -p * α g(λ), we have

- ∞ λ g(s)dω(s) ≤ c 16 p * α + 1 ∞ λ s -1-p * α g(s)ds.
Notice that the above quantity on the right-hand side tends to 0 when λ → ∞. It implies that for any ǫ > 0 there exists λ > 0 such that

c 16 p * α + 1 ∞ λ s -1-p * α g(s)ds ≤ ǫ 2 ,
and δ > 0 such that

E ρ α (x)dx ≤ δ =⇒ g(λ) E dx ≤ ǫ 2 .

This proves that {g

n k (|∇u n k |)} is uniformly integrable in L 1 (Ω, ρ α dx). Then g n k (|∇u n k |) → g(|∇u|) in L 1 (Ω, ρ α dx) by Vitali convergence theorem. Let- ting n k → ∞ in the identity Ω (u n k (-∆) α ξ + g n k (|∇u n k |)ξ) dx = Ω ν n k ξdx, ∀ξ ∈ X α ,
it infers that u is a weak solution of (1.1). Since u n k is nonnegative, so is u.

Estimate (1.12) is a consequence of positivity and

u n k = G α [ν n k ] -G α [g n k (|∇u n k |)] ≤ G α [ν n k ].
Since lim n k →∞ u n k = u, (1.12) follows.

The source case

In this subsection we study the existence of solutions to problem (1.1) when ǫ = -1.

Proof of Theorem 1.2. Let {ν n } be a sequence of C 2 nonnegative functions converging to ν in the sense of (3.1), {g n } an increasing sequence of C 

M (v) = Ω |∇v| p 0 dx 1 p 0 .
We may assume that ν n L 1 (Ω,ρ β dx) ≤ 2 ν M(Ω,ρ β ) for all n ≥ 1.

Step 1. We claim that for n ≥ 1,

(-∆) α u n = g n (|∇u n |) + ν n in Ω, u n = 0 in Ω c admits a solution u n such that M (u n ) ≤ λ,
where λ > 0 independent of n.

To this end, we define the operators {T n } by

T n u = G α [g n (|∇u|) + ν n ] , ∀u ∈ W 1,p 0 0 (Ω).
On the one hand, using (2.6) with τ = 0 yields

T n u W 1,1 (Ω) ≤ G α [ν n ] W 1,1 (Ω) + G α [g n (|∇u|)] W 1,1 (Ω) ≤ c 11 ν n L ∞ (Ω) + g n L ∞ (R + ) ,
where c 11 = Ω G α (•, y)dy W 1,1 (Ω) . On the other hand, by (1.14) and Proposition 2.4, we have

Ω |∇(T n u)| p 0 dx 1 p 0 ≤ c 2 g n (|∇u|) + ν n L 1 (Ω,ρ β dx) ≤ c 2 [ g n (|∇u|) L 1 (Ω,ρ β dx) + 2 ν M(Ω,ρ β ) ] (3.6) ≤ c 2 c 1 Ω |∇u| p ρ β dx + c 17 σ 0 + 2c 2 ν M(Ω,ρ β ) ,
where c 17 = c 2 Ω ρ β dx. Then we use Hölder inequality to obtain that

Ω |∇u| p ρ β dx 1 p ≤ ( Ω ρ βp 0 p 0 -p dx) 1 p -1 p 0 Ω |∇u| p 0 dx 1 p 0 , (3.7) 
where Ω ρ βp 0 p 0 -p dx is bounded, since βp 0 p 0 -p ≥ 0. Along with (3.6) and (3.7), we derive

M (T n u) ≤ c 18 M (u) p + c 19 ν M(Ω,ρ β ) + c 17 σ 0 , (3.8) 
where

c 18 = c 2 c 1 ( Ω ρ βp 0 p 0 -p dx) 1 p -1
p 0 > 0 and c 19 > 0 independent of n. Therefore, if we assume that M (u) ≤ λ, inequality (3.8) implies

M (T n u) ≤ c 18 λ p + c 19 ν M(Ω,ρ β ) + c 17 σ 0 .
(3.9)

Let λ > 0 be the largest root of the equation

c 18 λ p + c 19 ν M(Ω,ρ β ) + c 17 σ 0 = λ, (3.10) 
This root exists if one of the following condition holds:

(i) p ∈ (0, 1), in which case (3.10) admits only one root;

(ii) p = 1 and c 17 < 1, and again (3.10) admits only one root;

(iii) p ∈ (1, p * α ) and there exists ε 0 > 0 such that max ν M(Ω,ρ β ) , σ 0 ≤ ε 0 . In that case (3.10) admits usually two positive roots.

If we suppose that one of the above conditions holds, the definition of λ > 0 implies that it is the largest λ > 0 such that

c 18 λ p + c 19 ν M(Ω,ρ β ) + c 17 σ 0 ≤ λ, (3.11) 
For M (u) ≤ λ, we obtain that

M (T n u) ≤ c 18 λp + c 19 ν M(Ω,ρ β ) + c 17 σ 0 = λ.
By the assumptions of Theorem 1.2, λ exists and it is larger than M (u n ). Therefore,

Ω |∇(T n u)| p 0 dx ≤ λp 0 . (3.12) 
Thus T n maps W 1,p 0 0 (Ω) into itself. Clearly, if u n → u in W 1,p 0 0 (Ω) as n → ∞, then g n (|∇u n |) → g n (|∇u|) in L 1 (Ω), thus T is continuous. We claim that T is a compact operator. In fact, for u ∈ W 1,p 0 0 (Ω), we see that ν n -g n (|∇u|) ∈ L 1 (Ω) and then, by Proposition 2.3, it implies that T n u ∈ W 2α-γ,p 0 (Ω) where γ ∈ ( N (p-1) p , 2α -1) and 2α -1 > N (p-1) p > 0 for p ∈ (1, N N -2α+1 ). Since the embedding W 2α-γ,p 0 (Ω) ֒→ W 1,p 0 0 (Ω) is compact, T n is a compact operator. Let G = {u ∈ W 1,p 0 0 (Ω) : u W 1,1 (Ω) ≤ c 11 ( ν n L ∞ (Ω) + g n L ∞ (R + ) )
and M (u) ≤ λ}, which is a closed and convex set of W 1,p 0 0 (Ω). Combining with (2.13), there holds

T n (G) ⊂ G.
It follows by Schauder's fixed point theorem that there exists some u n ∈ W 1,p 0 0

(Ω) such that T n u n = u n and M (u n ) ≤ λ, where λ > 0 independent of n. By the same arguments as in Theorem 2.1, u n belongs to C 2α+ǫ 0 locally in Ω, and

Ω u n (-∆) α ξ = Ω g n (|∇u n |)ξdx + Ω ξν n dx, ∀ξ ∈ X α . (3.13) 
Step 2: Convergence. By (3.12) and (3.7),

g n (|∇u n |) is uniformly bounded in L 1 (Ω, ρ β dx). By Proposition 2.3, {u n } is bounded in W 2α-γ,q 0
(Ω) where q ∈ (1, p * α,β ) and 2α -γ > 1. By Proposition 2.4, there exist a subsequence {u n k } and u such that u n k → u a.e. in Ω and in L 1 (Ω), and |∇u n k | → |∇u| a.e. in Ω and in L q (Ω) for any q ∈ [1, p * α,β ). By assumption (G),

g n k (|∇u n k |) → g(|∇u|) in L 1 (Ω). Letting n k → ∞ to have that Ω u(-∆) α ξ = Ω g(|∇u|)ξdx + Ω ξdν, ∀ξ ∈ X α ,
thus u is a weak solution of (1.1) which is nonnegative as {u n } are nonnegative. Furthermore, (1.15) follows from the positivity of g(|∇u n ]).

The case of the Dirac mass

In this section we assume that Ω is an open, bounded and C 2 domain containing 0 and u a nonnegative weak solution of

(-∆) α u + |∇u| p = δ 0 in Ω, u = 0 in Ω c , (4.1) 
where p ∈ (0, p * α ) and δ 0 is the Dirac mass at 0. We recall the following result dealing with the convolution operator * in Lorentz spaces L p,q (R N ) (see [START_REF] Neil | Convolution operators and L(p, q) spaces[END_REF]).

Proposition 4.1 Let 1 ≤ p 1 , q 1 , p 2 , q 2 ≤ ∞ and suppose 1 p 1 + 1 p 2 > 1. If f ∈ L p 1 ,q 1 (R N ) and g ∈ L p 2 ,q 2 (R N ), then f * g ∈ L r,s (R N ) with 1 r = 1 p 1 + 1 p 2 -1, 1 q 1 + 1 q 2 ≥ 1 s and there holds f * g L r,s (R N ) ≤ 3r f L p 1 ,q 1 (R N ) g L p 2 ,q 2 (R N ) . (4.2) 
In the particular case of Marcinkiewicz spaces L p,∞ (R N ) = M p (R N ), the result takes the form

f * g M r (R N ) ≤ 3r f M p 1 (R N ) g M p 2 (R N ) . (4.3) 
Proposition 4.2 Assume that 0 < p < p * α and u is a nonnegative weak solution of (4.1). Then

0 ≤ u ≤ G α [δ 0 ], (4.4) 
|∇u| ∈ L ∞ loc (Ω \ {0}) and u is a classical solution of

(-∆) α u + |∇u| p = 0 in Ω \ {0}, u = 0 in Ω c . (4.5) 
Proof. Since 0 < p < p * α , (4.1) admits a solution. Estimate (4.4) is a particular case of (1.12). We pick a point a ∈ Ω \ {0} and consider a finite sequence {r j } κ j=0 such that 0 < r κ < r κ-1 < ... < r 0 and Br 0 (a) ⊂ Ω \ {0}. We set d j = r j-1 -r j , j = 1, ...κ. By (3.4) with β = 0, it follows that

Ω (u + |∇u| p ) dx ≤ c 20 . (4.6) 
Let {η n } ⊂ C ∞ 0 (R N ) be a sequence of radially decreasing and symmetric mollifiers such that supp(η n ) ⊂ B εn (0) and ε n ≤ 1 2 min{ρ(a) -r 0 , |a| -r 0 } and u n = u * η n . Since

η n * (-∆) α ξ = (-∆) α (ξ * η n )
by Fourier analysis and

R N (u(-∆) α (ξ * η n )+ ξ * η n |∇u| p )dx = R N (u * η n (-∆) α ξ + η n * |∇u| p ξ)dx because η n is radially symmetric, it follows that u n is a classical solution of (-∆) α u n + |∇u| p * η n = η n in Ω n , u n = 0 in Ω c n , (4.7) 
where Ω n = {x ∈ R N : dist(x, Ω) < ε n }. We denote by G α,n (x, y) the Green kernel of (-∆) α in Ω n and by G α,n the Green operator. Set

f n = η n -|∇u| p * η n , then u n = G α,n [f n ]. If we set f n,r 0 = f n χ Br 0 (a)
, fn,r 0 = f n -f n,r 0 , we have ∂ x i G α,n (x, y)f n (y)dy.

∂ x i u n (x) = Ωn ∂ x i G α,n (x, y)f n (y)dy = Ωn ∂ x i G α,n (x, y)f n,r 0 (y)dy + Ωn ∂ x i G α,n (x,
We set ρ n (x) = dist(x, Ω c n ), then by (2.4) and (2.5), we have , N and α. Furthermore, if x ∈ B r 1 (a) and y ∈ B r 0 (a),

|∂ x i G α,n (x, y)| ≤ c 4 N max 1 |x -y| N -2α+1 , ρ -1 n (x) |x -y| N -2α . Thus, if x ∈ B
|∂ x i G α,n (x, y)| ≤ c 4 N |x -y| N -2α+1 .
(4.9)

We have already use the fact that y → |y| 2α-N -1 ∈ L q 1 loc (R N ) with q 1 ∈ (max{1, p}, p * α ). Since f n is uniformly bounded in L 1 (Ω), there exists

c 22 > 0 such that v n,r 0 M q 1 (Br 1 (a)) ≤ c 22 . (4.10) 
Combined with (4.8), it yields

|∇u| p * η n M q 1 p (Br 1 (a)) ≤ c 23 . (4.11) 
Next we set f n,r 1 = f n χ Br 1 (a) and fn,r 1 = f n -f n,r 1 . Then

∂ x i u n = v n,r 1 + ṽn,r 1 ,
where

v n,r 1 (x) = Br 1 (a) ∂ x i G α (x, y)f n (y)dy = - Br 1 (a) ∂ x i G α (x, y)|∇u| p * η n (y)dy and ṽn,r 1 (x) = Ωn\Br 1 (a) ∂ x i G α (x, y)f n (y)dy
Clearly ṽn,r 1 (x) is uniformly bounded in B r 2 (a) by a constant c 24 depending on the structural constants and d 2 = r 1 -r 2 . Estimate (4.9) holds if we assume x ∈ B r 2 (a) and y ∈ B r 1 (a). Therefore,

|v n,r 1 (x)| ≤ c 4 N Br 1 (a)
|∇u| p * η n (y) |x -y| N -2α+1 dy.

We derive from Proposition 4.1

v n,r 1 M q 2 (Br 2 (a)) ≤ c 24 |∇u| p * η n M q 1 p (Br 1 (a))
,

with 1 q 2 = p q 1 + 1 q 1 -1. (4.12)
Notice that q 2 > q 1 . Therefore

|∇u| p * η n M q 2 p (Br 2 (a)) ≤ c 25 . (4.13) 
We iterate this construction and obtain the existence of constants c j such that

|∇u| p * η n M q j p (Br j (a)) ≤ cj , ∀j = 1, 2, .... (4.14) 
We pick

q 1 = 1 2 (p * α + p) if p > 1 or q 1 = 1 2 (p * α + 1) if p ∈ (0, 1] 1 q j+1 = p q j + 1 q 1 -1. ( 4.15) 
If p = 1, there exists j 0 ∈ N such that q j 0 > 0 and

q j 0 +1 ≤ 0. If p ∈ (0, p * α ) \ {1}, let ℓ = q 1 -1 q 1 (p-1) , then ℓ = pℓ + 1 q 1 -1, thus 1 q j+1 = ℓ + p j 1 q 1 -ℓ = ℓ -p j q 1 -p q 1 (p -1) . (4.16) 
Therefore there exists j 0 such that q j 0 > 0 and q j 0 +1 ≤ 0. This implies 

|∇u| p * η n L s (Br j 0 +1 (a)) ≤ c 26 , ∀s < ∞ (4.
Combining this estimate with (4.4) and using [26, Corollary 2.5] which states

u C β (Br j 0 +3 (a)) ≤ c u L 1 (R N , dx 1+|x| 
N+2α ) + u L ∞ (Br j 0 +2 (a)) + ∇u L ∞ (Br j 0 +2 (a)) , (4.20) 
for any β < 2α, we obtain that u remains bounded in C 1+ε (K) for any compact set K ⊂ Ω \ {0} and some ε > 0. Using now [26, Corollary 2.4], we obtain that C 2α+ε ′ (Ω \ {0}) for 0 < ε ′ < ε. Futhermore u is continuous up to ∂Ω. As a consequence it is a strong solution in Ω \ {0}.

In the next result we give a pointwise estimate of ∇u for a positive solution u of (4.1). Proposition 4.3 Assume that R = 1 2 dist(0, ∂Ω), p ∈ (0, p * α ) and u is a nonnegative weak solution of (4.1). Then there exists c 28 > 0 depending on R, p and α such that Then

(-∆) α u b + b N +p(2α-N -1) |∇u b | p = 0 in Ω b := b -1 Ω.
Using [26, Corollary 2.5] with β < 2α, for any a ∈ Ω b such that |a| = 3/4, there holds 

u b C β (B 3 16 (a)) ≤ c 29 u b L 1 (R N , dx 1+|y| 
N+2α ) + u b L ∞ (B 3 8 (a)) +b N +p(2α-N -1) |∇u b | p L ∞ (B 3 
u(x) ≤ G α (x, 0) ≤ c 4 |x| N -2α =⇒ u b (y) ≤ c 4 |y| N -2α . Then u b L 1 (R N , dy 1+|y| N+2α ) ≤ c 4 R N dy |y| N -2α (1 + |y|) N +2α = c 31 .
If we take β = 1, which is possible since α > 1/2, we derive

|∇u b (a)| ≤ c 32 =⇒ |∇u(ba)| ≤ c -1 32 b 2α-N -1
In particular, with |b| = 4|x|/3 we derive (4.21) with

c 28 = c -1 32 ( 4 3 ) 2α-N -1 . We denote c N,α = lim x→0 |x| N -2α G α (x, 0). (4.24)
It is well known that c N,α > 0 does not depend on the domain Ω and, by the maximum principle, G α (x, 0) ≤ c N,α |x| 2α-N in Ω \ {0}. 

  where g(s) = max t∈[0,s] {g(t)}. But ∞ λ g(s)dω(s) = lim n→∞ Tn λ g(s)dω(s). where {T n } is given by Lemma 3.1. Since |∇u n k | ∈ M p * α (Ω, ρ α dx), ω(s) ≤ c 16 s -p * α and -Tn λ g(s)dω(s) = -g(s)ω(s)

  y) fn,r 0 (y)dy = v n,r 0 (x) + ṽn,r 0 (x), where v n,r 0 (x) = Br 0 (a) ∂ x i G α,n (x, y)f n (y)dy = -Br 0 (a) ∂ x i G α,n (x, y)|∇u| p * η n (y)dy and ṽn,r 0 (x) = Ωn\Br 0 (a)

  r 1 (a) and y ∈ Ω n \ B r 0 (a), then ρ n (x) > d 1 and |x -y| > d 1 , |ṽ n,r 0 (x)| ≤ c 21 Ωn\Br 0 (a) f n (y)dy ≤ c 20 c 21 ,(4.8)where c 21 > 0 depends on d -N +2α-1 1

17

 17 

  ) and |∇u| p * η n L ∞ (Br j 0 +2 (a)) ≤ c 27 , (4.18) with c 27 independent of n. Letting n → ∞ infers ∇u L ∞ (Br j 0 +2 (a)) ≤ c 1 p 27 .

  |∇u(x)| ≤ c 28 |x| 2α-N -1 , ∀x ∈ BR/4 (0) \ {0}. (4.21) Proof. Up to a change of variable we can assume that R = 1. For 0 < |x| ≤ 1, there exists b ∈ (0, 1) such that b/2 ≤ |x| ≤ b. We set u b (y) = b N -2α u(by).
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(4. 22 )L ∞ (B 3 8 (a)) ≤ c 30 Ω

 22830 Furthermore, by the same argument as in Proposition 4.2, |∇u b | p b |∇u b (y)| p dy = c 30 b p(N +1-2α)-N Ω |∇u(x)| p dx, (4.23) and from (4.4) and (2.4)
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 41440402121 Let Ω be an open bounded C 2 domain containing 0, α ∈ ( 1 2 , 1) and 0 < p < p * α . If u is a positive solution of problem (4.1) and BR (0) ⊂ Ω, it satisfies(i) if 2α N -2α+1 < p < p * α , 0 < c N,α |x| N -2α -u(x) ≤ c 33 |x| (N -2α+1)p-2α , x ∈ B R/4 (0) \ {0}; (ii) if p = 2α N -2α+1 , 0 < c N,α |x| N -2α -u(x) ≤ -c 33 ln(|x|), x ∈ B R/4 (0) \ {0}; (iii) if 0 < p < 2α N -2α+1 , 0 < c N,α |x| N -2α -u(x) ≤ c 33 , x ∈ B R/4 (0) \ {0},where c 33 depends on N , p, α and R. Furthermore, if 1 ≤ p < p * α , this solution is unique.Proof. The existence of a nonnegative weak solution is a consequence of the subriticality assumption; the fact that this solution is a classical solution in Ω \ {0} derives from Proposition 4.2. It follows by (4.4) and (4.6) that for any x ∈ Ω \ {0}, c N,α |x| N -2α -u(x) ≤ Ω G α (x, y)|∇u(y)| p dy ≤ c p 28 c |x -y| 2α-N |y| p(2α-N -1) dy + c 34 ∇u L p (Ω) |x -y| 2α-N |y| p(2α-N -1) dy + 1   (4.25) where c 34 , c 35 > 0 depend on N , p and α. Next we assume 0< |x| ≤ R 16 . Case: 2α N -2α+1 < p < p * α . We can write B R |x -y| 2α-N |y| p(2α-N -1) dy = E 1 + E |x -y| 2α-N |y| p(2α-N -1) dy ≤ c 36 ,where c 36 > 0 depends on N , α, p and R and |x -y| 2α-N |y| p(2α-N -1) dy= |x| 2α-p(N +1-2α) |ξ -ζ| 2α-N |ζ| p(2α-N -1) dζ ≤ |ζ|>2 |ξ -ζ| 2α-N |ζ| p(2α-N -1) dζ with ξ = x/|x|. Since 2α -N < 0, |ξ -ζ| 2α-N ≤ (|ζ| -1) 2α-N , then E 2 ≤ c N ∞ 2α-N r p(2α-N -1)+N -1 dr = c 37 .Thus (i) follows.Case: 2α N -2α+1 = p. We see that |ξ -ζ| 2α-N |ζ| -2α dζ, then clearly E 2 = -ln |x| + o(1) when |x| → 0. Thus (ii) follows. Case: 0 < p < 2α N -2α+1 . We have that 2α-N |ζ| -2α dζ = c 29 |x| p(N +1-2α)-2α +o(1) when |x| → 0.Thus (iii) follows. Uniqueness in the case 1 ≤ p < p * α , is very standard, since if u 1 and u 2 are two positive solutions of (4.1), they satisfieslim x→0 u 1 (x) u 2 (x) = 1.Then, for any ε > 0, u 1,ε := (1 + ε)u 1 is a supersolution which dominates u 2 near 0, it follows by the maximum principle that w:= u 2 -(1 + ε)u 1 satisfies (-∆) α w + |∇u 2 | p -|∇u 1,ε | p ≤ 0since w is negative near 0 and vanishes on ∂Ω, if it is not always negative, there would exists x 0 ∈ Ω \ {0} such that w(x 0 ) reaches a maximum and |∇u 2 (x 0 )| = |∇u 1,ε (x 0 )|, thus (-∆) α w(x 0 ) ≤ 0, contradiction.Remark. If 0 < p < 1, the nonlinearity is not convex and uniqueness does hold only if two solutions u 1 and u 2 satisfy lim x→0 (u 1 (x) -u 2 (x)) = 0.