
HAL Id: hal-00856008
https://hal.science/hal-00856008v4

Preprint submitted on 30 Sep 2013 (v4), last revised 26 Nov 2013 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semilinear fractional elliptic equations with gradient
nonlinearity involving measures

Huyuan Chen, Laurent Veron

To cite this version:
Huyuan Chen, Laurent Veron. Semilinear fractional elliptic equations with gradient nonlinearity
involving measures. 2013. �hal-00856008v4�

https://hal.science/hal-00856008v4
https://hal.archives-ouvertes.fr


Semilinear fractional elliptic equations with

gradient nonlinearity involving measures

Huyuan Chen1 Laurent Véron2
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Abstract

We study the existence of solutions to the fractional elliptic equa-
tion (E1) (−∆)αu + ǫg(|∇u|) = ν in a bounded regular domain Ω of
RN (N ≥ 2), subject to the condition (E2) u = 0 in Ωc, where ǫ = 1
or −1, (−∆)α denotes the fractional Laplacian with α ∈ (1/2, 1), ν
is a Radon measure and g : R+ 7→ R+ is a continuous function. We
prove the existence of weak solutions for problem (E1)-(E2) when g is
subcritical. Furthermore, the asymptotic behavior and uniqueness of
solutions are described when ν is Dirac mass, g(s) = sp, p ≥ 1 and
ǫ = 1.
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1 Introduction

Let Ω ⊂ R
N (N ≥ 2) be an bounded C2 domain and g : R+ 7→ R+ be a

continuous function. The purpose of this paper is to study the existence of
weak solutions to the semilinear fractional elliptic problem with α ∈ (1/2, 1),

(−∆)αu+ ǫg(|∇u|) = ν in Ω,

u = 0 in Ωc,
(1.1)

where ǫ = 1 or −1 and ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1]. Here ρ(x) =
dist(x,Ωc) and M(Ω, ρβ) is the space of Radon measures in Ω satisfying

∫

Ω
ρβd|ν| < +∞. (1.2)

In particular, we denote M
b(Ω) = M(Ω, ρ0). The associated positive cones

are respectively M+(Ω, ρ
β) and M

b
+(Ω). According to the value of ǫ, we

speak of an absorbing nonlinearity the case ǫ = 1 and a source nonlinearity
the case ≥= −1. The operator (−∆)α is the fractional Laplacian defined as

(−∆)αu(x) = lim
ε→0+

(−∆)αε u(x),

where for ε > 0,

(−∆)αε u(x) = −

∫

RN

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz (1.3)

and

χε(t) =

{

0, if t ∈ [0, ε],

1, if t > ε.

In a pioneering work, Benilan and Brezis [7], [1] studied the existence
and uniqueness of the solution to the semilinear Dirichlet elliptic problem

−∆u+ h(u) = ν in Ω,

u = 0 on ∂Ω,
(1.4)

where ν is a bounded measure in Ω and the function h is nondecreasing,
positive on (0,+∞) and satisfies that

∫ +∞

1
(h(s)− h(−s))s−2N−1

N−2 ds < +∞.

Later on, Véron [29] improved this result in replacing the Laplacian by
more general uniformly elliptic second order differential operator, where
ν ∈ M(Ω, ρβ) with β ∈ [0, 1] and h is a nondecreasing function satisfying

∫ +∞

1
(h(s)− h(−s))s−2N+β−1

N+β−2ds < +∞.
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The general semilinear elliptic problems involving measures such as the equa-
tions involving boundary measures have been intensively studied; it was ini-
tiated by Gmira and Véron [16] and then this subject has being extended
in various ways, see [4, 6, 18, 19, 20, 21] for details and [22] for a general
panorama. In a recent work, Nguyen-Phuoc and Véron [24] obtained the
existence of solutions to the viscous Hamilton-Jacobi equation

−∆u+ h(|∇u|) = ν in Ω,

u = 0 on ∂Ω,
(1.5)

when ν ∈ M
b(Ω), h is a continuous nondecreasing function vanishing at 0

which satisfies
∫ +∞

1
h(s)s−

2N−1

N−1 ds < +∞.

During the last years there has also been a renewed and increasing inter-
est in the study of linear and nonlinear integro-differential operators, espe-
cially, the fractional Laplacian, motivated by great applications in physics
and by important links on the theory of Levy processes. Many estimates
of its Green kernel and generation formula can be found in the references
[8, 11, 12, 13, 10, 14, 26, 28, 27]. Recently, Chen and Véron [13] studied the
semilinear fractional elliptic equation

(−∆)αu+ h(u) = ν in Ω,

u = 0 in Ωc,
(1.6)

where ν ∈ M(Ω, ρβ) with β ∈ [0, α]. They proved the existence and unique-
ness of the solution to (1.6) when the function h is nondecreasing and satisfies

∫ +∞

1
(h(s)− h(−s))s−1−kα,βds < +∞,

where

kα,β =

{

N
N−2α , if β ∈ [0, N−2α

N α],

N+α
N−2α+β , if β ∈ (N−2α

N α,α].
(1.7)

Our interest in this article is to investigate the existence of weak solutions
to fractional equations involving nonlinearity in the gradient term and with
Radon measure. In order the fractional Laplacian be the dominant operator
in terms of order of differentiation, in is natural to assume that α ∈ (1/2, 1).

Definition 1.1 We say that u is a weak solution of (1.1), if u ∈ L1(Ω),
∇u ∈ L1

loc(Ω), g(|∇u|) ∈ L1(Ω, ραdx) and

∫

Ω
[u(−∆)αξ + ǫg(|∇u|)ξ]dx =

∫

Ω
ξdν, ∀ ξ ∈ Xα, (1.8)
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where Xα ⊂ C(RN ) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ε0 > 0 such that |(−∆)αε ξ| ≤ ϕ a.e. in
Ω, for all ε ∈ (0, ε0].

We denote by Gα the Green kernel of (−∆)α in Ω and by Gα[.] the
associated Green operator defined by

Gα[ν](x) =

∫

Ω
Gα(x, y)dν(y), ∀ ν ∈ M(Ω, ρα). (1.9)

Using bounds on Gα[ν], we obtain in section 2 some crucial estimates which
will play an important role in our construction of weak solutions. Our main
result in the case ǫ = 1 is the following.

Theorem 1.1 Assume ǫ = 1 and let g : R+ 7→ R+ be a continuous function
verifying g(0) = 0 and

∫ +∞

1
g(s)s−1−p∗αds < +∞, (1.10)

where

p∗α =
N

N − 2α+ 1
. (1.11)

Then for any ν ∈ M+(Ω, ρ
2α−1), problem (1.1) admits a nonnegative weak

solution uν which satisfies
uν ≤ Gα[ν]. (1.12)

As in the case α = 1, uniqueness remains an open question. We note that
the critical value p∗α is independent of β. A similar fact was first observed
when dealing with problem (1.6) where the critical value kα,β defined by
(1.7) does not depend on β ∈ [0, N−2α

N α].

When ǫ = −1, we have to consider the critical value p∗α,β which depends
truly on β and is expressed by

p∗α,β =
N

N − 2α+ 1 + β
. (1.13)

We observe that p∗α,0 = p∗α and p∗α,β < p∗α when β > 0. In the source case,
the assumptions on g are of a different nature than in the absorption case,
namely
(G) g : R+ 7→ R+ is a continuous function which satisfies

g(s) ≤ c1s
p + σ0, ∀s ≥ 0, (1.14)

for some p < p∗α,β where c1 > 0 and σ0 > 0.

Our main result concerning the source case is the following.
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Theorem 1.2 Assume ǫ = −1, ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1) is non-
negative, g satisfies (G) and

(i) p ∈ (0, 1), or

(ii) p = 1 and c1 is small enough, or

(iii) p ∈ (1, p∗α,β), σ0 and ‖ν‖M(Ω,ρβ) are small enough.

Then problem (1.1) admits a weak nonnegative solution uν which satisfies

uν ≥ Gα[ν]. (1.15)

Recently, Bidaut-Véron, Garćıa-Huidobro and Véron in [5] obtained the
existence of a renormalized solution of

−∆pu = |∇u|q + ν in Ω,

when ν ∈ M
b(Ω). We make use of some idea in [5] in the proof of Theorem

1.2 and extend some results in [5] to elliptic equations involving (−∆)α with
α ∈ (1/2, 1) and ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1).

The paper is organized as follows. In Section 2, we study the Green
operator and prove the key estimate

‖∇Gα[ν]‖Mp∗α (Ω,ραdx) ≤ c2‖ν‖M(Ω,ρβ)

Section 3 is devoted to prove Theorem 1.1 and Theorem 1.2. In Section 4,
we consider the case where ε = 1 in (1.1) and ν is a Dirac measure. We
obtain precise asymptotic estimate and derive uniqueness.

Aknowledgements. The authors are grateful to Marie-Françoise Bidaut-
Véron for useful discussions in the preparation of this work.

2 Preliminaries

2.1 Marcinkiewicz type estimates

In this subsection, we recall some definitions and properties of Marcinkiewicz
spaces.

Definition 2.1 Let Θ ⊂ R
N be a domain and µ be a positive Borel measure

in Θ. For κ > 1, κ′ = κ/(κ − 1) and u ∈ L1
loc(Θ, dµ), we set

‖u‖Mκ(Θ,dµ) = inf

{

c ∈ [0,∞] :

∫

E
|u|dµ ≤ c

(
∫

E
dµ

)
1

κ′

, ∀E ⊂ Θ, E Borel

}

(2.1)
and

Mκ(Θ, dµ) = {u ∈ L1
loc(Θ, dµ) : ‖u‖Mκ(Θ,dµ) < ∞}. (2.2)
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Mκ(Θ, dµ) is called the Marcinkiewicz space of exponent κ, or weak
Lκ-space and ‖.‖Mκ(Θ,dµ) is a quasi-norm.

Proposition 2.1 [2, 9] Assume 1 ≤ q < κ < ∞ and u ∈ L1
loc(Θ, dµ). Then

there exists c3 > 0 dependent of q, κ such that

∫

E
|u|qdµ ≤ c3‖u‖Mκ(Θ,dµ)

(
∫

E
dµ

)1−q/κ

,

for any Borel set E of Θ.

The next estimate is the key-stone of the proof of Theorem 1.1.

Proposition 2.2 Let Ω ⊂ R
N (N ≥ 2) be a bounded C2 domain and ν ∈

M(Ω, ρβ) with β ∈ [0, 2α − 1]. Then

‖∇Gα[|ν|]‖Mp∗α (Ω,ραdx) ≤ c2‖ν‖M(Ω,ρβ), (2.3)

where ∇Gα[|ν|](x) =

∫

Ω
∇xGα(x, y)d|ν|(y) and p∗α is given by (1.11).

Proof. For λ > 0 and y ∈ Ω, we set

ωλ(y) =
{

x ∈ Ω \ {y} : |∇xGα(x, y)|ρ
α(x) > λρβ(y)

}

, mλ(y) =

∫

ωλ(y)
dx.

From [11], there exists c4 > 0 such that for any (x, y) ∈ Ω× Ω with x 6= y,

Gα(x, y) ≤ c4 min

{

1

|x− y|N−2α
,

ρα(x)

|x− y|N−α
,

ρα(y)

|x− y|N−α

}

, (2.4)

Gα(x, y) ≤ c4
ρα(y)

ρα(x)|x − y|N−2α
, (2.5)

and by Corollary 3.3 in [3], we have

|∇xGα(x, y)| ≤ NGα(x, y)max

{

1

|x− y|
,

1

ρ(x)

}

. (2.6)

This implies that for any s ∈ [0, 2α − 1] there exists c5 > 0 such that

|∇xGα(x, y)| ≤ max

{

c5ρ
α(y)

ρα(x)|x− y|N−2α+1
,
c5ρ

α−1−s(x)ρs(y)

|x− y|N−α

}

. (2.7)

Therefore, for 2α − 1− s ≥ 0, we derive

|∇xGα(x, y)|ρ
α(x) ≤ max

{

c5ρ
α(y)

|x− y|N−2α+1
,
c5ρ

2α−1−s(x)ρs(y)

|x− y|N−α

}

≤ max

{

c5ρ
α(y)

|x− y|N−2α+1
,
c5ρ

2α−1−s
Ω

ρs(y)

|x− y|N−α

}

,
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where ρ
Ω
= supz∈Ω ρ(z). Since N − 2α + 1 > N − α and 2α − 1 − s ≥ 0,

there exists some c6 > 0 such that

ωλ(y) ⊂
{

x ∈ Ω : |x− y| ≤ c6 max{ρ
α−β

N−2α+1 (y)λ− 1

N−2α+1 , ρ
s−β
N−α (y)λ− 1

N−α }
}

.

Choosing s = β ∈ [0, 2α − 1] we deduce that for any λ > 1 there holds

ωλ(y) ⊂ {x ∈ Ω : |x− y| ≤ c6ρ
α−β

N−2α+1

Ω λ− 1

N−2α+1 }. (2.8)

As a consequence,
mλ(y) ≤ c7λ

−p∗α,

where c7 > 0 independent of y and λ.
Let E ⊂ Ω be a Borel set and λ > 1, then

∫

E
|∇xGα(x, y)|ρ

α(x)dx ≤

∫

ωλ(y)
|∇xGα(x, y)|ρ

α(x)dx + λρβ(y)

∫

E
dx.

Noting that
∫

ωλ(y)
|∇xGα(x, y)|ρ

α(x)dx = −

∫ ∞

λρβ(y)
sdms(y)

= λρβ(y)mλ(y) +

∫ ∞

λρβ(y)
ms(y)ds

≤ c8ρ
β(y)λ1−p∗α ,

for some c8 > 0, we derive
∫

E
|∇xGα(x, y)|ρ

α(x)dx ≤ ρβ(y)

(

c8λ
1−p∗α + λ

∫

E
dx

)

.

Choosing λ = (
∫

E dx)
− 1

p∗α yields

∫

E
|∇xGα(x, y)|ρ

α(x)dx ≤ c8ρ
β(y)(

∫

E
dx)

p∗α−1

p∗α ∀y ∈ Ω.

Therefore,
∫

E
|∇Gα[|ν|](x)|ρ

α(x)dx =

∫

Ω

∫

E
|∇xGα(x, y)|ρ

α(x)dxd|ν(y)|

≤

∫

Ω
ρβ(y)d|ν(y)| sup

x∈K
ρ−β(y)

∫

E
|∇xGα(x, y)|ρ

α(x)dx

≤ c8

∫

Ω
ρβ(y)d|ν(y)|

(
∫

E
dx

)

p∗α−1

p∗α

≤ c8‖ν‖M(Ω,ρβ)

(
∫

E
dx

)

p∗α−1

p∗α

.

(2.9)
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As a consequence,

‖∇Gα[|ν|]‖Mp∗α (Ω,ραdx) ≤ c8‖ν‖M(Ω,ρβ),

which ends the proof. �

Proposition 2.3 [13] Assume that ν ∈ L1(Ω, ρβdx) with 0 ≤ β ≤ α. Then
for r ∈ (1, N

N−2α+β ) there exists c9 > 0 such that for any ν ∈ L1(Ω, ρβdx)

‖Gα[ν]‖W 2α−γ,r(Ω) ≤ c9‖ν‖L1(Ω,ρβdx), (2.10)

where r′ = r
r−1 , γ = β + N

r′ if β > 0 and γ > N
r′ if β = 0.

Proposition 2.4 If 0 ≤ β < 2α − 1 the mapping ν 7→ |∇Gα[ν]| is compact
from L1(Ω, ρβdx) into Lq(Ω) for any q ∈ [1, p∗α,β) and there exists c10 > 0
such that

(
∫

Ω
|∇Gα[ν]|

qdx

)
1

q

≤ c10

∫

Ω
|ν|ρβ(x)dx. (2.11)

Proof. For ν ∈ L1(Ω, ρβdx) with 0 ≤ β < 2α − 1 and p ∈ (1, N
N−2α+β ), we

obtain from Proposition 2.3 that

Gα[ν] ∈ W 2α−γ,p(Ω),

where 2α− γ > 1. Therefore, |∇Gα[ν]| ∈ W 2α−γ−1,p(Ω) and

‖∇Gα[ν]‖W 2α−γ−1,p(Ω) ≤ c9‖ν‖L1(Ω,ρβ(x)dx). (2.12)

By [23, Th 6.5], the embedding of W 2α−γ−1,p(Ω) into Lq(Ω) is compact for
q ∈ [1, Np

N−(2α−γ−1)p ). When β > 0,

Np

N − (2α− γ − 1)p
=

Np

N − (2α− β −N p−1
p − 1)p

=
N

N + β + 1− 2α
= p∗α,β.

When β = 0,

lim
γ→N

q′
+

Np

N − (2α− γ − 1)p
=

Np

N − (2α−N p−1
p − 1)p

=
N

N + 1− 2α
= p∗α,0.

Then the mapping ν 7→ |∇Gα[ν]| is compact from L1(Ω, ρβ(x)dx) into Lq(Ω)
for any q ∈ [1, p∗α,β). Inequality (2.11) follows by (2.12) and the continuity

of the embedding of W 2α−γ−1,p(Ω) into Lq(Ω). �
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Remark. If ν ∈ L1(Ω, ρβdx) with 0 ≤ β < 2α− 1 and u is the solution of

(−∆)αu = ν in Ω,

u = 0 in Ωc,

there holds, for any q ∈ [1, p∗α,β),

(
∫

Ω
|∇u|qdx

)
1

q

≤ c10

∫

Ω
|ν(x)|ρβ(x)dx.

2.2 Classical solutions

In this section we consider the question of existence of classical solutions to
problem

(−∆)αu+ h(|∇u|) = f in Ω,

u = 0 in Ωc.
(2.13)

We denote that h+(s) = max{h(s), 0} and h−(s) = max{−h(s), 0}.

Theorem 2.1 Assume h ∈ Cθ(R+) ∩ L∞(R+) for some θ ∈ (0, 1] and f ∈
Cθ(Ω̄). Then problem (2.13) admits a unique classical solution u. Moreover,
(i) if f − h(0) ≥ 0 in Ω, then u ≥ 0;

(ii) the mappings h 7→ u and f 7→ u are respectively nonincreasing and
nondecreasing.

Proof of Theorem 2.1. We divide the proof into several steps.
Step 1. Existence. We define the operator T by

Tu = Gα [f − h(|∇u|)] , ∀u ∈ W 1,1
0 (Ω).

Using (2.7) with s = 0 yields

‖Tu‖W 1,1(Ω) ≤ ‖Gα[f ]‖W 1,1(Ω) + ‖Gα[h(|∇u|)]‖W 1,1(Ω)

≤
(

‖f‖L∞(Ω) + ‖h(|∇u|)‖L∞(Ω)

)

‖

∫

Ω
Gα(·, y)dy‖W 1,1(Ω)

= c10
(

‖f‖L∞(Ω) + ‖h‖L∞(R+)

)

, (2.14)

where c10 = ‖
∫

ΩGα(·, y)dy‖W 1,1(Ω). Thus T maps W 1,1
0 (Ω) into itself.

Clearly, if un → u in W 1,1
0 (Ω) when n → ∞, then h(|∇un| → h(|∇u|

in L1(Ω), thus T is continuous. We claim that T is a compact operator.
In fact, for u ∈ W 1,1

0 (Ω), we see that f − h(|∇u|) ∈ L1(Ω) and then, by

Proposition 2.4, it implies that Tu ∈ W 2α−γ,p
0 (Ω) where γ = N(p−1)

p and

2α− γ > 1 for p ∈ (1, N
N−2α). Since the embedding W 2α−γ,p

0 (Ω) →֒ W 1,1
0 (Ω)

is a compact, T is a compact operator.
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Let O = {u ∈ W 1,1
0 (Ω) : ‖u‖W 1,1(Ω) ≤ c10(‖f‖L∞(Ω) + ‖h‖L∞(R+)) },

which is a closed and convex set of W 1,1
0 (Ω). Combining with (2.14), there

holds
T (O) ⊂ O.

It follows by Schauder’s fixed point theorem that there exists some u ∈
W 1,1

0 (Ω) such that Tu = u.
Next we show that u is a classical solution of (2.13). Let open set O

satisfy O ⊂ Ō ⊂ Ω. By Proposition 2.3 in [26], for any σ ∈ (0, 2α), there
exists c11 > 0 such that

‖u‖Cσ(O) ≤ c11{‖h(|∇u|)‖L∞(Ω) + ‖f‖L∞(Ω)},

and by choosing σ = 2α+1
2 ∈ (1, 2α), then

‖|∇u|‖Cσ−1(O) ≤ c11{‖h(|∇u|)‖L∞(Ω) + ‖f‖L∞(Ω)},

and then applied [26, Corollary 2.4], u is C2α+ǫ0 locally in Ω for some ǫ0 > 0.
Then u is a classical solution of (2.13). Moreover, from [13], we have

∫

Ω
[u(−∆)αξ + h(|∇u|)ξ]dx =

∫

Ω
ξfdx, ∀ξ ∈ Xα. (2.15)

Step 2. Proof of (i). If u is not nonnegative, then there exists x0 ∈ Ω such
that

u(x0) = min
x∈Ω

u(x) < 0,

then ∇u(x0) = 0 and (−∆)αu(x0) < 0. Since u is the classical solution of
(2.13), (−∆)αu(x0) = f(x0)− h(0) ≥ 0, which is a contradiction.

Step 3. Proof of (ii). We just give the proof of the first argument, the proof
of the second being similar. Let h1 and h2 satisfy our hypotheses for h and
h1 ≤ h2. Denote u1 and u2 the solutions of (2.13) with h replaced by h1
and h2 respectively. If there exists x0 ∈ Ω such that

(u1 − u2)(x0) = min
x∈Ω

{(u2 − u1)(x)} < 0.

Then
(−∆)α(u1 − u2)(x0) < 0, ∇u1(x0) = ∇u2(x0).

This implies

(−∆)α(u1 − u2)(x0) + h1(|∇u1(x0)|)− h2(|∇u2(x0)|) < 0. (2.16)

However,

(−∆)α(u1 − u2)(x0) + h1(|∇u1(x0)|)− h2(|∇u2(x0)|) = f(x0)− f(x0) = 0,

contradiction. Then u1 ≥ u2.

Uniqueness follows from Step 4. �

10



3 Proof of Theorems 1.1 and 1.2

3.1 The absorption case

In this subsection, we prove the existence of a weak solution to (1.1) when
ǫ = 1. We give below an auxiliary lemma.

Lemma 3.1 Assume that g : [0,∞) 7→ [0,∞) is continuous, nondecreasing
and (1.10) holds with p∗α,β. Then

lim
s→∞

g(s)s−p∗
α,β = 0.

Proof. Since

∫ 2s

s
g(t)t−1−p∗

α,βdt ≥ g(s)(2s)−1−p∗
α,β

∫ 2s

s
dt = 2−1−p∗

α,βg(s)s−p∗
α,β

and by (1.10),

lim
s→∞

∫ 2s

s
g(t)t−1−p∗

α,βdt = 0,

the claim follows. �

Proof of Theorem 1.1. Existence. We define

Cβ(Ω̄) = {ζ ∈ C(Ω̄) : ρ−βζ ∈ C(Ω̄)}

endowed with the norm

‖ζ‖Cβ(Ω̄) = ‖ρ−βζ‖C(Ω̄).

Let {νn} ⊂ C1(Ω̄) be a sequence of nonnegative functions such that νn → ν
in sense of duality with Cβ(Ω̄), that is

lim
n→∞

∫

Ω̄
ζνndx =

∫

Ω̄
ζdν ∀ζ ∈ Cβ(Ω̄). (3.1)

By the Banach-Steinhaus Theorem ‖νn‖M(Ω) is bounded independently of
n. We consider a sequence {gn} of C1 nonnegative functions defined on R+

such that gn(0) = 0 and

gn ≤ gn+1 ≤ g, sup
s∈R+

gn(s) = n and lim
n→∞

‖gn − g‖L∞
loc

(R+) = 0. (3.2)

By Theorem 2.1, there exists a unique nonnegative solution un of (1.1) with
data νn and gn instead of ν and g, and there holds

∫

Ω
(un + gn(|∇un|)η1) dx ≤

∫

Ω
νnη1dx ≤ C‖ν‖M(Ω,ρβ). (3.3)
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Therefore ‖gn(|∇un|)‖M(Ω,ρα) is bounded independently of n. Set η1 = Gα[1]

and for ε > 0, ξε = (η1 + ε)
β
α − ε

β
α ∈ Xα, which is concave in the interval

[0, η1(ω̄)] where η1(ω̄)] = maxx∈Ω η1(x). By [13, Lemma 2.3 -(ii)], we see
that

(−∆)αξε =
β

α
(η1 + ε)

1

α (−∆)αη1 −
β(β − α)

α2
(η1 + ε)

β−2α
α

∫

Ω

(η1(y)− η1(x))
2

|y − x|N+2α
dy

≥
β

α
(η1 + ε)

β−α
α ,

and ξε ∈ Xα. Since

∫

Ω
(un(−∆)αξε + gn(|∇un|)ξε) dx =

∫

Ω
ξενndx,

we obtain
∫

Ω

(

β

α
un(η1 + ε)

β−α
α + gn(|∇un|)ξε

)

dx ≤

∫

Ω
ξενndx.

If we let ε → 0, it yields

∫

Ω

(

β

α
unη

β−α
α

1 + gn(|∇un|)η
β
α
1

)

dx ≤

∫

Ω
η

β
α
1 νndx.

Using [13, Lemma 2.3], we derive the estimate

∫

Ω

(

unρ
β−α + gn(|∇un|)ρ

β
)

dx ≤ c12‖νn‖M(Ω,ρβ) ≤ c13‖ν‖M(Ω,ρβ). (3.4)

Thus {gn(|∇un|)} is bounded in L1(Ω, ρβdx). Since un = G[νn− gn(|∇un|)],
there holds

‖|∇un|‖Mp∗α (Ω,ραdx) ≤ ‖νn‖M(Ω,ρβ) + ‖gn(|∇un|)‖M(Ω,ρβ)

≤ c14‖ν‖M(Ω,ρβ).

Since νn−gn(|∇un|) is uniformly bounded in L1(Ω, ρβdx), we use Proposition
2.4 to obtain that the sequences {un}, {|∇un|} are relatively compact in
Lq(Ω) for q ∈ [1, N

N−2α+β ) and q ∈ [1, p∗α,β), respectively. Thus, there exist

a sub-sequence {unk
} and some u ∈ Lq(Ω) with q ∈ [1, N

N−2α+β ) such that

(i) unk
→ u a.e. in Ω and in Lq(Ω) with q ∈ [1, N

N−2α+β );
(ii) |∇unk

| → |∇u| a.e. in Ω and in Lq(Ω) with q ∈ [1, p∗α,β).

Therefore, gnk
(|∇unk

|) → g(|∇u|) a.e. in Ω. For λ > 0, we denote

Sλ = {x ∈ Ω : |∇unk
(x)| > λ} and ω(λ) =

∫

Sλ

ρα(x)dx.
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Then for any Borel set E ⊂ Ω, we have
∫

E
gnk

(|∇unk
|)|ρα(x)dx ≤

∫

E
g(|∇unk

|)|ρα(x)dx

≤

∫

E∩Sc
λ

g(|∇unk
|)ρα(x)dx+

∫

E∩Sλ

g(|∇unk
|)ρα(x)dx

≤ g̃(λ)

∫

E
ραdx+

∫

Sλ

g(|∇unk
|)ρα(x)dx

≤ g̃(λ)

∫

E
ραdx−

∫ ∞

λ
g(s)dω(s),

where g̃(s) = maxt∈[0,s]{g(t)}. But

∫ ∞

λ
g(s)dω(s) = lim

T→∞

∫ T

λ
g(s)dω(s).

Since |∇unk
| ∈ Mp∗α(Ω, ραdx), ω(s) ≤ c15s

−p∗α and

−

∫ T

λ
g(s)dω(s) = −

[

g(s)ω(s)

]s=T

s=λ

+

∫ T

λ
ω(s)dg(s)

≤ g(λ)ω(λ) − g(T )ω(T ) + c15

∫ T

λ
s−p∗αdg(s)

≤ g(λ)ω(λ) − g(T )ω(T ) + c15

(

T−p∗αg(T )− λ−p∗αg(λ)
)

+
c15

p∗α + 1

∫ T

λ
s−1−p∗αg(s)ds.

By assumption (1.10) and Lemma 3.1, it follows

lim
T→∞

T−p∗αg(T ) = 0. (3.5)

Along with g(λ)ω(λ) ≤ c15λ
−p∗αg(λ), we have

−

∫ ∞

λ
g(s)dω(s) ≤

c15
p∗α + 1

∫ ∞

λ
s−1−p∗αg(s)ds.

Notice that the above quantity on the right-hand side tends to 0 when
λ → ∞. It implies that for any ǫ > 0 there exists λ > 0 such that

c15
p∗α + 1

∫ ∞

λ
s−1−p∗αg(s)ds ≤

ǫ

2
,

and δ > 0 such that
∫

E
ρα(x)dx ≤ δ =⇒ g(λ)

∫

E
dx ≤

ǫ

2
.
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This proves that {gnk
(|∇unk

|)} is uniformly integrable in L1(Ω, ραdx). Then
gnk

(|∇unk
|) → g(|∇u|) in L1(Ω, ραdx) by Vitali convergence theorem. Let-

ting nk → ∞ in the identity

∫

Ω
(unk

(−∆)αξ + gnk
(|∇unk

|)ξ) dx =

∫

Ω
νnk

ξdx, ∀ξ ∈ Xα,

it infers that u is a weak solution of (1.1). Since unk
is nonnegative, so is u.

Estimate (1.12) is a consequence of positivity and

unk
≤ Gα[νnk

].

Since limnk→∞ unk
= u, (1.12) follows. �

3.2 The source case

In this subsection we study the existence of solutions to problem 1.1) when
ǫ = −1.

Proof of Theorem 1.2. Let {νn} be a sequence of C2 nonnegative functions
converging to ν in the sense of (3.1), {gn} a sequence of C1, nonnegative

functions defined on R+ satisfying (3.2). We set p0 =
p+p∗

α,β

2 ∈ (p, p∗α,β),
where p∗α,β is given by (1.13) and p < p∗α,β is the maximal growth rate of g
which satisfies (1.14), and

M(v) =

(
∫

Ω
|∇v|p0dx

)
1

p0

.

We may assume that ‖νn‖L1(Ω,ρβdx) ≤ 2‖ν‖M(Ω,ρβ) for all n. Let {un} be
the sequence of functions defined by u0 = 0 and, for n ≥ 1,

(−∆)αun = gn−1(|∇un−1|) + νn in Ω,

un = 0 in Ωc.

Assume that un−1 is C2α+γn−1 locally in Ω with γn−1 ∈ (0, 2α − 1), then

gn−1(|∇un−1|)+νn is C θ̃ where θ̃ ≤ min{γn−1, θ}, then by [26, Corollary 2.4],
we have that un is C2α+γn with γn ∈ (0, γn−1). Jointly with [13, Lemmas
2.1, 2.2], it yields

∫

Ω
un(−∆)αξ =

∫

Ω
gn−1(|∇un−1|)ξdx+

∫

Ω
ξνndx, ∀ξ ∈ Xα. (3.6)

Since u0 = 0, we assume by induction that un−1 ≥ 0, then gn−1(|∇un−1|) +
νn ≥ 0 and un ≥ 0 by the maximum principle. Therefore {un} is a sequence
of nonnegative functions.
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Step 1: we claim that M(un) is bounded. By (1.14) and Proposition 2.4,
we have

(
∫

Ω
|∇un|

p0dx

)
1

p0

≤ c2‖g(|∇un−1|) + νn‖L1(Ω,ρβdx)

≤ c2[‖g(|∇un−1|)‖L1(Ω,ρβdx) + 2‖ν‖M(Ω,ρβ)] (3.7)

≤ c2c1

∫

Ω
|∇un−1|

pρβdx+ c16σ0 + 2c2‖ν‖M(Ω,ρβ),

where c16 = c2
∫

Ω ρβdx. Then we use Hölder inequality to obtain that

(
∫

Ω
|∇un|

pρβdx

)
1

p

≤ (

∫

Ω
ρ

βp0
p0−pdx)

1

p
− 1

p0

(
∫

Ω
|∇un|

p0dx

)
1

p0

, (3.8)

where
∫

Ω ρ
βp0
p0−pdx is bounded, since βp0

p0−p ≥ 0. Along with (3.7) and (3.8),
we derive

M(un) ≤ c17M(un−1)
p + c18‖ν‖M(Ω,ρβ) + c16σ0, (3.9)

where c17 = c2c1(
∫

Ω ρ
βp0
p0−pdx)

1

p
− 1

p0 > 0 and c18 > 0 independent of n. There-
fore, if we assume that M(un−1) ≤ λ, inequality (3.9) implies

M(un) ≤ c17λ
p + c18‖ν‖M(Ω,ρβ) + c16σ0. (3.10)

Let λ̄ > 0 be the largest root of the equation

c17λ
p + c18‖ν‖M(Ω,ρβ) + c16σ0 = λ, (3.11)

This root exists if one of the following condition holds:

(i) p ∈ (0, 1), in which case (3.11) admits only one root:

(ii) p = 1 and c17 < 1, and again (3.11) admits only one root;

(iii) p ∈ (1, p∗α), and there exists ε0 > 0 such that max
{

‖ν‖M(Ω,ρβ), σ0

}

≤ ε0.

In that case (3.11) admits usually two positive roots.

If we suppose that one of the above conditions holds, the definition of λ̄ > 0
implies that it is the largest λ > 0 such that

c17λ
p + c18‖ν‖M(Ω,ρβ) + c16σ0 ≤ λ, (3.12)

We assume M(uk) ≤ λ̄ for any k ≤ n − 1, which holds obviously for n = 1
since M(u0) = 0. Then (3.9)-(3.12), implies

M(un) ≤ c17λ̄
p + c18‖ν‖M(Ω,ρβ) + c16σ0 ≤ λ̄.
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By the assumptions of Theorem 1.2 λ̄ exists and it is larger than M(un).
Therefore

∫

Ω
|∇un|

p0dx ≤ λ̄p0 , ∀n ≥ 0. (3.13)

Step 2: Convergence. By (3.13) and (3.8), gn(|∇un|) is uniformly bounded
in L1(Ω, ρβdx). By Proposition 2.3, {un} is bounded in W 2α−γ,q

0 (Ω) where
q ∈ (1, N

N−2α ) and 2α − γ > 1. By compactness, there exist a subsequence

{unk
} and u such that unk

→ u a.e. in Ω and in L1(Ω), and |∇unk
| →

|∇u| a.e. in Ω and in Lq(Ω) for any q ∈ [1, p∗α,β). By Proposition 2.4 and

assumption (G), gnk
(|∇unk

|) → g(|∇u|) in L1(Ω, ρβdx). Letting nk → ∞ to
have that

∫

Ω
u(−∆)αξ =

∫

Ω
g(|∇u|)ξdx +

∫

Ω
ξdν(x), ∀ξ ∈ Xα,

thus u is a weak solution of (1.1) which is nonnegative as the un are. Fur-
thermore (1.15) follows from the positivity of g(|∇un]) and the maximum
principle. �

4 The case of the Dirac mass

In this section we assume that Ω is a bounded and C2 domain containing 0
and u a nonnegative weak solution of

(−∆)αu+ |∇u|p = δ0 in Ω,

u = 0 in Ωc,
(4.1)

where δ0 the Dirac measure at 0. We recall the following result dealing with
the convolution operator ∗ in Lorentz spaces Lp,q(RN ) (see [25]).

Proposition 4.1 Let 1 ≤ p1, q1, p2, q2 ≤ ∞ and suppose 1
p1
+ 1

p2
> 1. If f ∈

Lp1,q1(RN ) and g ∈ Lp2,q2(RN ), then f ∗ g ∈ Lr,s(RN ) with 1
r = 1

p1
+ 1

p2
− 1,

1
q1

+ 1
q2

≥ 1
s and there holds

‖f ∗ g‖Lr,s(RN ) ≤ 3r‖f‖Lp1,q1 (RN )‖g‖Lp2,q2 (RN ). (4.2)

In the particular case of Marcinkiewicz spaces Lp,∞(RN ) = Mp(RN ), the
result takes the form

‖f ∗ g‖Mr(RN ) ≤ 3r‖f‖Mp1 (RN )‖g‖Mp2 (RN ). (4.3)

Proposition 4.2 Assume 0 < p < p∗α and u is a nonnegative weak solution
of (4.1). Then

0 ≤ u ≤ Gα[δ0], (4.4)
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∇u ∈ L∞
loc(Ω \ {0}) and u is a classical solution of

(−∆)αu+ |∇u|p = 0 in Ω \ {0},

u = 0 in Ωc.
(4.5)

Proof. Since 0 < p < p∗α, (4.1) admits a solution. Estimate (4.4) is a
particular case of (1.12). We pick a point a ∈ Ω \ {0} and consider a finite
sequence {rj}

κ
j=0 such that 0 < rκ < rκ−1 < ... < r0 and Br0(a) ⊂ Ω \ {0}.

We set dj = rj−1 − rj , j = 1, ...κ. By (3.4) with β = 0

∫

Ω
(u+ |∇u|p) dx ≤ c19 (4.6)

Let {ηn} ⊂ C
∞
0 (RN ) be a sequence of radially decreasing and symmetric

mollifiers such that supp(ηn) ⊂ Bεn and εn ≤ ρ(a) − r0 and un = u ∗ ηn.
Since

ηn ∗ (−∆)αξ = (−∆)α(ξ ∗ ηn)

by Fourier analysis and
∫

RN

(u(−∆)α(ξ ∗ ηn)+ ξ ∗ ηn|∇u|p)dx =

∫

RN

(u ∗ ηn(−∆)αξ + ηn ∗ |∇u|pξ)dx

because ηn is radially symmetric, it follows that un is a classical solution of

(−∆)αun + |∇u|p ∗ ηn = ηn, in Ωn

un = 0 in Ωc
n

(4.7)

where Ωn = {x ∈ R
N : dist(x,Ω) < εn}. We denote by Gα,n(x, y) the

Green kernel of (−∆)α in Ωn and by Gα,n the Green operator. Set fn =
ηn−|∇u|p∗ηn, then un = Gα,n[fn]. If we set fn0

= fnχBr0
(a), f

′
n0

= fn−fn0
,

we have

∂xi
un(x) =

∫

Ωn

∂xi
Gα,n(x, y)fn(y)dy

=

∫

Ωn

∂xi
Gα,n(x, y)fn0

(y)dy +

∫

Ωn

∂xi
Gα,n(x, y)f

′
n0
(y)dy

= vn0
(x) + v′n0

(x),

with

vn0
(x) =

∫

Br0
(a)

∂xi
Gα,n(x, y)fn(y)dy = −

∫

Br0
(a)

∂xi
Gα,n(x, y)|∇u|p∗ηn(y)dy

if we assume that εn <| a | −r0, and

v′n0
(x) =

∫

Ωn\Br0
(a)

∂xi
Gα,n(x, y)fn(y)dy.
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We set ρn(x) = dist(x,Ωc
n), then by (2.7)

| ∂xi
Gα,n(x, y) |≤ c5 max

{

ραn(y)

ρn(x)|x− y|N−2α+1
,

ρ2α−1
n (y)

ραn(x)|x− y|N−2α

}

,

where c5 is independent of n. Thus, if x ∈ Br1(a),

| v′n0
(x) |≤ c20

∫

Ωn\Br0
(a)

fn(y)ρ
2α−1
n (y)dy ≤ c19c20ρ

2α−1
Ω (4.8)

where c20 depends on d1 and ρΩ (and the structural constants N and α).
Furthermore, if x ∈ Br1(a) and y ∈ Br0(a),

| ∂xi
Gα,n(x, y) |≤

c21
|x− y|N−2α+1

(4.9)

We have already use the fact that y 7→| y |2α−N−1∈ Lp∗α(RN ). Since fn is
uniformly bounded in L1(Ω), there exists c22 such that

‖vn0
‖Mp∗α (Br1

(a)) ≤ c22. (4.10)

Combined with (4.8), it yields

‖ | ∇u |p ∗ηn‖
M

p∗α
p (Br1

(a))
≤ c23. (4.11)

Next we set fn1
= fnχBr1

(a) and f ′
n1

= fn − fn1
. Then

∂xi
un = vn1

+ v′n1

where

vn1
(x) =

∫

Br1
(a)

∂xi
Gα(x, y)fn(y)dy = −

∫

Br1
(a)

∂xi
Gα(x, y) | ∇u |p ∗ηn(y)dy

and

v′n1
(x) =

∫

Ωn\Br1
(a)

∂xi
Gα(x, y)fn(y)dy

Clearly v′n1
(x) is uniformly bounded in Br2(a) by a constant c24 depending

on the structural constants and d2 = r1 − r2. Estimate (4.9) holds if we
assume x ∈ Br2(a) and y ∈ Br1(a), except that the new constant, still
denoted by c21 depends on d2. Therefore

| vn1
(x) |≤ c21

∫

Br1
(a)

| ∇u |p ∗ηn(y)

| x− y |N−2α+1
dy.

We derive from Proposition 4.1

‖vn1
‖Mq2 (Br2

(a) ≤ c24‖ | ∇u |p ∗ηn‖
M

p∗α
p (Br1

(a))
,
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with
1

q2
=

p

p∗α
+

1

p∗α
− 1. (4.12)

Notice that q2 > p∗α. Therefore

‖ | ∇u |p ∗ηn‖
M

q2
p (Br2

(a))
≤ c25. (4.13)

We iterate this construction and obtain the existence of constants cj such
that

‖ | ∇u |p ∗ηn‖
M

qj
p (Brj

(a))
≤ cj ∀j = 1, 2, .... (4.14)

where q1 = p∗α and
1

qj+1
=

p

qj
+

1

p∗α
− 1. (4.15)

Set ℓ = p∗α−1
p∗α(p−1) , then ℓ = pℓ+ 1

p∗α
− 1, thus

1

qj+1
= ℓ+ pj−1

(

1

q1
− ℓ

)

= ℓ+ pj−1

(

1

p∗α
− ℓ

)

= ℓ− pj−1 p∗α − p)

p∗α(p − 1)
.

(4.16)

Therefore there exists j0 such that qj0 > 0 and qj0+1 ≤ 0. This implies

‖ | ∇u |p ∗ηn‖Ls(Brj0+1
(a)) ≤ c26 ∀s < ∞. (4.17)

Since y 7→| y |2α−N−1∈ Lt
loc(R

N ) for all t < p∗α it yields

‖ | ∇u |p ∗ηn‖L∞(Brj0+2
(a)) ≤ c27, (4.18)

with c27 independent of n. Letting n → ∞ infers

‖∇u‖L∞(Brj0+2
(a)) ≤ c

1

p

27, (4.19)

Combining this estimate with (4.4) and using [26, Corollary 2.5] which states

‖u‖Cβ(Brj0+3
(a)) ≤ c

(

‖u‖L1(RN ,(1+|x|)−N−2αdx

+‖u‖L∞(Brj0+2
(a)) + ‖∇u‖L∞(Brj0+2

(a))

)

,
(4.20)

for any β < 2α, we obtain that u remains bounded in C1+ε(K) for any
compact set K ⊂ Ω \ {0} and some ε > 0. Using now [26, Corollary 2.4], we
obtain that C2α+ε′(Ω \ {0}) for 0 < ε′ < ε. Futhermore u is continuous up
to ∂Ω. As a consequence it is a strong solution in Ω \ {0}. �

In the next result we give a pointwise estimate of ∇u for a positive
solution u of (4.1).
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Proposition 4.3 Assume R > 0 is such that BR ⊂ Ω. If p < p∗α and u is
a nonnegative weak solution of (??), then there exists c20 > 0 depending on
R, p and α such that

| ∇u(x) |≤ c20 | x |2α−N−1 ∀x ∈ BR/4 \ {0}. (4.21)

Proof. Up to a change of variable we can assume that R = 1. For 0 < |x| ≤ 1,
there exists b ∈ (0, 1) such that b/2 ≤ |x| ≤ b. We set

ub(y) = bN−2αu(by).

Then
(−∆)αub + bN+p(2α−N−1)|∇ub|

p = 0 in Ωb := b−1Ω.

Using [26, Corollary 2.5] with β < 2α, for any a such that |a| = 3/4, there
holds

‖ub‖Cβ(B 3
16

(a)) ≤ c18

(

‖ub‖L1(RN ),(1+|y|)−N−2α) + ‖ub‖L∞(B 3
8
(a))

+bN+p(2α−N−1)‖|∇ub|
p‖L∞(B 3

8
(a))

)

.

(4.22)
Furthermore, by the same argument as in Proposition 4.2,

‖∇ub‖
p
L∞(B 3

8
(a)) ≤ c21

∫

Ωb

|∇ub|
p(y)dy = c21b

p(N+1−2α)−N

∫

Ω
|∇u|p(x)dx,

(4.23)
and from (4.4) and (2.4)

u(x) ≤ Gα(x, 0) ≤
c4

|x|N−2α
=⇒ ub(y) ≤

c4
|y|N−2α

.

Then

‖ub‖L1(RN ),(1+|y|)−N−2α) ≤ c4

∫

RN

dy

|y|N−2α(1+ | y |)N+2α)
= c22.

If we take β = 1, which is possible since α > 1/2, we derive

|∇ub(a)| ≤ c23 =⇒ |∇u(ba)| ≤ c−1
23 b

2α−N−1

In particular, with |b| = 4|x|/3 we derive (4.21) with c20 = c−1
23 (

4
3)

2α−N−1.�

We denote
cN,α = lim

x→0
|x|N−2αGα(x, 0). (4.24)

It is well known that cN,α > 0 does not depend on the domain Ω and, by
the maximum principle, Gα(x, 0) ≤ cN,α|x|

2α−N in Ω \ {0}.
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Theorem 4.1 Let Ω be a bounded C2 domain containing 0, α ∈ (12 , 1) and
0 < p < p∗α. If u is a positive solution of problem (??) and BR ⊂ Ω, it
satisfies

(i) if 2α
N−2α+1 < p < p∗α,

0 <
cN,α

|x|N−2α
− u(x) ≤

c24

|x|(N−2α+1)p−2α
, x ∈ BR/4(0) \ {0};

(ii) if p = 2α
N−2α+1 ,

0 <
cN,α

|x|N−2α
− u(x) ≤ −c24 ln(|x|), x ∈ BR/4(0) \ {0};

(iii) if 0 < p < 2α
N−2α+1 ,

0 <
cN,α

|x|N−2α
− u(x) ≤ c24, x ∈ BR/4(0) \ {0},

where c24 depends on N , p, α, R and u. Furthermore, if 1 ≤ p < p∗α, this
solution is unique and c24 is independent of u.

Proof. The existence of a nonnegative weak solution is a consequence of the
subriticality assumption; the fact that this solution is a classical solution in
Ω \ {0} derives from Proposition 4.2. It follows from the equation and (4.4)
that for any x ∈ Ω \ {0},

cN,α

|x|N−2α
− u(x) ≤

∫

Ω
Gα(x, y)|∇u(y)|pdy

≤ cp20c4

∫

BR
4

|x− y|2α−N |y|p(2α−N−1)dy + c25,
(4.25)

where c25 depends on N , p, α, diam (Ω), R and sup{|∇u(z)| : z ∈ Ω \BR
4

}.

Next we assume 0 < |x| ≤ R
16 .

Case: 2α
N−2α+1 < p < p∗α. We can write

∫

BR
4

|x− y|2α−N |y|p(2α−N−1)dy = E1 + E2

with

E1 =

∫

BR
4

\BR
8

|x− y|2α−N |y|p(2α−N−1)dy ≤ c25

where c26 > 0 depends on N , α, p and R and

E2 =

∫

BR
8

|x− y|2α−N |y|p(2α−N−1)dy

= |x|2α−p(N+1−2α)

∫

B R
8|x|

|ξ − ζ|2α−N |ζ|p(2α−N−1)dζ

≤

∫

|ζ|>2
|ξ − ζ|2α−N |ζ|p(2α−N−1)dζ
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with ξ = x/|x|. Since 2α−N < 0, |ξ − ζ|2α−N ≤ (|ζ| − 1)2α−N , thus

E2 ≤ cN

∫ ∞

2
(r − 1)2α−Nrp(2α−N−1)+N−1dr = c27,

Thus (i) follows.

Case: 2α
N−2α+1 = p. We see that

E2 =

∫

B R
8|x|

|ξ − ζ|2α−N |ζ|−2αdζ

Then clearly
E2 = − ln |x|+ o(1) when | x |→ 0.

Thus (ii) follows

Case: 0 < p < 2α
N−2α+1 . Then

E2 =

∫

B R
8|x|

|ξ−ζ|2α−N |ζ|−2αdζ = c28|x|
p(N+1−2α)−2α+o(1) when | x |→ 0.

Thus (iii) follows.
Uniqueness in the case 1 ≤ p < p∗α, is very standard, since if u1 and u2

are two positive solutions of (??), they satisfies

lim
x→0

u1(x)

u2(x)
= 1.

Then, for any ε > 0, u1,ε := (1 + ε)u1 is a supersolution which dominates
u2 near 0, it follows by the maximum principle that w := u2 − (1 + ε)u1
satisfies

(−∆)αw + |∇u2|
p − |∇u1,ε|

p ≤ 0

since w is negative near 0 and vanishes on ∂Ω, if it is not always negative,
there would exists x0 ∈ Ω \ {0} such that w(x0) reaches a maximum and
|∇u2(x0)| = |∇u1,ε(x0)|, thus (−∆)αw(x0) ≤ 0, contradiction. �

Remark. If 0 < p < 1 the nonlinearity is not convex and uniqueness does
hold only if two solutions u1 and u2 satisfy

lim
x→0

(u1(x)− u2(x)) = 0.
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[12] H. Chen and L. Véron, Singular solutions of fractional elliptic equations
with absorption, arXiv:1302.1427v1, [math.AP], 6 (Feb 2013).
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