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, we compared TA against Transition-based Generalized Büchi Automata (TGBA), and concluded that TA were more interesting when counterexamples were expected, otherwise TGBA were more efficient. In this work we introduce a new kind of automata, dubbed Transition-based Generalized Testing Automata (TGTA), that combine ideas from TA and TGBA. Implementation and experimentation of TGTA show that they outperform other approaches in most of the cases.

Introduction

Context The automata-theoretic approach to model checking linear-time properties [START_REF] Vardi | An automata-theoretic approach to linear temporal logic[END_REF] splits the verification process into four operations:

1. Computation of the state-space for the model M. This state-space can be seen as an ω-automaton A M whose language, L (A M ), represents all possible infinite executions of M. 2. Translation of the temporal property ϕ into an ω-automaton A ¬ϕ whose language, L (A ¬ϕ ), is the set of all infinite executions that would invalidate ϕ. 3. Synchronization of these automata. This constructs a product automaton A M ⊗ A ¬ϕ whose language, L (A M ) ∩ L (A ¬ϕ ), is the set of executions of M invalidating ϕ. 4. Emptiness check of this product. This operation tells whether A M ⊗ A ¬ϕ accepts an infinite word, and can return such a word (a counterexample) if it does. The model M verifies ϕ iff L (A M ⊗ A ¬ϕ ) = / 0. Problem Different kinds of ω-automata have been used with the above approach. In the most common case, a property expressed as an LTL (linear-time temporal logic) formula is converted into a Büchi automaton with state-based acceptance, and a Kripke structure is used to represent the state-space of the model.

In Spot [START_REF] Move | The Spot home page[END_REF], our model checking library, we prefer to represent properties using generalized (i.e., multiple) Büchi acceptance conditions on transitions rather than on states [START_REF] Duret-Lutz | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF]. Any algorithm that translates LTL into a Büchi automaton has to deal with generalized Büchi acceptance conditions at some point, and the process of degeneralizing the Büchi automaton often increases its size. Several emptiness-check algorithms can deal with generalized Büchi acceptance conditions, making such an a degeneralization unnecessary and even costly [START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF]. Moving the acceptance conditions from the states to the transitions also reduces the size of the property automaton [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF].

Unfortunately, having a smaller property automaton A ¬ϕ does not always imply a smaller product with the model (A M ⊗ A ¬ϕ ), and the size of this product really affects model checking efficiency. Thus, instead of targeting smaller property automata, some people have attempted to build automata that are more deterministic [START_REF] Sebastiani | more deterministic" vs. "smaller" Büchi automata for efficient LTL model checking[END_REF]. However even this does not guarantee the product to be smaller.

Hansen et al. [START_REF] Hansen | Stuttering-insensitive automata for on-thefly detection of livelock properties[END_REF] introduced a new kind of ω-automaton called Testing Automaton (TA). These automata are less expressive than Büchi automata since are tailored to represent stuttering-insensitive properties (such as any LTL property that does not use the X operator). They are often a lot larger than their equivalent Büchi automaton, but surprisingly, their high degree of determinism often lead to a smaller product [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]. As a back-side, TA have two different modes of acceptance (Büchi-acceptance or livelockacceptance), and their emptiness check may require two passes, mitigating the benefits of a having a smaller product. Objectives The study of Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] shows TA are statistically more efficient than Büchi automata. In a previous work [START_REF] Salem | Generalized Büchi automata versus testing automata for model checking[END_REF], we have extended their comparison to TGBA, and shown that TA are indeed better when the formula to be verified is violated (i.e., a counterexample is found), but this is not the case when the property is verified since the entire state space may have to be visited twice to check for each acceptance mode of a TA.

This paper introduces a new type of ω-automata, Transition-based Generalized Testing Automata (TGTA), that mixes features from both TA and TGBA. From TA, it reuses the labeling of transitions with changesets, and simplifications based on stuttering. From TGBA, it inherits the use of transition-based acceptance conditions. TGTA combine the advantages of TA and TGBA: it is still statistically more efficient than other ω-automata when the property is violated but does not require a second pass when no counterexample is found, thus remaining more efficient than other ω-automata in that situation.

We have implemented this new approach in Spot. This required little effort since TGTA reuse the emptiness check algorithm of TGBA. We are thus able to compare TGTA with the "traditional" algorithms we used on TA, BA and TGBA. These experiments show that TGTA compete well on our examples. Contents Section 2 provides a brief summary of the three ω-automaton (BA, TGBA and TA) and pointers to their associated operations for model checking before Section 3 presents TGTA. Section 4 reports our experiments before a discussion in Section 5.

Presentation of Three Existing Approaches

Let AP designate the set of atomic proposition of the model. We use AP to build a linear-time property. Any state of the model is labeled by a valuation of these atomic propositions. We denote by Σ = 2 AP the set of these valuations, which we interpret either as a set or as Boolean conjunctions. For instance if AP = {a, b}, then Σ = 2 AP = {{a, b}, {a}, {b}, / 0} but we equivalently interpret it as Σ = {ab, a b, āb, āb }. All the executions of the model can be represented by a Kripke structure K . An execution of the model is simply an infinite sequence of such valuations, i.e., an element from Σ ω .

Definition 1 A Kripke structure over the alphabet Σ = 2 AP is a tuple K = S, I, R, L .

where:

-S is a finite set of states, -I ⊆ S is the set of initial states, -R ⊆ S × S is the transition relation, -L : S → Σ is a state-labeling function.

An execution w = k 0 k 1 k 2 . . . ∈ Σ ω is accepted by K if there exists an infinite sequence s 0 , s 1 , . . . ∈ S ω such that s 0 ∈ I and ∀i ∈ N, L(s i ) = k i ∧ (s i , s i+1 ) ∈ R. The language accepted by K is the set L (K ) ⊆ K ω of executions it accepts.

A property can be seen as a set of sequences, i.e., a subset of Σ ω . Among these properties, we want to distinguish those that are stuttering-insensitive: Definition 2 A property, or a language, i.e., a set of infinite sequences P ⊆ Σ ω , is stuttering-insensitive iff any sequence k 0 k 1 k 2 . . . ∈ P remains in P after repeating any valuation k i or omitting duplicate valuations. Formally, P is stuttering-insensitive iff k 0 k 1 k 2 . . . ∈ P ⇐⇒ k i 0 0 k i 1 1 k i 2 2 . . . ∈ P for any i 0 > 0, i 1 > 0 . . . Theorem 1 Any LTL\ X formula (i.e., an LTL formula that does not use the X operator) describes a stuttering-insensitive property. Conversely any stuttering-insensitive property can be expressed as an LTL\ X formula [START_REF] Peled | Stutter-invariant temporal properties are expressible without the next-time operator[END_REF].

The following sections presents three kinds of ω-automata [START_REF] Farwer | Automata logics, and infinite games[END_REF] that can be used to express properties in the automata-theoretic approach to model checking. Transitionbased Generalized Büchi Automata and Büchi Automata can both express general properties, while Testing Automata are tailored to stuttering-insensitive properties.

Transition-based Generalized Büchi Automata

We begin by defining Transition-based Generalized Büchi Automata (TGBA), which are a generalization of the better known Büchi automata used for model checking [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF]. In our context, the TGBA represents the negation of the LTL property to verify.

Definition 3 A TGBA over the alphabet Σ = 2 AP is a tuple G = S, I, R, F where: -S is a finite set of states, -I ⊆ S is the set of initial states, -F is a finite set of acceptance conditions, -R ⊆ S × 2 Σ × 2 F × S is the transition relation, where each element (s i , K i , F i , d i )
represents a transition from state s i to state d i labeled by the non-empty set of valuation K i , and a set of acceptance conditions F i .

An execution w = k 0 k 1 k 2 . . . ∈ Σ ω is accepted by G if there exists an infinite path s 0 ∈ I, and ∀i ∈ N, k i ∈ K i (the execution is recognized by the path),

(s 0 , K 0 , F 0 , s 1 )(s 1 , K 1 , F 1 , s 2 )(s 2 , K 2 , F 2 , s 3 ) . . . ∈ R ω where:
-∀ f ∈ F, ∀i ∈ N, ∃ j ≥ i, f ∈ F j (each acceptance condition is visited infinitely often).
The language accepted by G is the set L (G) ⊆ Σ ω of executions it accepts.

Any LTL formula ϕ can be converted into a TGBA whose language is the set of executions that satisfy ϕ. Several algorithms exist to translate an LTL formula into a TGBA [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF][START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Babiak | LTL to Büchi automata translation: Fast and more deterministic[END_REF].

Figure 1 shows two examples of TGBA: one deterministic TGBA derived from the LTL formula G F a ∧ G F b, and one non-deterministic TGBA derived from a U G b. The LTL formulae that label states represent the property accepted starting from this state of the automaton: they are shown for the reader's convenience but not used for model checking. As can be inferred from Fig. 1(a), an LTL formula such as n i=1 G F p i can be represented by a one-state deterministic TGBA with n acceptance conditions.

Any infinite path in these examples is accepted if it visits all acceptance conditions (represented by colored dots on the transitions) infinitely often.

Testing a TGBA for emptiness amounts to the search of a strongly connected component that contains at least one occurrence of each acceptance condition. This can be done in different ways [START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF]. We are using Couvreur's SCC-based emptiness check algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF] because it needs to traverse the state-space only once, and its complexity does not depend on the number of acceptance conditions. This algorithm is detailed in Appendix B.

Büchi Automata

Compared to TGBA, the more traditional Büchi Automata (BA) have only one statebased acceptance condition.

One common way to obtain a BA from an LTL formula is to first translate the formula into some Generalized Büchi Automata with multiple acceptance conditions (it could be a TGBA [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF] or a state-based GBA [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF]) and then to degeneralize this automaton to obtain a single acceptance condition. Definition 4 A BA over the alphabet Σ = 2 AP is a tuple B = S, I, R, F where:

-S is a finite set states, -I ⊆ S is the set of initial states, -F ⊆ S is a finite set of acceptance states, -R ⊆ S × 2 Σ × S is the transition relation where each transition is labeled by a set of valuations.

An execution w = k 0 k 1 k 2 . . . ∈ Σ ω is accepted by B if there exists an infinite path s 0 ∈ I, and ∀i ∈ N, k i ∈ K i (the execution is recognized by the path), -∀i ∈ N, ∃ j ≥ i, s j ∈ F (at least one acceptance state is visited infinitely often).

(s 0 , K 0 , s 1 )(s 1 , K 1 , s 2 )(s 2 , K 2 , s 3 ) . . . ∈ R ω such that:
The language accepted by B is the set L (B) ⊆ Σ ω of executions it accepts.

Theorem 2 TGBA and BA have the same expressive power: any TGBA can be converted into a language-equivalent BA and vice-versa [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF].

The process of converting a TGBA into a BA is called degeneralization. In the worst case, a TGBA with s states and n acceptance conditions will be degeneralized into a BA with s × (n + 1) states.

Figure 2 shows the same properties as Fig. 1, but expressed as Büchi automata. The automaton from Fig. 2(a) was built by degeneralizing the TGBA from Fig. 1(a). The worst case of the degeneralization occurred here, since the TGBA with 1 state and n acceptance conditions was degeneralized into a BA with n + 1 states. It is known that no BA with less than n + 1 states can accept the property n i=1 G F p i so this Büchi automaton is optimal [START_REF] Cichoń | Minimal Büchi automata for certain classes of LTL formulas[END_REF]. The property a U G b, on the right hand side of the figure, is easier to express: the BA has the same size as the TGBA.

In the other way, a BA can be seen as a TGBA, by simply marking transitions leaving acceptance states as accepting, without adding states nor transitions. Algorithms that input TGBA can therefore be easily adapted to process BA. More importantly, BA can be checked for emptiness using the same one-pass emptiness-check algorithm.

Testing Automata

Testing Automata (TA) were introduced by Hansen et al. [START_REF] Hansen | Stuttering-insensitive automata for on-thefly detection of livelock properties[END_REF] to represent stutteringinsensitive properties. While a Büchi automaton observes the value of the atomic propositions AP, the basic idea of TA is to detect the changes in these values; if a valuation of AP does not change between two consecutive valuations of an execution, the TA can stay in the same state. To detect infinite executions that end stuck in the same TA state because they are stuttering, a new kind of acceptance states is introduced: livelockacceptance states.

If A and B are two valuations, A⊕B denotes the symmetric set difference, i.e., the set of atomic propositions that differ (e.g., a b ⊕ ab = {b}). Technically, this is implemented with an XOR operation (also denoted by the symbol ⊕).

Definition 5 A TA over the alphabet Σ = 2 AP is a tuple T = S, I,U, R, F, G . where:

-S is a finite set of states, -I ⊆ S is the set of initial states, -U : I → 2 Σ is a function mapping each initial state to a set of valuations (set of possible initial configurations), -R ⊆ S × Σ × S is the transition relation where each transition (s, k, d) is labeled by a changeset: k ∈ Σ is interpreted as a (possibly empty) set of atomic propositions whose value must change between states s and d, -F ⊆ S is a set of Büchi-acceptance states, -G ⊆ S is a set of livelock-acceptance states.

An execution w = k 0 k 1 k 2 . . . ∈ Σ ω is accepted by T if there exists an infinite sequence

(s 0 , k 0 ⊕ k 1 , s 1 )(s 1 , k 1 ⊕ k 2 , s 2 ) . . . (s i , k i ⊕ k i+1 , s i+1 ) . . . ∈ (S × Σ × S) ω such that: -s 0 ∈ I with k 0 ∈ U(s 0 ), -∀i ∈ N, either (s i , k i ⊕ k i+1 , s i+1
) ∈ R (the execution progresses in the TA), or k i = k i+1 ∧ s i = s i+1 (the execution is stuttering and the TA does not progress), -Either, ∀i ∈ N, (∃ j ≥ i, k j = k j+1 ) ∧ (∃l ≥ i, s l ∈ F) (the TA is progressing in a Büchi-accepting way), or, ∃n ∈ N, (s n ∈ G ∧ (∀i ≥ n, s i = s n ∧ k i = k n )) (the sequence reaches a livelock-acceptance state and then stays on that state because the execution is stuttering).

The language accepted by T is the set L (T ) ⊆ Σ ω of executions it accepts.

To illustrate this definition, consider Fig. 3d Property 1 The language accepted by a testing automaton is stuttering-insensitive.

Proof. This follows from definition of accepted executions: a TA may not change its state when an execution stutters, so stuttering is always possible.

Construction of a Testing Automaton from a Büchi Automaton Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] have shown how to convert a BA into a TA by first converting the BA into an automaton with valuations on the states, and then converting this automaton into a TA by computing the difference between the labels of the source and destination of each transition. The next proposition implements these first two steps at once. 

T = S T , I T ,U T , R T , F T , / 0 with S T = S B × Σ, I T = I B × Σ, F T = F B × Σ and -∀(s, k) ∈ I T , U T ((s, k)) = {k} -∀(s, k) ∈ S T , ∀(s , k ) ∈ S T , ((s, k), k ⊕ k , (s , k )) ∈ R T ⇐⇒ ∃K ∈ 2 Σ , ((s, K, s ) ∈ R B ) ∧ (k ∈ K) Then L (B) = L (T ).
Figure 3b shows the result of applying this construction to the example Büchi automaton shown for a U G b. This testing automaton does not yet use livelock-acceptance states (the G set). The next property, again from Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], shows how filling G allows to remove all transitions labeled by / 0.

Property 3 (Using G to simplify a TA [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]) Let T = S, I,U, R, F, G be TA. By combining the first three of the following operations we can remove all transitions of the form (s, / 0, s ) (i.e. stuttering-transitions) from a TA. The fourth simplification can be performed along the way.

1. If Q ⊆ S is a Strongly Connected Component (SCC) such that Q ∩ F = /
0 (it is Büchi accepting), and any two states q, q ∈ Q can be connected using a non-empty sequence of stuttering-transitions (q, / 0, q 1 ) • (q 1 , / 0, q 2 ) • • • (q n , / 0, q ) ∈ R * , then the testing automaton T = S, I,U, F, G ∪ Q is such that L (T ) = L (T ). Such a component Q is called an accepting Stuttering-SCC. 2. If there exists a transition (s, / 0, s ) ∈ R such that s ∈ G, the automaton T = S, I, R \ {(s, / 0, s )}, F, G ∪ {s} is such that L (T ) = L (T ).

3. If T does not contain any accepting Stuttering-SCC, and there exists a transition (s, / 0, s ) ∈ R such that s cannot reach any state from G using only transitions labeled by / 0, then these transitions can be removed. I.e., the automaton

T = S, I, R \ {(s, / 0, s )}, F, G is such that L (T ) = L (T ). 4.
Any state from which one cannot reach a Büchi-accepting cycle nor a livelockacceptance state can be removed without changing the automaton's language.

The resulting TA can be further simplified by merging bisimilar states (two states are bisimilar if the automaton can accept the same executions starting for either of these states). This can be achieved using any algorithm based on partition refinement [e.g., 27], taking

{F ∩ G, F \ G, G \ F, S \ (F ∪ G)} as initial partition.
Fig. 3 shows how a BA denoting the LTL formula a U G b is transformed into a TA by applying prop. 2, prop. 3, and finally merging bisimilar states.

A TA for G F a ∧ G F b is too big to be shown: even after simplifications it has 11 states and 64 transitions.

An unfortunate consequence of having two different ways of accepting executions (livelock or Büchi), is that the emptiness-check algorithm required during model checking must perform two passes on the whole state space in the worst case. Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] have devised a heuristic that often renders the second pass useless when the formula is violated. Another optimization we present in Appendix D is to omit the second pass when no livelock-accepting states is encountered during the first pass.

Transition-based Generalized Testing Automata

This section introduces a new kind of automaton that combines features from both TA and TGBA. From TA, we take the idea of labeling transitions with changesets, however we remove the use of livelock-acceptance (because it may require a two-pass emptiness check), and the implicit stuttering. From TGBA, we inherit the use of transition-based generalized acceptance conditions.

The resulting Chimera, which we call Transition-based Generalized Testing Automaton (TGTA), accepts only stuttering-insensitive languages like TA, and inherits advantages from both TA and TGBA: it has a simple one-pass emptiness-check procedure (the same as the one for TGBA), and can benefit from reductions based on the stuttering of the properties pretty much like a TA. Livelock acceptance states, which are no longer supported, can be emulated using states with a Büchi accepting self-loop labeled by / 0.

Definition 6 A TGTA over the alphabet Σ is a tuple T = S, I,U, R, F where: -I ⊆ S is the set of initial states, -U :

-S is a finite set of states, a U G b G b ab, a b ab, āb ab, āb ( 
I → 2 Σ is a function mapping each initial state to a set of symbols of Σ -F is a finite set of acceptance conditions, -R ⊆ S × Σ × 2 F × S is the transition relation, where each element (s i , k i , F i , d i ) rep-
resents a transition from state s i to state d i labeled by a changeset k i interpreted as a (possibly empty) set of atomic propositions whose value must change between states s i and d i , and the set of acceptance conditions F i .

An execution w = k 0 k 1 k 2 . . . ∈ Σ ω is accepted by T if there exists an infinite path

(s 0 , k 0 ⊕ k 1 , F 0 , s 1 )(s 1 , k 1 ⊕ k 2 , F 1 , s 2 )(s 2 , k 2 ⊕ k 3 , F 2 , s 3 ) . . . ∈ R ω where: -s 0 ∈ I with k 0 ∈ U(s 0 ) (the execution is recognized by the path), -∀ f ∈ F, ∀i ∈ N, ∃ j ≥ i, f ∈ F j (each acceptance condition is visited infinitely often).
The language accepted by T is the set L (T ) ⊆ Σ ω of executions it accepts.

Figure 4d shows a TGTA constructed for a U G b in the same way as we did for Fig. 3d. The only accepting runs are those that see infinitely often. The reader can verify that all the executions taken as example in section 2.3 are still accepted, but not always with the same runs (for instance ab; āb; āb; āb; . . . is accepted by the run 2, 4, 4, 4, . . ., but not by the run 2, 3, 3, 3, . . .). This small difference is due to the way we emulate livelock-accepting states, as we shall describe later (in Property 5).

s s 0 • • • s n q q . . . . . . k / 0 / 0 / 0 / 0 / 0 ( 
Construction of a TGTA from a TGBA We now describe how to build a TGTA starting from a TGBA. The construction is inspired by the one presented in section 2.3 to construct a TA from a BA. In future work we plan to implement a direct translation from LTL to TGTA, but the construction presented below is enough to show the benefits of using TGTAs, and makes it easier to understand how TGTAs relates from TGBAs.

Our first property is the counertpart of Prop. 2: we can construct a TGTA from a TGBA by moving labels to states, and labeling each transition by the set difference between the labels of its source and destination states. While doing so, we keep the generalized acceptance conditions on the transitions. An example is shown on Fig 4b. 

T = S T , I T ,U T , R T , F with S T = S G × Σ, I T = I G × Σ and (i) ∀(s, k) ∈ I T , U T ((s, k)) = {k} (ii) ∀(s, k) ∈ S T , ∀(s , k ) ∈ S T , ((s, k), k ⊕ k , F 1 , (s , k )) ∈ R T ⇐⇒ ∃K ∈ 2 Σ , ((s, K, F 1 , s ) ∈ R G ) ∧ (k ∈ K) Then L (G) = L (T ).
(See appendix E for a proof.)

The next property is the pendent of Prop. 3 to simplify the automaton by removing stuttering-transitions. Here we cannot remove self-loop transitions labeled by / 0, but we can remove all others. The intuition behind this simplification is illustrated on Fig 5a: s 0 is reachable from state s by a non-stuttering transition, but s 0 can reach an accepting stuttering-cycle by following only stuttering transitions. In the context of TA we would have to declare s 0 as being a livelock-accepting state. For TGTA, we replace the accepting stuttering-cycle by adding a self-loop labeled by all acceptance conditions on s n , then the predecessors of s 0 are connected to s n as in Fig. 5b.

Property 5 (Using stuttering-transitions to simplify a TGTA) Let T = S, I,U, R, F be TGTA such that L (T ) is stuttering insensitive. By combining the first three of the following operations, we can remove all stuttering-transitions that are not self-loop (see Fig. 5). The fourth simplification can be performed along the way.

1. If Q ⊆ S is a SCC such that any two states q, q ∈ Q can be connected using a sequence of stuttering-transitions (q, / 0, F 0 , q 1 )(q 1 , / 0,

F 1 , q 2 ) • • • (q n , / 0, F n , q ) ∈ R * with F 0 ∪ F 1 ∪ • • • ∪ F n = F,
then we can add an accepting stuttering self-loop (q, / 0, F, q) on each state q ∈ Q. I.e., the TGTA T = S, I,U, R∪{(q, / 0, F, q) | q ∈ Q}, F is such that L (T ) = L (T ). Let us call such a component Q an accepting Stuttering-SCC. 2. If there exists an accepting Stuttering-SCC Q and a sequence of stuttering-transitions 5a), then:

(s 0 , / 0, F 1 , s 1 )(s 1 , / 0, F 2 , s 2 ) • • • (s n-1 , / 0, F n , s n ) ∈ R * such that s n ∈ Q and s 0 , s 1 , ... s n-1 ∈ Q (Fig.
-For any non-stuttering transition, (s, k, f , s 0 ) ∈ R going to s 0 and such that k = / 0, the TGTA

T = S, I,U, R ∪ {(s, k, f , s n )}, F is such that L (T ) = L (T ). -If s 0 ∈ I, the TGTA T = S, I ∪ {s n },U , R, F with ∀s = s n , U (s) = U(s) and U (s n ) = U(s n ) ∪U(s 0 ), is such that L (T ) = L (T ).
3. Let T † = S, I † ,U † , R † , F be the TGTA obtained after repeating the previous two operations as much as possible (i.e., T † contains all the transitions and initial states that can be added by the above two operations). Then, we can add nonaccepting stuttering self-loops (s, / 0, / 0, s) to all states that did not have an accepting stuttering self-loop because T describes a stuttering invariant property. Also we can remove all stuttering-transitions that are not self-loops since stuttering can be captured by self-loops after the previous two operations. More formally, the

automaton T = S, I † ,U † , R , F with R = {(s, k, f , d) ∈ R † | k = / 0 ∨ (s = d ∧ f = F)} ∪ {(s, / 0, / 0, s) | (s, / 0, F, s) ∈ R † } is such that L (T ) = L (T † ) = L (T ). 4.
Any state from which one cannot reach a Büchi-accepting cycle can be removed from the automaton without changing its language. (See appendix E for proofs.)

Here again, an additional optimization is to merge bisimilar states, this can be achieved using the same algorithm used to simplify a TA, taking S as initial partition and taking into account the acceptance conditions of the outgoing transitions. All these steps are shown on Fig. 4.

We can think of a TGTA as a TGBA whose transitions are labeled by changesets instead of atomic proposition valuations. When checking a TGBA for emptiness, we are looking for an accepting cycle that is reachable from an initial state. When checking a TGTA for emptiness, we are looking exactly for the same thing. The same emptiness check algorithm can be used, because emptiness check algorithms do not look at transition labels. This is a nice feature of TGTA, not only because it gives us a one-pass emptiness check, but also because it eases the implementation of the TGTA approach in a TGBAbased model checker. We need only to implement the conversion of TGBA to TGTA and the product between a TGTA and a Kripke structure. We discuss our implementation in the next section.

Experimentation

This section presents our experimentation of the various types of automata within our tool Spot [START_REF] Move | The Spot home page[END_REF]. We first present the Spot architecture and the way the variation on the model checking algorithm was introduced. Then we present our benchmarks (formulae and models) prior to the description of our experiments.

Implementation on top of Spot

Spot is a model-checking library offering several algorithms that can be combined to build a model checker [START_REF] Duret-Lutz | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF]. Figure 6 shows the building blocks we used to implement the three approaches.

One point that we did not discuss so far is that in the automata-theoretic approach, the automaton used to represent the property to check has to be synchronized with a Kripke structure representing the model. Depending on the kind of automaton (TGBA, BA, TA, TGTA), this synchronized product has to be defined differently. Only the TGBA and BA approaches can share the same product definition. The definitions of these different products follow naturally from the definition of the runs on each automata. We refer the reader to Appendix A for a definition of all these products.

The TGBA, BA, and TGTA approaches share the same emptiness check, while a dedicated algorithm is required by the TA approach. In Fig. 6, no direct translation is provided from LTL to TGTA (this is also true for BA and TA). This could be investigated later, the need being, so far, to assess their interest before optimizing the translation process.

In order to evaluate our approach on "realistic" models, we decided to couple the Spot library with the CheckPN tool [START_REF] Duret-Lutz | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF]. CheckPN implements Spot's Kripke structure interface in order to build the state space of a Petri net on the fly. This Kripke structure is then synchronized with an ω-automaton (TGBA, BA, TA or TGTA) on the fly, and fed to the suitable emptiness check algorithm. The latter algorithm drives the on-thefly construction: only the explored part of the product (and the associated states of the Kripke structure) will be constructed.

Constructing the state space on-the-fly is a double-edged optimization. Firstly, it saves memory, because the state-space is computed as it is explored and thus, does not need be stored. Secondly, it also saves time when a property is violated because the emptiness check can stop as soon as it has found a counterexample. However, on-thefly exploration is costlier than browsing an explicit graph: an emptiness check algorithm such as the one for TA that does two traversals of the full state-space in the worst case (e.g. when the property holds) will pay twice the price of that construction. Fig. 6. The experiment's architecture in SPOT. Three command-line switches control which one of the approaches is used to verify an LTL formula on a Kripke structure. The new components required by the TGTA approach are outlined in Gray.

In the CheckPN implementation of the Kripke structure, the Petri Net marking are compressed to save memory. The marking of a state has to be uncompressed every time we compute its successors, or when we compute the value of the atomic properties on this state. These two operations often occur together, so there is a one-entry cache that prevents the marking from being uncompressed twice in a row.

Benchmark Inputs

We selected some Petri net models and formulae to compare these approaches.

Case Studies

The following two bigger models, were taken from actual cases studies. They come with some dedicated properties to check.

PolyORB models the core of the µbroker component of a middleware [START_REF] Hugues | On the formal verification of middleware behavioral properties[END_REF] in an implementation using a Leader/Followers policy [START_REF] Pyarali | Evaluating and optimizing thread pool strategies for RT-CORBA[END_REF]. It is a Symmetric Net and, since CheckPN processes P/T nets only, it was unfolded into a P/T net. The resulting net, for a configuration involving three sources of data, three simultaneous jobs and two threads (one leader, one follower) is composed of 189 places and 461 transitions. Its state space contains 61 662 states 3 . The authors propose to check that once a job is issued from a source, it must be processed by a thread (no starvation). It corresponds to:

Φ 1 = G(MSrc 1 → F(DOSrc 1 )) ∧ G(MSrc 2 → F(DOSrc 2 )) ∧ G(MSrc 3 → F(DOSrc 3 ))
MAPK models a biochemical reaction: Mitogen-activated protein kinase cascade [START_REF] Heiner | Petri nets for systems and synthetic biology[END_REF]. For a scaling value of 8 (that influences the number of tokens in the initial marking), it contains 22 places and 30 transitions. Its state space contains 6.11 × 10 6 states. The authors propose to check that from the initial state, it is necessary to pass through states RafP, MEKP, MEKPP and ERKP in order to reach ERKPP. In LTL:

Φ 2 = ¬((¬RafP) U MEKP) ∧ ¬((¬MEKP) U MEKPP)∧ ¬((¬MEKPP) U ERKP) ∧ ¬((¬ERKP) U ERKPP)
Toy Examples A first class of four models were selected from the Petri net literature [START_REF] Ciardo | Efficient symbolic state-space construction for asynchronous systems[END_REF][START_REF] Peterson | Myths about the mutual exclusion problem[END_REF]: the flexible manufacturing system (FMS), the Kanban system, the Peterson algorithm, and the slotted-ring system. All these models have a parameter n. For the Peterson algorithm, and the slotted-ring, the models are composed of n 1-safe subnets.

For FMS and Kanban, n only influences the number of tokens in the initial marking. We chose values for n in order to get state space having between 2 × 10 5 to 3 × 10 6 nodes except for Peterson that is 6.3 × 10 8 nodes. The objective is to have non trivial state spaces to be synchronized. Types of Formulae As suggested by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], the type of formula may affect the performances of the various algorithms. In addition to the formulae Φ 1 and Φ 2 above, we consider two classes of formulae:

-RND: randomly generated LTL formulae (without X operator). Since random formulae are very often trivial to verify (the emptiness check needs to explore only a handful of states), for each model we selected only random formulae that required to explore more than 2000 states with the three approaches. -WFair: properties of the form ( n i=1 G F p i ) → ϕ, where ϕ is a randomly generated LTL formula. This represents the verification of ϕ under the weak-fairness hypothesis n i=1 G F p i . The automaton representing such a formula has at least n acceptance conditions which means that the BA will in the worst case be n+1 times bigger than the TGBA. For the formulae we generated for our experiments we have n ≈ 3.23 on the average. All formulae were translated into automata using Spot, which was shown experimentally to be very good at this job [START_REF] Rozier | LTL satisfiability checking[END_REF][START_REF] Duret-Lutz | LTL translation improvements in Spot[END_REF]. The time spent doing the conversion from LTL to TGBA and then to TGTA (bisimulation included) is not measured in this benchmark. This translation process is almost instantaneous (<0.1s), and even if its runtime could be improved (for instance with a direct translation from LTL to TGTA) it is clearly a non significant part of the run time of the different model checking approaches, where all the time is spent performing the emptiness check of the product (built on-the-fly) between the Kripke structure and the property automaton.

Results

Table 1 shows how for TGBA, TA and TGTA approaches deal with toy models and random formulae. We omit data for BA since they are always outperformed by TGBA. For space reason, we also omit the table showing toy models against weak-fairness formulae [START_REF] Salem | Generalized Büchi automata versus testing automata for model checking[END_REF], because it shows results similar to those of table 1.

Table 2 shows the results of the two cases studies against random, weak-fairness, and dedicated formulaeissued from the studies.

These tables separate cases where formulae are verified from cases where they are violated. In the former (left sides of the tables), no counterexample are found and the full state space had to be explored; in the latter (right sides) the on-the-fly exploration of the state space stopped as soon as the existence of a counterexample could be computed.

All values shown in all tables are averaged over 100 different formulas (except for the lines Φ 1 and Φ 2 in Table 2, where only one formula is used). For instance we checked Peterson5 against 100 random formulae that had no counterexample, and against 100 random formulae that had a counterexample. The average and maximum are computed separately on these two sets of formulae.

Column-wise, these tables show the average and maximum sizes (states and transitions) of: (1) the automata A ¬ϕ i expressing the properties ϕ i ; (2) the products A ¬ϕ i ⊗ A M of the property with the model; and (3) the subset of this product that was actually explored by the emptiness check. For verified properties, the emptiness check of TGBA and BA always explores the full product so these sizes are equal, while the emptiness check of TA always performs two passes on the full product so it shows double values. On violated properties, the emptiness check aborts as soon as it finds a counterexample, so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled "T": this is the time (in hundredth of seconds, a.k.a. centiseconds) spent doing that emptiness check, includ- ing the on-the-fly computation of the subset of the product that is explored. The time spent constructing the property automata from the formulae is not shown (it is negligible compared to that of the emptiness check). Figure 7 compares the number of visited transitions when running the emptiness check; plotting TGTA against TA and TGBA. This gives an idea of their relative performance. Each point corresponds to one of the 4100 evaluated formulas (2050 violated with counterexample as black circles, and 2050 verified having no counterexample as green crosses). Each point below the diagonal is in favor of TGTA while others are in favor of the other approach. Axes are displayed using a logarithmic scale. No comparison is presented with BA since they are less efficient than TGBA [START_REF] Salem | Generalized Büchi automata versus testing automata for model checking[END_REF].

All these tests were run on a 64bit Linux system running on an Intel Core 2 Quad Processor Q9400 at 2.66GHz, with 4GB of RAM.

Discussion

Although the state space of cases studies can be very different from random state spaces [START_REF] Pelánek | Properties of state spaces and their applications[END_REF], a first look at our results confirms two facts already observed in previous studies [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]: (1) although the TA constructed from properties are usually a lot larger than TGBA (and even larger than BA [START_REF] Salem | Generalized Büchi automata versus testing automata for model checking[END_REF]), the average size of the full product is smaller thanks to the more deterministic nature of the TA. (2) For violated properties, the TA approach explores less states and transitions on the average than TGBA or BA.

We complete this picture by showing run times, by separating verified properties from violated properties, and by also evaluating the TGBA approach.

It should be noted that our implementation has been improved since our previous experiments [START_REF] Salem | Generalized Büchi automata versus testing automata for model checking[END_REF] where the cost of computing labels in the Kripke structure was higher than it is now (we use a cache). This change mainly benefit to testing automata, because they query two labels by transition of the Kripke structure (to compute an xor between source label and destination label) while other approaches query only one label.

For weak-fairness formulae, we show only the results for cases studies because for toy examples we obtain similar results as random formulae.

On verified properties the results are very straightforward to interpret when looking at the number of transitions explored by the emptiness check. TA outperform TGBA except for both Random and weak-fairness properties against Peterson, Ring and Poly-ORB. These are typical cases where the TA emptiness check has to perform two passes: this can be observed in the tables 1 and 2 when the number of transitions visited by the emptiness check is on the average twice the number of transitions of the product.

In these three cases, the TGTA approach, with its single-pass emptiness check, is a clear improvement over TA. On the left scatter plots of Fig. 7, these cases where the TGTA approach is twice faster than TA's, appear as a linear cloud of green crosses below the diagonal (because the axes are displayed using a logarithmic scale).

In the other where TA need only one pass on the average (e.g. Kanban, MAPK), TGTA and TA have similar performance, with a slight advantage for TGTA because the products are smaller.

As a consequence the TGTA approach outperforms TGBA and TA in all cases on verified properties.

On violated properties, it is harder to interpret these tables because the emptiness check will return as soon as it finds a counterexample. Changing the order in which non-deterministic transitions of the property automaton are iterated is enough to change the number of states and transitions to be explored before a counterexample is found: in the best case the transition order will lead the emptiness check straight to an accepting cycle; in the worst case, the algorithm will explore the whole product until it finally finds an accepting cycle. Although the emptiness check algorithms for the three approaches share the same routines to explore the automaton, they are all applied to different kinds of property automata, and thus provide different transition orders.

We believe that the TA and TGTA, since they are more deterministic [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], are less sensitive to this ordering. Also, in all of our experiments the TA approach has always found the counterexample in the first pass of the emptiness check algorithm. This supports Geldenhuys and Hansen's claim that the second pass was seldom needed for violated properties (less than 0.005% of the cases in their experiments [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]). Finally, in the tables 1 and 2, we observe that the TGTA approach explores the smallest products on the average.

Conclusion

This paper is the sequel of a preliminary work [START_REF] Salem | Generalized Büchi automata versus testing automata for model checking[END_REF] experimenting LTL model checking of stuttering-insensitive properties with various techniques: Büchi automata (BA), Transition-based Generalized Büchi Automata and Testing Automata [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]. At this time, conclusions were that TA outperformed BA and sometimes TGBA for unverified properties (i.e., when a counterexample was found). However, this was not the case when no counterexample was computed since the entire state space may had to be visited twice to check for each acceptance mode of a TA (Büchi acceptance or livelock-acceptance).

This paper extends the above work by proposing a new type of ω-automaton: Transition-based Generalized Testing Automata (TGTA). It inherits from TA the labeling of transitions by changesets and, from TGBA, the use of transition-based acceptance conditions. The idea is to combine advantages observed on both TA and TGBA.

TGTA have been implemented in Spot easily, because only two new algorithms are required: the conversion of a TGBA into a TGTA, and a new definition of a product between a TGTA and a Kripke structure.

We have run benchmarks to assess their interest. Experiments reported that, in most cases, TGTA outperform TA and TGBA when no counterexample is found in the system and are comparable when the property is violated.

We conclude that there is nothing to lose by using TGTA to verify stutteringinsensitive properties, since they are always at least as good as TA and TGBA. Future work We plan additional work to enable symbolic model checking with TGTA, thus allowing us to tackle much larger state spaces than in explicit model checking. Another idea would be to provide a direct conversion of LTL to TGTA, without the intermediate TGBA step. We believe a tableau construction such as the one of Couvreur [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF] could be easily adapted to produce TGTA.

Definition 7 For a Kripke structure K = S K , I K , R K , L K and a TGBA G = S G , I G , R G , F G the product K ⊗ G is the TGBA S, I, R, F where -S = S K × S G , -I = I K × I G , -R = {((s, s ), L K (s), f , (d, d )) | (s, d) ∈ R K , (s , k, f , d ) ∈ R G , L K (s) ∈ k} -F = F G . Property 6 We have L (K ⊗ G) = L (K ) ∩ L (G) by construction.
Since a BA can be seen as a TGBA with a unique acceptance set, and all state-based acceptance conditions pushed to the outgoing transitions, the same construction can be used to make a product between a Kripke structure and a BA.

A.2 Product of a TA with a Kripke Structure

For TGBA (or BA) the synchronized product with a Kripke structure can be defined as another TGBA (or BA). In the case of testing automata, the product of a Kripke and a TA is not a TA: while an execution in a TA is allowed to stutter on any state, the execution in a product must always progress.

Definition 8 For a Kripke structure K = S K , I K , R K , L K and a TA T = S T , I T ,U T , R T , F T , G T , the product K ⊗ T is an automaton S, I,U, R, F, G where -S = S K × S T , -I = {(s, s ) ∈ I K × I T | L K (s) ∈ U T (s )}, -∀(s, s ) ∈ I, U((s, s )) = {L K (s)}, -R = {((s, s ), k, (d, d )) | (s, d) ∈ R K , (s , k, d ) ∈ R T , k = L K (s) ⊕ L K (d)} ∪ {((s, s ), / 0, (d, d )) | (s, d) ∈ R K , s = d , L K (s) = L K (d)} -F = S K × F T , and G = S K × G T . An execution w = k 0 k 1 k 2 . . . ∈ K ω is accepted by K ⊗ T if there exists an infinite se- quence (s 0 , k 0 ⊕ k 1 , s 1 )(s 1 , k 1 ⊕ k 2 , s 2 ) . . . (s i , k i ⊕ k i+1 , s i+1 ) . . . ∈ (S × K × S) ω such that: -s 0 ∈ I with k 0 ∈ U(s 0 ), -∀i ∈ N, (s i , k i ⊕ k i+1 , s i+1 ) ∈ R (we are always progressing in the product) -Either, ∀i ∈ N, (∃ j ≥ i, k j = k j+1 ) ∧ (∃l ≥ i, s l ∈ F) (the automaton is progressing in a Büchi-accepting way), or, ∃n ∈ N, ∀i ≥ n, (k i = k n ) ∧ (s i ∈ G) (a suffix of the execution stutters in G). Property 7 We have L (K ⊗ T ) = L (K ) ∩ L (T ) by construction.

A.3 Product of a TGTA with a Kripke Structure

The product of a TGTA with a Kripke structure is a TGTA. Comparing this definition with the previous two products shows the double inheritance of TGTA. This product is similar to the product between a TA and a Kripke structure, expect it does not deal with livelock acceptance states and implicit stuttering. It is also similar to the product of a TGBA with a Kripke structure, except for the use of changesets on transitions, and the initial labels (U).

Definition 9 For a Kripke structure K = S K , I K , R K , L K and a TGTA T = S T , I T , U T , R T , F T , the product K ⊗ T is a TGTA S, I,U, R, F where

-S = S K × S T , -I = {(s, s ) ∈ I K × I T | L K (s) ∈ U T (s )}, -∀(s, s ) ∈ I, U((s, s )) = {L K (s)}, -R = {((s, s ), k, f , (d, d )) | (s, d) ∈ R K , (s , k, f , d ) ∈ R T , k = L K (s) ⊕ L K (d)} -F = F T . Property 8 We have L (K ⊗ T ) = L (K ) ∩ L (T ) by construction.

B Model Checking Using TGBA

When doing model checking with TGBA the two important operations are the translation of the linear-time property ϕ into a TGBA A ¬ϕ and the emptiness check of the product of the Kripke structure K with A ¬ϕ : this product K ⊗ A ¬ϕ is a TGBA. Numerous algorithms translate LTL formulae into TGBA [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Babiak | LTL to Büchi automata translation: Fast and more deterministic[END_REF][START_REF] Tauriainen | Automata and Linear Temporal Logic: Translation with Transition-based Acceptance[END_REF]. We use Couvreur's one [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF] with some optimizations [START_REF] Duret-Lutz | LTL translation improvements in Spot[END_REF].

Testing a TGBA for emptiness amounts to the search of a strongly connected component that contains at least one occurrence of each acceptance condition. It can be done in two different ways: either with a variation of Tarjan or Dijkstra algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF] or using several nested depth-first searches to save memory [START_REF] Tauriainen | Automata and Linear Temporal Logic: Translation with Transition-based Acceptance[END_REF]. The latter proved to be slower [START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF], so we are using Couvreur's SCC-based emptiness check algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF]. Another advantage of the SCC-based algorithm is that their complexity does not depend on the number of acceptance conditions.

Algorithm. 1 presents an iterative version of Couvreur's algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF]. This algorithm computes on the fly the maximal Strongly Connected Components: it performs a Depth-First Search (DFS) for SCC detection and then merges the SCCs belonging to the same maximal SCC into a single SCC. After each merge, if the union of all acceptance conditions occurring in the merged SCC is equal to F, then an accepting run is found. todo is the DFS stack. It is used by the procedure DFSpush to push the states of the current DFS path and the set of their successors that have not yet been visited. H maps each visited state to its rank in the DFS order, and H[s] = 0 indicates that s is a dead state (i.e., s belongs to a maximal SCC that has been fully explored). Figure 9 illustrates a run of this algorithm on a small example.

The SCC stack stores a chain of partial SCCs found during the DFS. For each SCC the attribute root is the DFS rank (H) of the first state of the SCC, acc is the set of all acceptance conditions belonging to the SCC, la is the acceptance conditions of the transition between the previous and the current SCC, and rem contains the fully explored states of the SCC. Figure 8 shows how acc and la are used in the SCC search stack. The algorithm begins by pushing in SCC each state visited for the first time (line 12), as a trivial SCC with an empty acc set (line 22). Then, when the DFS explores a transition t between two states s and d, if d is in the SCC stack (line 14), therefore t closes a cycle passing through s and d in the product automaton.This cycle "strongly connects" all SCCs pushed in the SCC stack between SCC[i] and SCC[n]: the two SCCs that respectively contains the states d and s (SCC [n]] is the top of the SCC stack). All the SCCs between SCC[i] and SCC[n] are merged (line 15) into SCC [i]. The merge of acceptance conditions is illustrated by Fig. 8: a "back" transition t is found between SCC[n] and SCC[i], therefore the latest SCCs (from i to n) are merged. The acceptance conditions of the merged SCC is equal to the union of SCC

[i].acc ∪ SCC[i + 1].la ∪ SCC[i + 1].acc ∪ • • • ∪ SCC[n].la ∪ SCC[n]
.acc ∪ t.la. If this union is equal to F, then the merged SCC is accepting and the algorithm return false (line 17): the product is not empty.

C Model Checking Using BA

Since a BA can be seen as a TGBA by pushing acceptance conditions from states to outgoing transitions, the emptiness check from Algorithm. 1 also works. Other algorithms, specific to BA, are based on two nested depth-first searches. The comparison of these different emptiness checks raised many studies [START_REF] Geldenhuys | Tarjan's algorithm makes on-the-fly LTL verification more efficient[END_REF][START_REF] Schwoon | A note on on-the-fly verification algorithms[END_REF][START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF], and for this work we only consider the SCC-based algorithm presented here.

D Emptiness Check Using TA

Testing Automata require a dedicated algorithm because there are two ways to detect an accepting cycle in the product:

-Büchi acceptance: a cycle containing at least one Büchi-acceptance state (F) and at least one non-stuttering transition (i.e., a transition (s, k, s ) with k = / 0), livelock acceptance: a cycle composed only of stuttering transitions and livelock acceptance states (G).

A straightforward emptiness check would have two passes: a first pass to detect Büchi acceptance cycles, it corresponds to Algorithm. 2 without the test at line 21 and a second pass presented in Algorithm. 3 to detect livelock acceptance cycles. It is not possible to merge these two passes into a single DFS: the first DFS requires the full product exploration while the second one must consider stuttering transitions only. These two passes are an inconvenient when the property is satisfied (no counterexample) since the entire state-space has to be explored twice. With line 21 included in Algorithm. 2, the first-pass detects both Büchi and some livelock-acceptance cycles. Since in certain cases it may fail to report some livelockacceptance cycles, a second pass is required to look for possible livelock-acceptance cycles.

1 Input: A product K ⊗ T = S, I,U, R, F, G 2 Result: true if and only if L (T ) = / 0 3 Data: todo: stack of state ∈ S, succ ⊆ R SCC: stack of root ∈ N, lk ∈ 2 AP , k ∈ 2 AP , acc ⊆ F, rem ⊆ S H: map of S → N max ← 0, Gseen ← f
This first-pass is based on the TGBA emptiness check algorithm presented in Algorithm. 1 with the following changes:

-In each item scc of the SCC stack: the field scc.acc contains the Büchi-accepting states detected in scc, scc.lk is analogous to la in Fig. 8 However, the first-pass may miss this livelock-accepting cycle depending on the order in which it processes the outgoing transitions of (3, 1). If the transition t 1 = ((3, 1), {p}, (0, 0)) is processed before t 2 = ((3, 1), / 0, (2, 1)), then the cycle C 1 = [(0, 0) → (1, 0) → (2, 1) → (3, 1) → (0, 0)] is detected and the four states are merged in the same SCC before exploring t 2 . After this merge (line 19), this SCC is at the top of the SCC stack. Subsequently, when the DFS explores t 2 , the merge caused by the cycle C 2 does not add any new state to the SCC, and the SCC stack remains unchanged. Therefore, the test line 21 still return false because the union SCC.top().k of all change-sets labeling the transitions of S is not empty (it includes for example t 1 's label: {p}). The first-pass algorithm then terminates without reporting any accepting cycle, missing C 2 .

Had the first-pass processed t 2 before t 1 , it would have merged the states (3, 1) and (2, 1) in an SCC, and would have detected it to be livelock-accepting.

In general, to report a livelock-accepting cycle, the first-pass computes the union of all change-sets of the SCC containing this cycle. However, this union may include nonstuttering transitions belonging to other cycles of the SCC. In this case, the second-pass is required to search for livelock-acceptance cycles, ignoring the non-stuttering transitions that may belong to the same SCC. Ignoring the non-stuttering transitions during the DFS, may lead to miss some parts of the product so any destination of a non stuttering transition is stored in init for later exploration (line 22).

In the algorithm proposed by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], the first pass uses a heuristic to detect livelock-acceptance cycles when possible. This heuristic detects more livelock-acceptance cycles than Algorithm. 2. In certain cases this first pass may still fail to report some livelock-acceptance cycles. Yet, this heuristic is very efficient: when counterexamples exist, they are usually caught by the first pass, and the second is rarely needed. However, when properties are verified, the second pass is always required.

Optimizations In our experimentation, we implement the algorithm proposed by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] including the heuristic and we have added some improvements to the first pass:

1. If no livelock-acceptance state is visited during the first pass, then the second pass can be disabled: this is the purpose of variable Gseen. In our experiments, this optimization greatly improves the performance of the TA approach in the cases where the formula is verified. 2. A cycle detected during the first pass is also accepted if it contains a livelockacceptance state (s K , s T ) such that s T has no successor. Indeed, from this state, a run can only executes stuttering transitions. Therefore, a cycle containing this state, is composed only of stuttering transitions: it is a livelock accepting cycle.

E Proofs for TGTA Construction

Proof of property 4.

( ( (⊆ ⊆ ⊆) ) ) Let w = k 0 k 1 k 2 . . . ∈ L (G) be an execution accepted by G. By Def. 3, this execution is recognized by a path (s 0 , K 0 , F 0 , s 2 )(s 2 , K 1 , F 1 , s 2 ) . . . ∈ R ω G of G, such that s 0 ∈ I, ∀i ∈ N, (k i ∈ K i ), and ∀ f ∈ F, ∀i ∈ N, ∃ j ≥ i, f ∈ F j . By applying (ii) and (i), we can see that there exists a corresponding path ((s 0 , k 0 ), k 0 ⊕ k 1 , F 0 , (s 1 , k 1 ))((s 1 , k 1 ),

k 1 ⊕ k 2 , F 1 , (s 2 , k 2 )) . . . ∈ R ω
T of T such that (s 0 , k 0 ) ∈ I T , k 0 ∈ U T ((s 0 , k 0 )), and still ∀ f ∈ F, ∀i ∈ N, ∃ j ≥ i, f ∈ F j . By Def. 6 we therefore have w ∈ L (T ).

( ( (⊇ ⊇ ⊇) ) ) Let w = w 0 w 1 w 2 . . . ∈ L (T ) be an execution accepted by T . By Def. 6, this execution is recognized by a path ((s 0 , k 0 ), w 0 ⊕ w 1 , F 0 , (s 1 , k 1 ))((s 1 , k 1 ), w 1 ⊕ w 2 , F 1 , (s 2 , k 2 )) . . . ∈ R ω

T of T such that (s 0 , k 0 ) ∈ I T , w 0 ∈ U T ((s 0 , k 0 )), and ∀ f ∈ F, ∀i ∈ N, ∃ j ≥ i, f ∈ F j . Of course we have w i ⊕ w i+1 = k i ⊕ k i+1 but this does not suffice to imply that k i = w i . However (i) tells us that w 0 ∈ U T ((s 0 , k 0 )) = {k 0 } so w 0 = k 0 , and since w i ⊕ w i+1 = k i ⊕ k i+1 it follows that w i = k i . By applying (ii) can now find a corresponding path (s 0 , K 0 , F 0 , s 2 )(s 2 , K 1 , F 1 , s 2 ) . . . ∈ R ω G of G, such that s 0 ∈ I, ∀i ∈ N, (w i = k i ∈ K i ), and ∀ f ∈ F, ∀i ∈ N, ∃ j ≥ i, f ∈ F j . By Def. 3 we therefore have w ∈ L (G).

Proof of property 5.

1. ( ( (T ⊇ ⊇ ⊇ T ) ) ) Obvious because we are only adding transitions. ( ( (T ⊆ ⊆ ⊆ T ) ) ) Let R = R ∪ {(q, / 0, F, q) | q ∈ Q}. Consider an accepting execution w = k 0 k 1 k 2 . . . L (T )

recognized by an accepting path π on T . Any transition of π that is not in R is a self-loop (q, / 0, F, q) that has been added to R because an accepting stuttering-SCC exists in R around q: so any (q, / 0, F, q) ∈ R can be replaced by a sequence of stuttering transitions (q, / 0, G 0 , q 1 )(q 1 , / 0, G 1 , q 2 ) . . . (q n , / 0, G n , q) ∈ R * such that G 0 ∪ G 1 ∪ . . . G n = F. The path π ∈ R ω obtained by replacing all such transitions is an accepting path of T that recognizes a word that is stuttering equivalent to w.

Since L (T ) is stuttering-insensitive, it must also contain w.

2. ( ( (T ⊇ ⊇ ⊇ T ) ) ) Obvious for the same reason. ( ( (T ⊆ ⊆ ⊆ T ) ) ) We consider the case where s 0 is non initial (the initial case is similar). Let R = R ∪ {(s, k, f , s n )}. Consider an accepting execution w = k 0 k 1 k 2 . . . L (T ) recognized by a path π on T . Let π be the path on T obtained by replacing in π any occurrence of (s, k, f , s n ) ∈ (R \ R) by the sequence (s, k, f , s 0 )(s 0 , / 0, F 1 , s 1 )(s 1 , / 0, F 2 , s 2 ) • • • (s n-1 , / 0, F n , s n ) ∈ R * . The path π ∈ R ω is also an accepting path of T that recognizes a word that is stuttering equivalent to w. Since L (T ) is stuttering-insensitive, it must also contain w. 3. L (T † ) = L (T ) by application of the previous two properties, therefore L (T † ) is a stuttering-insensitive language. L (T ) is also a stuttering-insensitive language because T is obtained from T † that recognizes a stuttering-insensitive language, by adding stuttering self-loops on all its states before removing all stutteringtransitions that are not self-loops.

To prove that two stuttering-insensitive languages are equal, it is sufficient to verify that they contain the same words of the following two forms:

w = k 0 k 1 k 2 . . . with ∀i ∈ N, k i ⊕ k i+1 = / 0 (non-stuttering words), or w = k 0 k 1 k 2 . . . (k n ) ω with ∀i < n, k i ⊕ k i+1 = / 0 (terminal stuttering words)
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All other accepted words can be generated by duplicating letters in the above words. Since we have only touched stuttering transitions, it is clear that the non-stuttering words of L (T ) are the non-stuttering words of L (T ).

We now consider the case of a terminal stuttering word w = k 0 k 1 k 2 . . . (k n ) ω with ∀i < n, k i ⊕ k i+1 = / 0.

( ( (T ⊆ ⊆ ⊆ T † ) ) ) The path π that recognizes w in T has the form (s 0 , k 0 ⊕ k 1 , F 0 , s 1 ) (s 1 , k 1 ⊕ k 2 , F 1 , s 2 ) . . . (s n , / 0, F, s n ) ω where all transitions are necessarily from T † because we have only added in T transitions of the form (s, / 0, / 0, s). π is thus also an accepting path of T † and w ∈ L (T † ).

( ( (T ⊇ ⊇ ⊇ T † ) ) ) The path π † that recognizes w in T † does only stutter after k n . Because this is an accepting path, it has a lasso-shape, where the cyclic part is only stuttering and accepting. Let us denote it π † = (s 0 , k 0 ⊕ k 1 , F 0 , s 1 )(s 1 , k 1 ⊕ k 2 , F 1 , s 2 ) . . . (s n-1 , k n-1 ⊕ k n , F n-1 , s n )(s n , / 0, F n , s n+1 ) . . . [(s m , / 0, F m , s m+1 ) . . . (s l , / 0, F l , s m )] ω , with ∀i < n, k i ⊕ k i+1 = / 0. Thanks to property 5.1, the accepting cycle [(s m , / 0, F m , s m+1 ) . . . (s l , / 0, F l , s m )] of π † can be replaced by an accepting self-loop (s m , / 0, F, s m ). And thanks to property 5.2, the transitions from s n-1 to s m can be replaced by a single transition (s n-1 , k n-1 ⊕ k n , F n-1 , s m ). The resulting path π = (s 0 , k 0 ⊕k 1 , F 0 , s 1 )(s 1 , k 1 ⊕k 2 , F 1 , s 2 ) . . . (s n-1 , k n-1 ⊕ k n , F n-1 , s m )(s m , / 0, F, s m ) ω is an accepting path of T that accepts w, so w ∈ L (T ). 4. This is a classical optimization on Büchi automata.

Fig. 1 .

 1 Fig. 1. (a) A TGBA with acceptance conditions F = { , } recognizing the LTL property ϕ = G F a ∧ G F b. (b) A TGBA with F = { } recognizing the LTL property a U G b.

Fig. 2 .

 2 Fig. 2. Two examples of BA, with acceptance states shown as double circles. (a) A BA for the LTL property ϕ = G F a ∧ G F b obtained by degeneralizing the TGBA for Fig. 1(a). (b) A BA for the LTL property a U G b.

  Initial BA for a U G b. a U G b, a b a b a U G b, ab ab a U G b, āb āb G After the construction from property 2. a U G b, a b a b a U G b, ab ab a U G b, āb āb G

Fig. 3 .

 3 Fig. 3. Steps of the construction of a TA from a BA. States with a double enclosure belong to either F or G: states in F \ G have a double plain line, states in G \ F have a double dashed line, and states in F ∩ G use a mixed dashed/plain style. Property 2 (Converting a BA into a TA [10]) For any BA B = S B , I B , R B , F B over the alphabet Σ = 2 AP and such that L (B) is stuttering insensitive, let us define the TA

  a) Initial TGBA for a U G b. a U G b, a b a b a U G b, ab ab a U G b, āb āb G TGTA obtained by property 4. a U G b, a b a b a U G b, ab ab a U G b, āb āb G TGTA after simplifications by property 5.

  TGTA after bisimulation.

Fig. 4 .

 4 Fig. 4. TGTA obtained after various steps while translating the TGBA representing a U G b, into a TGTA with F = { }.

  a) Before stuttering-transitions ( / 0) reduction.

Fig. 5 .

 5 Fig. 5. Using stuttering-transitions to simplify a TGTA.

Property 4 (

 4 Converting TGBA into TGTA) For any TGBA G = S G , I G , R G , F over the alphabet Σ = 2 AP and such that L (G) is stuttering insensitive, let us define the TGTA

Fig. 7 .

 7 Fig. 7. Performance (transitions explored by the emptiness check) of TGTA against TA and TGBA.

Fig. 8 .

 8 Fig. 8. SCC stack: the use of the SCCs fields la and acc.

Fig. 9 .

 9 Fig.9. Six intermediate steps in a run of algorithm 1. The states s 1 , . . . , s 5 are labeled by their value in H. The stack of roots of SCCs (the root stack in the algorithm) and the DFS search stack (induced by the recursive calls to DFSpush()) are displayed on the side. An interpretation of the SCC stack in term of SCCs is given as yellow blobs on the automaton. (a) Initially the algorithm performs a DFS search by declaring each newly encountered state as a trivial SCC. (b) When the transition from s 4 to s 3 is processed, the algorithm detects that H[s 3 ] = 0 which means the transition creates a cycle and all SCCs between s 4 and s 3 are merged. (c) When the DFS exits the non-accepting {s 3 , s 4 } SCC, it marks all its states as dead (H[s] = 0). (d) When the DFS tries attempt to visit a dead state, it ignores it. (e) Visiting the transition from s 5 to s 1 will merge three SCCs into one, but it does not yet appear to be accepting because the white acceptance has not been seen. (f) Finally visiting the transition from s 2 back to s 1 will contribute white acceptance condition to the current SCC, and the algorithm will stop immediately because it has found an SCC labeled by all acceptance conditions.

Fig. 10 .

 10 Example product between a Kripke structure and a TA. The bold cycle is livelock-accepting.

  but it stores the change-set labeling the transition coming from the previous SCC, and scc.k contains the union of all change-sets in scc (lines 39 and 43). -After each merge, SCC.top() is checked for Büchi-acceptance (line 20) or livelockacceptance (line 21) depending on the emptiness of SCC.top().k. Figure 10 illustrates how the first-pass of Algorithm. 2 can fail to detect the livelock accepting cycle in a product K ⊗ T as defined in def. 8. In this example, G T = {1} therefore (3, 1) and (2, 1) are livelock-accepting states, and C 2 = [(3, 1) → (2, 1) → (3, 1)] is a livelock-accepting cycle.

  , representing a TA for a U G b.-The execution ab; āb; ab; āb; ab; āb; ab; . . . is Büchi accepting. A run recognizing such an execution must start in state 2, then it always changes the value of a, so it has to take transitions labeled by {a}. For instance it could be the run 2

						{a} --→
	4	{a} --→ 4	{a} --→ 4 • • • or the run 2	{a} --→ 3	{a} --→ 4	{a} --→ 4 • • • Both visit the run state 4 ∈ F
	infinitely often, so they are Büchi accepting.
	-The execution ab; āb; āb; āb; . . . is livelock accepting. An accepting run starts in
	state 2, then moves to state 4, and stutters on this livelock-accepting state. Another
	possible accepting run goes from state 2 to state 3 and stutters in 3 ∈ G.
	-The execution ab; a b; ab; a b; ab; a b; . . . is not accepted. It would correspond to a run
	alternating between states 2 and 1, but such a run is neither Büchi accepting (does
	not visit any F state) nor livelock-accepting (it passes through state 2 ∈ G, but does
	not stay into this state continuously).		

Table 1 .

 1 Comparison of the three approaches on toy examples with random formulae, when counterexamples do not exist (left) or when they do (right).

	Kanban5		FMS5		Ring6	Peterson5			
	TGTA avg 11 166 560 409 5 302 142 560 409 5 302 142 1 015 17 265 5 153 380 50 559 085 19 503 97 543 22 max 51 1 343 5 970 944 60 234 328 5 970 944 60 234 328 11 013 58 1 246 13 940 304 144 001 788 439 056 3 578 982 819	TA avg 13 133 575 668 5 450 687 575 668 5 450 687 1 099 20 225 5 659 936 54 667 538 21 839 104 243 25 max 55 1 170 5 970 944 60 234 328 5 970 944 60 234 328 11 567 66 1 096 16 091 600 161 286 146 439 088 3 579 035 866	TGBA avg 5 48 837 446 8 350 628 837 446 8 350 628 1 254 6 66 5 974 582 61 036 827 45 690 165 487 31 max 12 238 9 500 904 135 774 933 9 500 904 135 774 933 18 934 20 268 16 729 695 220 725 750 915 486 4 055 483 860	TGTA avg 13 231 407 130 3 184 980 407 130 3 184 980 788 15 305 6 397 882 53 832 859 30 372 155 899 46 max 37 1 147 6 570 291 53 742 054 6 570 291 53 742 054 12 522 52 1 852 19 040 412 167 542 101 1 356 842 10 590 558 2 551	TA avg 15 186 405 588 3 161 894 482 687 3 786 904 976 17 251 6 686 607 55 303 413 31 632 165 756 52 max 51 931 6 570 291 53 742 054 9 018 660 74 274 828 19 268 53 1 615 20 819 154 179 323 867 1 356 842 10 590 558 2 814	TGBA avg 6 68 551 742 3 993 810 551 742 3 993 810 814 5 69 6 883 843 62 106 759 54 518 214 399 55 max 21 462 7 302 624 65 806 572 7 302 624 65 806 572 12 288 16 280 23 726 488 244 007 764 1 921 058 11 918 449 2 391	TGTA avg 16 266 538 121 3 168 068 538 121 3 168 068 892 21 443 1 349 758 8 084 652 176 745 979 121 323 max 57 1 874 2 260 160 14 894 816 2 260 160 14 894 816 3 799 73 2 257 3 864 570 22 690 780 1 380 951 8 353 228 2 935	TA avg 18 213 525 472 3 040 856 1 020 062 5 908 454 1 686 24 366 1 410 442 8 308 311 191 563 1 054 280 379 max 61 1 396 2 218 432 14 265 568 4 436 864 28 531 136 7 513 79 2 453 4 591 370 26 900 864 1 583 757 9 167 989 3 849	TGBA avg 6 62 671 254 4 279 403 671 254 4 279 403 986 7 96 1 534 755 10 264 597 247 215 1 257 494 349 max 18 360 2 788 267 27 749 420 2 788 267 27 749 420 5 348 25 347 5 378 284 33 010 296 1 882 843 12 472 859 3 613	TGTA avg 18 384 2 327 423 9 070 953 2 327 423 9 070 953 17 675 20 473 4 338 504 16 958 774 421 538 1 504 616 3 270 max 63 2 541 6 802 901 26 886 243 6 802 901 26 886 243 50 992 89 3 931 15 665 643 61 102 382 3 171 366 12 373 040 27 590	TA avg 21 333 2 364 394 9 208 893 3 820 489 14 883 673 29 299 23 400 4 530 886 17 667 955 477 568 1 709 098 3 626 max 86 2 976 6 794 050 26 853 438 13 588 100 53 706 876 102 304 96 2 384 15 665 643 61 047 330 4 356 432 16 974 570 33 646	TGBA avg 6 74 2 489 651 10 706 255 2 489 651 10 706 255 18 623 6 98 4 378 750 18 950 326 447 532 1 664 897 3 429 max 15 368 8 648 954 51 231 247 8 648 954 51 231 247 66 305 19 452 15 758 813 68 376 074 3 464 205 16 063 131 33 813	st. tr. st. tr. st. tr. T st. tr. st. tr. st. tr. T	Automa. Full product Emptiness check Automa. Full product Emptiness check	Verified properties (no counterexample) Violated properties (a counterexample exists)
	Kanban5		FMS5		Ring6	Peterson5			

Table 2 .

 2 Comparison of the three approaches for the case studies when counterexamples do not exist (left) or when they do (right).

  Algorithm 2: The first-pass of the Emptiness check algorithm for TA products.

			23 DFSpush1(lk ∈ 2 AP , s ∈ S)
			24	max ← max + 1
			25	H[s] ← max
			26	if s ∈ F then
			27	SCC.push( max, lk, / 0, {s}, / 0 )
			28	else
		alse	29	SCC.push( max, lk, / 0, / 0, / 0 )
	4 begin	
	5	if ¬ first-pass() then return false	
	6	if Gseen then return second-pass()	
	7	return true	
	8 first-pass() 9 foreach s 0 ∈ I do 10 DFSpush1( / 0, s 0 ) 11 while ¬todo.empty() do	34 35 36	acc ← / 0 r ← / 0 k ← lk
	12	if todo.top().succ = / 0 then	
	13	DFSpop()	
	14	else	
	15	pick one s, k, d off todo.top().succ	
	16	if d ∈ H then	
	17	DFSpush1(k, d)	
	18	else if H[d] > 0 then	
	19	merge1(k, H[d])	
	20	if (SCC.top().acc = / 0) ∧	
		(SCC.top().k = / 0) then return	
		false	
	21	if (d ∈ G) ∧ (SCC.top().k = / 0) then	
		return false	
	22	return true	

30 todo.push( s, { q, k, d ∈ R | q = s} ) 31 if s ∈ G then 32 Gseen ← true 33 merge1(lk ∈ 2 AP , t ∈ N) 37 while t < SCC.top().root do 38 acc ← acc ∪ SCC.top().acc 39 k ← k ∪ SCC.top().k ∪ SCC.top().lk 40 r ← r ∪ SCC.top().rem 41 SCC.pop() 42 SCC.top().acc ← SCC.top().acc ∪ acc 43 SCC.top().k ← SCC.top().k ∪ k 44 SCC.top().rem ← SCC.top().rem ∪ r

  Algorithm 3: The second-pass of the TA emptiness check algorithm.The second-pass (Algorithm. 3) is a DFS exploring only stuttering transitions (line 21). To report a livelock-accepting cycle, it detects "stuttering-SCCs" and tests if they contain a livelock-accepting state (line 15).

	1 Data: todo: stack of state ∈ S, succ ⊆ S	17 DFSpush2(s ∈ S)
		SCC: stack of root ∈ N, rem ⊆ S	18	max ← max + 1
		H: map of S → N	19	H[s] ← max
		max ← 0; init ← I	20	SCC.push( max, / 0 )
	2 second-pass()	21	todo.push( s, {d ∈ S | (s, / 0, d) ∈ R} )
	3	while ¬init.empty() do	22	init ← init ∪ {d ∈ S | (s, k, d) ∈ R, k = / 0}
	4 5 6 7 8 9 10	pick one s 0 off init if s 0 ∈ H then DFSpush2( / 0, s 0 ) while ¬todo.empty() do if todo.top().succ = / 0 then DFSpop() else pick one d off todo.top().succ	23 merge2(t ∈ N) 24 r ← / 0 25 while t < SCC.top().root do 26 r ← r ∪ SCC.top().rem 27 SCC.pop() 28 SCC.top().rem ← SCC.top().rem ∪ r
	11	if d ∈ H then		
	12	DFSpush2(d)		
	13	else if H[d] > 0 then		
	14	merge2(H[d])		
	16	return true		

15 if (d ∈ G) then return false

This is a rather small value compared to MAPK but, due to the unfolding, each state is a 189value vector. PolyORB with three sources of data, three simultaneous jobs and three threads would generate 1 137 096 states with 255-value vectors, making the experiment much too slow.

A Product Definitions

A.1 Product of TGBA (or BA) with a Kripke Structure

The product of a TGBA with a Kripke structure is a TGBA whose language is the intersection of both languages.