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Abstract. The present work focuses on the assessment of the structural response of RC columns under 

bidirectional horizontal loads in three main streamlines. First, an experimental testing campaign was performed 

on rectangular columns, for different types of loading. Subsequently, the tested columns were simulated with 

different non-linear modelling strategies. Finally, a simplified hysteretic model is proposed for the representation 

of the non-linear response of RC members subjected to biaxial bending. 
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1 INTRODUCTION 

The importance of studies addressing the 3D earthquake actions or to building irregularities, which induce a biaxial 

bending demand combined with axial load in the columns. is well recognised Different modelling strategies have 

been proposed for the simulation of the biaxial cyclic behaviour of RC elements with axial force. However, it is 

believed that the available biaxial models are not mature enough to be used in practice. The present study, based on 

an extensive experimental campaign and on the analysis of existent modelling strategies proposes an upgraded 

simplified model for the representation of the biaxial bending response of columns with axial force, which is based 

in an existing uniaxial model. 

2 EXPERIMENTAL CAMPAIGN 

In the experimental campaign were tested 24 rectangular RC columns with different types of geometric 

characteristic and reinforcement detailing and were cyclically tested for different loading histories with a constant 

axial force and under displacement controlled conditions. The cross-section dimensions and the reinforcement 

detailing are presented in Figure 1.  

a) b) c) 

Figure 1: Testing setup: a) RC column specimen dimensions and reinforcement detailing; b) General view; c) 

Global results of rectangular column PB12-N07 for rhombus load path 

The experimental results show that the initial column stiffness was not significantly affected by the biaxial load 

path. The maximum strength of the columns were lower for all biaxial tests compared with those for the 



 
2 H. Rodrigues et al. | Young Investigators Conference 2013 
 

corresponding uniaxial tests. The ultimate ductility was significantly reduced in columns subjected to biaxial load 

paths. The strength degradation increases after displacement ductility demands of about 3 and it the equivalent 

global damping for columns tested biaxially is clearly dependent on the load path [5]. 

3 EFFICIENCY OF DIFFERENT NON-LINEAR MODELLING STRATEGIES 

The numerical analyses developed and described in the present paper with different non-linear modelling strategies 

were performed using the computer program. In this work three non-linear modelling strategies were applied to 

each column specimen and the obtained results were compared, based on: elements with lumped-plasticity; 

elements with distributed inelasticity and force-based formulation; and elements with distributed inelasticity and 

displacement-based formulation. 

In order to evaluate the accuracy of the numerical models studied in the representation of the shear force evolution 

obtained experimentally, the frequency domain error (FDE) index was calculated. The FDE index measures the 

deviation between two waveforms (quantifies amplitude and phase deviations between two signals, giving an error 

factor between 0 and 1), in this case the shear force measured in the test and the corresponding calculated shear 

force for each modelling strategy. It is considered that a FDE index larger than 0.75 represents a poor correlation. 

The FDE indices obtained for all analyses are represented in Erreur ! Source du renvoi introuvable.. 

 a) 

 Distributed Inelasticity  - DB

 Distributed Inelasticity - FB

 Lumped Plasticity 
 

b)  c) 

Figure 2: FDE index obtained from the comparison between numerical and experimental shear force evolutions: a) 

uniaxial tests; b) biaxial tests – strong direction (X); c) biaxial tests – weak direction (Y) 

From the analysis of the obtained results, similar levels of adequacy were verified using the distributed inelasticity 

(force and displacement formulations) and the lumped plasticity modelling strategies. However, based on the 

comparisons made the following comments can be drawn: The initial stiffness obtained with all the modelling 

strategies for the simulation of the biaxial tests presents differences, when compared with the experimental values, 

in the range of 25% to 50%. The secant stiffness evolution of the columns was accurately represented with all 

modelling strategies. However, considerable differences were observed, for all modelling strategies, between the 

numerical and experimental tangent stiffness evolutions, mainly for the lower drift demands and in the last phase of 

the columns’ responses. This aspect confirms the difficulties normally found in representing numerically the 

response of columns with models based on incremental procedures, which depend on the tangent stiffness. The 

cyclic response obtained with the three modelling strategies for all columns was found to be satisfactory, but 

difficulties were found in capturing the strength degradation for the higher drift demands. Also, the majority of the 

models show limitations in representing the pinching effect in the unloading-reloading stage. 

All modelling strategies exhibit difficulties in the representation of the energy dissipation evolution. The main 

differences correspond to an underestimation of the dissipated energy for lower drift demands associated with a 

quasi-linear numerical response and to an overestimation for higher demands associated with the limitations of the 

numerical models in the representation of the strength degradation and pinching effect. 

4 SIMPLIFIED HYSTERETIC MODEL FOR BIAXIAL BENDING RESPONSE  

4.1 Uniaxial Model and the biaxial Bouc-Wen model 

For the development and validation of the simplified biaxial model, the Costa-Costa uniaxial hysteretic model [1] 

was adopted. This model represents a generalisation of the original Takeda model with a trilinear skeleton curve for 

monotonic loading, defined by the cracking point and the yield point, and includes pinching, stiffness degradation 

and strength degradation effects. 
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The biaxial construction of the Bouc-Wen model in the Wang and Wen [2] form follows the same general idea as 

for the uniaxial case. The restoring forces for both directions are defined by: 
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(3.1) 

in which the involved parameters have the same meaning as for the uniaxial case, but are now referred to the two 

orthogonal directions X and Y, by the subscripts x and y respectively. The hysteretic parameters Zx and Zy are then 

defined by the following coupled differential equations. 

Considering now the definition of the incremental orthogonal forces ix
F  and iy

F
 given by, the first part of this 

system can be written, by a simple mathematical transformation, as: 
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(3.2) 

which matches to the uniaxial incremental restoring forces calculated for each direction without biaxial interaction, 

and the part of the system that corresponds to the correction factors Cfxi and Cfyi accounting for the interaction 

between the two loading directions: 
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(3.3) 

Considering that the incremental forces can be obtained with any uniaxial hysteretic model, the presented 

framework introduces a simple and flexible form to represent biaxial bending in columns. This formulation requires 

the same information needed for the corresponding uniaxial PWL model, only introducing an additional correction 

term which couples the two loading directions (). 
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(3.4) 

4.2 Parameter identification for the scaling interaction factor 

Aiming at calibrating the parameters for the hysteretic biaxial model based on uniaxial models with an interaction 

function, a gradient based-method was adopted, sequentially associated with an evolutionary algorithm method. For 

the application of these models, the SDL/SiDoLo optimisation lab computer program was used [3].  

The calibration of the interaction function was performed in two phases. In the first phase, it was intended to select 

the analytical expression-type most suitable for the interaction scaling factor () function. After the expression type 

selection, the second phase, consists in the calibration of the parameters of the interaction function as well as of the 

interaction scaling factor. After an expression of the scaling factor (), which depends on the column properties, the 

interaction function parameters were optimized for all biaxial pushover curves, using a cascade optimization 

strategy. The convergence evolution of the cascade optimization strategies in the parameter identification are 

presented in Erreur ! Source du renvoi introuvable.. Erreur ! Source du renvoi introuvable. shows the plot of 

the Relative Global Error for two situations, with and without considering the interaction function.. 
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Figure 3: Convergence evolution of the cascade 

optimization  
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Figure 4: Relative Global of the simplified model results, 

with and without interaction function 

Erreur ! Source du renvoi introuvable. includes selected examples of pushover curves for different columns and 

different pushover loading angles. In each plot, for both directions, the obtained pushover curves are represented: i) 

by the refined numerical fibre model; ii) by the simplified model without the biaxial bending interaction function; 

and iii) by the simplified model but with the interaction function. Also, the examples in Erreur ! Source du renvoi 
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introuvable. confirm the error reductions, in both column directions, obtained by adopting the interaction function 

combined with the optimized scaling factor. 
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Figure 5: Examples of pushover curves for different columns and different pushover loading angles. 

For the validation of the proposed simplified model with interaction functions, the experimental results of cyclic 

tests were used of the test campaign [4, 5]. First, the uniaxial tests were modelled in order to obtain the primary 

skeleton curves for each independent direction. Then, using the obtained curves, the biaxial tests were simulated 

and the results of the numerical model with the interaction function are compared with the test results. For columns 

under biaxial loading the strength degradation is difficult to represent, particularly for the last cycles of the 

experimental response. The energy dissipation evolution is also well represented. In general, a good agreement 

between the predicted numerical results and the experimental hysteretic response was observed, indicating that the 

proposed strategy may be suitable to simulate the response of columns to biaxial loading based on uniaxial 

behaviour curves associated with properly calibrated coupling interaction functions. 

 

Figure 6: Base-shear versus drift of column N15 – Biaxial test, quadrangular displacement pattern 

5 CONCLUSIONS 

From the experimental results, it was clear the effects of the biaxial loading and its importance in the column 

response, especially in terms of the strength degradation and reduction of the ductility capacity. 

With the three refined numerical strategies studied, similar level of accuracy was verified. The three modelling 

strategies revealed limitations in the representation of the strength degradation, particularly for larger drift demands, 

which justifies the poor estimation of the energy dissipation evolution with the numerical models. 

A simplified interaction model was proposed, based on an uniaxial hysteretic model and the interaction function 

developed from the Bouc-Wen model. The validity of the proposed simplified model was demonstrated through the 

analytical simulation of the response of the RC columns biaxially tested. The obtained numerical results showed the 

model efficiency, which encourages further validation to become a simple tridimensional tool to simulate biaxially 

loaded RC elements. 
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