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Abstract. In this paper nonclassical dynamical model for thermoelastic bodies with three phase-lags is studied. 

Applying variational formulation of the general three-dimensional initial-boundary value problem existence and 

uniqueness of solution in suitable spaces is proved. Spectral algorithm of approximation of the three-dimensional 

initial-boundary value problem for thermoelastic shell by a sequence of two-dimensional ones is constructed, 

convergence of the algorithm in corresponding spaces is proved and the rate of convergence is estimated.  
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1 INTRODUCTION 

The classical dynamical theory of thermoelasticity is based on Fourier's law of heat conduction, which leads to 

parabolic equation for the temperature field, and predicts that a thermal disturbance at some point of a 

thermoelastic body will be felt instantly at all other points of the body. This behavior, which is often called the 

paradox of heat conduction is physically unrealistic since it implies that thermal signal propagates with infinite 

speed. In various modern engineering constructions, such as high speed aircrafts, nuclear reactors, recently 

developed ultra-fast pulsed lasers [1], temperatures and temperature gradients are extremely high whereas the 

operation time period is of the order of picoseconds, that cause thermal shocks and cannot be successfully 

described by the classical theory of thermoelasticity. Several experimental studies indicate that at low 

temperatures heat propagates as a thermal wave [2]. Therefore, motivated by experiments and the above 

mentioned  non-causal aspect of the classical theory, numerous nonclassical theories of thermoelasticity have been 

proposed. The first nonclassical model for thermoelastic bodies was proposed by Lord and Shulman [3], where 

instead of the classical Fourier's law of heat conduction Maxwell-Cattaneo law was used, which is a generalization 

of Fourier's law and depends on one relaxation time parameter. Hence, the equation corresponding to the 

temperature field is hyperbolic and as a consequence the paradox of infinite speed of propagation of thermoelastic 

waves is eliminated. The second nonclassical theory of thermoelasticity, which also eliminates the paradox of heat 

conduction was developed by Green and Lindsay [4], where, in comparison to the classical linear system of 

thermoelasticity, the constitutive relations for the stress tensor and the entropy are generalized by introducing two 

different relaxation times. Later on, Tzou [5] proposed a dual-phase-lag heat conduction model, where the phase-

lag corresponding to the temperature gradient is caused by microstructural interactions such as phonon scattering 

or phonon-electron interactions and the second phase-lag is interpreted as the relaxation time due to fast-transient 

effects of thermal inertia. Further, Chandrasekharaiah [6] constructed nonclassical model for thermoelastic bodies, 

where the classical Fourier's law of heat conduction was replaced with its generalization proposed by Tzou. Note 

that the Chandrasekharaiah-Tzou model is an extension of the Lord-Shulman nonclassical model for thermoelastic 

bodies, which depends on one phase-lag. 

Note that a different approach to mathematical modeling of thermoelastic bodies was originated by Green and 

Naghdi [7-9]. Their theory includes three different types of heat conduction, which leads to three models for 
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thermoelastic bodies. The linearized version of the first model coincides with the corresponding model of the 

classical theory. The second model does not include any energy dissipation and as opposed to the Lord-Shulman 

and Green-Lindsay nonclassical models admits only propagation of undamped thermoelastic waves, and therefore 

it is also referred to as the theory without energy dissipation. The third model is the most general case as it 

includes the previous two models as limiting cases and it eliminates the disadvantage of the classical theory, since 

it permits propagation of thermal waves at finite speed. 

The present paper is devoted to investigation of general three-dimensional initial-boundary value problem for 

thermoelastic bodies, and construction and investigation of spectral algorithm of approximation of three-dimen-

sional dynamical model for thermoelastic shells by two-dimensional problems within the framework of the non-

classical theory of thermoelasticity with three phase-lags, which was proposed by Roychoudhuri [10]. This theory 

is an extension of Lord-Shulman, Green-Naghdi and Chandrasekharaiah-Tzou theories, where Fourier's law of 

heat conduction is replaced by an approximation to a modification of Fourier's law, which includes three different 

phase-lags for the heat flux vector, the temperature gradient and the thermal displacement gradient. The stability 

of the nonclassical model of heat conduction with three phase-lags and the relations between the three parameters 

are investigated in [11]. The theory of thermoelasticity with three phase-lags was employed to study problems of 

thermoelastic interactions for functionally graded orthotropic hollow sphere and homogeneous viscoelastic 

isotropic spherical shell [12,13], and in the context of this theory the problem of propagation of harmonic plane 

waves was investigated in [14].     

2 FORMULATION OF THE PROBLEM 

Let us consider thermoelastic body with initial configuration 3
R , which consists of homogeneous and 

isotropic thermoelastic material. The body is clamped along a part 0  of the boundary   and the 

temperature   vanishes along a part 
0 . The body is subjected to applied body force with density 

3),0(:)( Rf  Tf i , applied surface force with density 
3

1 ),0(:)( Rg  Tg i  given along a part 

01 \   of the boundary, heat sources with density R ),0(: Tf   and heat flux with density 

R ),0(: 1 Tg 
 given along 

01 \  .  

The nonclassical dynamical linear three-dimensional model of stress-strain state of the thermoelastic body   that 

includes three different phase-lags is given by the following initial-boundary value problem in differential form: 
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where 3
1)(  iiνν  is the outward unit normal to  , )(uije  is the linearized strain tensor, ,  are Lamé constants, 

  is the mass density, 1  is the thermal conductivity rate and 2  is the thermal conductivity, 0  is the 

specific heat at zero strain,   is the thermoelastic constant, 00   is a constant reference temperature, 

0,0 10    and 02   stand for the heat flux, thermal displacement gradient and temperature gradient phase-

lags, respectively. Note that in the case of 0210    the nonclassical three-dimensional model (1)-(5) 

coincides with the third Green-Naghdi model. 

We study the three-dimensional initial-boundary value problem in the spaces of vector-valued distributions and 

employ the following variational formulation, which is equivalent to the problem (1)-(5) in the spaces of smooth 

enough functions: Find ))(];,0([,,, 0  Vuuuu TC , ))(;,0(2)4(  Vu TL , ))(];,0([,, 0   VTC , 

))(;,0())(;,0( 22   LTLVTL  , ))(;,0( 22)4(  LTL , which satisfy the following equations in the 

sense of distributions on ),0( T , 
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For Banach space X , )];,0([0 XTC  denotes the space of continuous vector-functions on ],0[ T  with values in 

X , );,0( XTLm
, m1 , is the space of such vector-functions XTg ),0(:  that ),0( TLg m

X
  and the 

generalized derivative of g  we denote by dtdgg / . 

In order to construct an algorithm of approximation of the three-dimensional problem (6)-(8) by two-dimensional 

problems we consider a general thermoelastic shell with the following initial configuration 
3* )( R  , 

}),(),,(),(;),,({ 2
2121321

3
321 RR   xxxxhxxxhxxxx ,     

3
R is a Lipschitz domain and   is a 2C  diffeomorphism of   onto * , so that the vectors )()( xx ii g  

are linearly independent at all points of  . The coordinates ix  of x  are the curvilinear coordinates of 

** )(  xx  . We assume, that ),(),( 2121 xxhxxh   , for  ~),( 21 xx  and ),(),( 2121 xxhxxh   , 
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for )~\(),( 21  xx . The upper   and the lower   faces of the cylindrical domain  , given by the 

equations ),( 213 xxhx   and ),( 213 xxhx  , ),( 21 xx , respectively, define the face surfaces )(   and 

)(   of the shell with variable thickness. 

3 CONCLUSIONS 

The three-dimensional initial-boundary value problem corresponding to the dynamical model for thermoelastic 

bodies with three phase-lags is investigated in suitable spaces of vector-valued distributions. Applying variational 

formulation (6)-(8) and suitable a priori estimates the existence and uniqueness of solution is proved.  

To simplify algorithms of numerical solution of three-dimensional problem in the case of general thermoelastic 

shells a sequence of two-dimensional initial-boundary value problems is constructed applying spectral appro-

ximation method, which is a generalization and extension of the dimensional reduction method proposed by I. 

Vekua [15] in the classical theory of elasticity for plates with variable thickness. Later on, various two-dimen-

sional and one-dimensional models were constructed and investigated for problems of the theory of elasticity and 

mathematical physics applying I. Vekua's reduction method and similar spectral methods (see [16] and the 

references given therein).  

The problem (6)-(8) is rewritten in curvilinear coordinates defined by diffeomorphism   and by semidiscre-

tization of the obtained three-dimensional problem in the transverse direction of the shell a hierarchy of two-

dimensional initial-boundary value problems is constructed, which are investigated in suitable weighted Sobolev 

spaces. Moreover, the relationship between the constructed two-dimensional problems and the original three-

dimensional one is studied. It is proved, that the sequence of approximate solutions of three space variables, 

constructed by means of the solutions of the two-dimensional problems, converges in corresponding spaces to the 

exact solution of the original three-dimensional problem and under suitable regularity conditions of the solution 

estimates of the rate of convergence are obtained.  

Note that the results obtained in this paper and the spectral approximation algorithm constructed for the non-

classical model of thermoelastic shells with three phase-lags can be used for solution of various engineering 

problems and for investigation of other nonclassical models, which describe not only mechanical and thermal, but 

also other physical properties of elastic structures. 
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