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Abstract. We define and analyze a goal-oriented procedure for model calibration in Computational Mechanics. In
this procedure, priority is given in the updating to parameters which are the most influent to predict a given quantity
of interest. The strategy uses the constitutive relation error framework as well as duality and adjoint techniques.
The objective is thus to perform a partial model validation that enables to obtain the value of the quantity of interest
with sufficient accuracy and minimal modeling effort.
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Mathematical models are fundamental in science and engineering activities, particularly due to the fact that they are
the basic ingredient of numerical simulations that enable to reproduce physical phenomena and make predictions.
However, a major concern is the capability of these models torepresent a faithful abstraction of the real world.
To address this issue and control the error between physicaland mathematical models, model validation methods
have been used for a long time [1, 2, 3]. In such methods, modelparameters are identified or updated in order
to minimize the discrepancy between numerical predictionsand experimental measurements. The process leads to
inverse problems [4] which are usually ill-posed and require special care and specific techniques, such as regular-
ization techniques proposed in [5], in order to ensure solvability. Getting missing information of the model from
measurements is a procedure that is now commonly used in manyscientific fields such as geophysics where soil
characteristics (density, permeability) are studied, non-destructive control to identify defects [6], or imaging where
we can obtain images from a noised version using deconvolution [7] or detect damaged tissus using tomography
[8, 9].
We focus here on Computational Mechanics models, in which a major component is the constitutive equation that
describes the local behavior of the material. It is characterized by a set of material parameters whose values may
highly influence results given by numerical simulations. Inorder to reduce modeling errors, it is thus important
to address the issue of constitutive models calibration. For complex models, it is difficult to design experiments
where observed model responses depend explicitly on model parameters. We rather use in practice experimental
data that depend implicitly on these parameters, and the calibration is then viewed as an optimization problem in
which parameter values are searched such that optimal agreement between experimental and simulated responses is
achieved [10].

When a large number of experimental data is available, as it is the case with full-field kinematic measurements per-
formed by means of imaging techniques (DIC for instance), many calibrations methods can be applied for inverse
analysis and identification of material properties [11]. Among all of them, we can mention the Equilibrium Gap
Method (EGM) which is based on the discretization of equilibrium equations and minimization of the equilibrium
gap, the FEMU method (balance method FEMU-F or displacementmethod FEMU-U) which is an intuitive approach
that consists in performing iteratively finite element computations to find constitutive parameters that achieve the
best match between computed and actual measurements, or theConstitutive Equation Gap Method (CEGM) which
was initially developed for updating finite element models from vibrational data and assessing quality of finite ele-
ment meshes.
We consider in this paper the case where only few localized measurements are available. Again, several procedures
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exist in this framework to identify parameters, such as minimization of cost functions associated with regularization
techniques [4], or the Bayesian inference approach that formulates parameter identification in a stochastic setting
[12, 13]. Using the concept of Constitutive Relation Error (CRE) defines another model validation method on which
we focus here. First introduced in [14, 15] for dynamics models, this method was latter successfully used in many
validation applications with uncertain measurements and behaviors [16, 17], or corrupted measurements [18, 19].
Recent applications of the method dealt with the updating ofmodels used in bolted assemblies [20], or association
with PGD reduced models to deal with real-time calibration of machining models [21]. The use of the CRE presents
interesting advantages; it has excellent capacities to localize structural defects spatially, it is very robust with respect
to noisy measurements, and it has good convexity properties.

If the determination of the values of unknown model parameters is the primary goal of the validation process, the
problem is calledparameter identification problem. Here, we rather tacklemodel calibration problemsas we are
only interested in the computation of given quantities of interest which are outputs of the model depending implicitly
on the unknown parameters. Therefore, if a quantity of interest is not very sensitive with respect to some parame-
ters, there is probably no need to estimate this parameter with high accuracy. This goal-oriented model validation
approach is motivated by the fact that the objective of numerical simulations is usually not the global response of
the model, but only specific features which are relevant for design (such as local stress, maximal displacement or
temperature, etc.). It aims at performing a partial calibration of the model so as to ensure the quality of predicted
quantities of interest with a minimal validation effort.
Several works have already addressed this scientific issue.In [22, 23], an optimization problem coupled with a dual
method was introduced to assess, in a goal quantity, the sensitivity with respect to the observed data (uncertainty
or noise), as well as discretization error affecting the computed value of parameters. The a posteriori discretization
error estimator was also used in an adaptive algorithm to construct economic meshes. In [24], the goal-oriented a
posteriori error estimation for identification problems was extended to accommodate the combined identification and
subsequent simulation problems which may be governed by different state equations (and only coupled via model
parameters). For a given tolerance in a quantity of interest, depending on the solution of the simulation problem,
three sources of errors were controlled: modeling error, discretization error polluting the identification problem, and
discretization error in the simulation.

Here, we wish to extend this setting to validation methods performed using the CRE. We assume that the discretiza-
tion error is negligible compared to the modeling error, andfocus on the sensitivity of the considered quantity of
interest with respect to parameters and measurements. Thisenables to define a convenient goal-oriented validation
process, and gives information to define optimal experiments and measurements (sensor location, type of measure)
with respect to the output of interest to predict. The procedure leans on the definition of a new cost function to
minimize, which is dedicated to the quantity of interest under study. Together with the (modified) constitutive re-
lation error framework, its lead to a convenient strategy that selects a relevant parameter set to be updated and also
provides for useful information in order to define optimal experiments. Performances of the approach are analyzed
on several validation examples with linear models.
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Rendus Mécanique2006;334(4):225–229.
[7] Bonettini S, Benvenuto F, Zanella R, Zanni L, Bertero M. Gradient projection approaches for optimization problems in

image debluring and denoising.in Proceedings of the 17th European Signal Processing Conference2009; 1384–1388.
[8] Arridge S.R. Optical tomography in medical imaging.Inverse Problems1999;15:R41.
[9] Dorn O. Scattering and absorption transport sensitivity functions for optical tomography.Optics Express2000;7(13):492–

506.
[10] Cailletaud G, Pilvin P. Identification and inverse problems related to material behaviour.In H.D. Bui, M. Tanaka, and al.,

editors, Inverse Problems in Engineering Mechanics1994; 79–86.
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