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Abstract. In this contribution we consider the a-posteriori error analysis of the convective Cahn–Hilliard [4] model
for varying Péclet number and interface-thickness (diffusivity) parameter. The adaptive discretization strategy uses
mixed finite elements, a stable time-stepping algorithm and residual-based a-posteriori error estimation [2, 5].
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1 INTRODUCTION
The Cahn–Hilliard phase-field (or diffuse-interface) model has a wide range of applications where the interest is the
modelling of phase segregation and evolution of multiphase flow systems. In order to capture the physics of these
systems, diffuse-interface models presume a nonzero interface thickness between immiscible constituents, see [1].
The multiscale nature inherent in these models (interface thickness and domain size of interest) urges the use of
space-adaptivity in discretization.

1.1 The Model

Let Ω ⊂ Rd be a bounded domain with d = 1, 2, 3 and ∂Ω be the boundary which has an outward unit normal n.
The convective Cahn-Hilliard equation can be written as follows:
Find the real valued functions (c, µ) : Ω× [0, T ]→ R for T > 0 such that

∂tc−
1

Pe
4µ+∇ · (uc) = 0 in ΩT := Ω× (0, T ]

µ = φ′(c)− ε2∇c in ΩT

c(·, 0) = c0 in Ω

∂nc = ∂nµ = 0 on ∂ΩT := ∂Ω× (0, T ],

where ∂t(·) = ∂(·)/∂t, ∂n(·) = n · ∇(·) is the normal derivative, φ is the real-valued free energy function, u is
a given function such that ∇ · u = 0 in Ω and u · n = 0 on ∂Ω, Pe is the P éclet number and ε is the interface
thickness.
The nonlinear energy function φ(c) is of the double well form and we consider the following C2-continuous func-
tion:

φ(c) :=


(c+ 1)

2
c < −1,

1
4

(
c2 − 1

)2
c ∈ [−1, 1] ,

(c− 1)
2

c > 1.

The total free energy of the system is

E(c) :=

∫
Ω

(
φ(c) +

ε2

2
|Oc|2

)
dx.
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1.2 Weak Formulation

In order to obtain the weak formulation, we consider the following function space and the corresponding norm as a
suitable space for µ:

V := L2(0,T; H1(Ω)), ‖v‖2V :=

∫ T

0

‖v(t)‖2H1
(Ω)
dt

and the space suitable for the phase variable c is

W := {v ∈ V : vt ∈ V ′} ,

where V ′ := L2(0,T; [H1(Ω)]′) is the dual space of V with the norm ‖vt‖2W := ‖v‖2V + ‖vt‖2V ′ , where

‖vt‖2V ′ :=

∫ T

0

‖vt(t)‖2[H1(Ω)]′ dt.

Then the weak form of the problem becomes:
Find (c, µ) ∈Wc0

× V :

〈ct, w〉+ (u∇c, w) +
1

Pe
(∇µ,∇w) = 0 ∀w ∈ H1(Ω)

(µ, v)− (φ(c), v) + ε2 (∇c,∇v) = 0 ∀v ∈ H1(Ω),

for t ∈ [0,T], where Wc0
is the subspace of W of which the trace at t = 0 coincide with c0.

To derive an a-posteriori error representation, we will employ the mean-value-linearized adjoint problem. The dual
problem can be defined in terms of dual variables (p, χ) where the dual variable p is a function in the space

W q̄ := {v ∈W : v(T ) = q̄} .

Then the dual problem can be written such as:
Find (p, χ) ∈W q̄ × V :

−∂tp+ u∇p+ ε24χ− φ′(c, ĉ)χ = q1 in Ω× [0, T )

χ− 1

Pe
4p = q2 in Ω× [0, T )

p = q̄ on Ω× {t = T}
∂np = ∂nχ = 0 on ∂Ω× [0, T ],

where the nonlinear function φ′(c, ĉ) is a mean-value-linearized function

φ′(c, ĉ) =

∫ 1

0

φ′′ (sc+ (1− s)ĉ) ds.

2 CONCLUSION
This analysis for the convective model forms a basic step in our research and will be helpful for a broad analysis of
the coupled Cahn–Hilliard/Navier–Stokes system [3] which is the desired model for future research.
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