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Abstract. We propose a fast inverse modeling technique, based on the optimal control theory, to reconstruct a two-
dimensional (2D) laminar flow in water networks. To determine the boundary control velocities, we minimize a data
misfit functional. Using a priori information on the boundary velocity shape, it enables us to employ a moderate
number of velocity sensors. Real-time flow reconstruction is achieved solving CFD problems during an offline stage.
Once we get the sensor outputs, only a small linear system has to be solved online.
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1 INTRODUCTION

The reconstruction of a flow in a bounded domain using several sensor outputs is a real challenge, especially in water
networks. The knowledge of the velocity flow can be useful to detect leaks and to properly simulate the transport
of reactants, such as chlorine, in water networks. In water pipe applications, one-dimensional (1D) flow equations
are widely considered [1, 2, 3] because they predict the flow at a low computational cost. Nevertheless, the uniform
velocity assumption in the pipe cross-section may fail when considering laminar flow. Indeed, in water networks, we
can distinguish “transport mains”, defined as pipes that typically do not supply customers directly and “distribution
mains” which support many domestic demands. A distribution network is usually designed on fire flow demand,
that typically is much higher than domestic demand. Consequently, as it was reported in [4], the typical velocities
can be very low (less than 1 cm/s). In this paper, we deal with the flow encountered in “distribution mains”.
In the present article, we focus on a two-dimensional (2D) representation of a water network including junctions
where the flow is no more 1D. Two- or three- dimensional flows play a critical role to predict the evolution of the
chlorine concentration (reactant) in water networks. In the proposed method, we aim at identifying the boundary
control velocities which minimize L2 error between sensor outputs and the numerical solution as commonly in
Optimal control theory [5]. First, we use a priori information on the spatial velocity profile in water pipes. More
precisely we consider the spatial shape of control velocities to be known. This drastically reduces the number of
unknowns to identify. This strategy may also enable one to use a moderate number of sensors. Then, to fastly re-
construct the flow, CFD computations are performed during an offline stage. Online, one only has to get the sensor
outputs and to solve a small linear system. The whole numerical procedure easily fits in a general purpose finite
element software, thus featuring user’s friendliness for a wide engineering audience.

2 METHODOLOGY TO FASTLY RECONSTRUCT A LAMINAR FLOW

2.1 Direct problem

We consider a two-dimensional (2D) modelisation of a part of Versailles water network, represented in Figure 1.
In this area, water companies observe that the flow can be laminar during off-peak periods. As a consequence, we



2 J. Waeytens et al. | Young Investigators Conference 2013

focus on laminar water flow which satisfies the incompressible Stokes equations :

∇p− µ∆v = 0 in Ω (1)
div(v) = 0 in Ω (2)
v = vci on ∂ciΩ, i ∈ {1, 2, 3} (3)
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Figure 1: A part of the Versailles water network and the spatial shape function f3 associated to the inhabitant water
consumption, from left to right: intermediate area, residential area, dense area.

The boundary control velocities vc1 and vc2 are associated to the fictitious boundaries ∂c1Ω and ∂c2Ω (see Fig-
ure 1). To take into account the inhabitant water consumption, we consider an additional boundary control velocity
vc3 which is defined at the wall boundary ∂c3Ω. All the boundary control velocities are assumed normal to the
boundaries and their spatial shape fi(x) is considered known.

vci(x, t) = Vci(t)fi(x)ni, i ∈ {1, 2, 3} (4)

where ni is the exterior normal vector to the boundary ∂ciΩ.

At the fictitious boundaries ∂c1Ω and ∂c2Ω the spatial shapes f1(x) and f2(x) are taken parabolic whereas the spatial
shape f3(x) associated to inhabitant water consumption is chosen piecewise constant. According to the population
density in the part of Versailles water network, we distinguish a residential area where f3(x) = 1, a dense area
where f3(x) = 3.5 and an intermediate area where f3(x) = 2.5 (see Figure 1).

In what follows we set Fi =
∫
∂ci

Ω
fi(x)dΓ and the functions Vci(t) will be called control velocities.

The flow being incompressible, we underline that only two control velocities are independent:

F1Vc1 + F2Vc2 + F3Vc3 = 0 (5)

In the next section, we present the fast inverse technique to identify the control velocities Vc1 , Vc2 , then we deduce
Vc3 from (5). Knowing the control velocities, we obtain the reconstructed flow.

2.2 Inverse problem

To determine the control vector V c = {Vc1 , Vc2}, we minimize the data misfit functional:

min
V c

J(V c) = min
V c

1

2

2∑
j=1

(
v(V c).d|x=xj

− vmes
j

)2

 (6)

In the studied part of Versailles water network, we use 2 velocity sensors. Their spatial location is given in Figure 1.
We assume that each sensor is aligned with the pipe axis. Hence d will be the unit normal vector to the cross section.
As we deal with the reconstruction of a laminar flow using Stokes equations (linear and time-invariant problem), the
superposition principle has been used to set up a fast inverse modeling technique.
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Reference flow and sensor outputs In practice, we would use real sensor outputs. Nevertheless, herein, the
sensor outputs are obtained numerically. To get a representative reference flow, we solve stationary Navier-Stokes
equations with the finite element code FreeFem++ [6] assuming (Vc1)ex = −0.02 m/s and (Vc2)ex = 0.015 m/s.
This computation gives the reference solution vex. The simulated sensor outputs are derived from vex by:

vmes
j =

∫
Ω

ψr
j vex.d dΩ, j = 1, 2 (7)

Fast inverse technique using superposition principle Let (pI , V I ) and (pII , V II ) be the solutions of the elemen-
tary Stokes problem. More precisely (pI , V I ) satisfies (1-3) with the imposed boundary velocity f1(x)n1 on ∂c1Ω,
zero on ∂c2Ω and −(F1/F3)f3(x)n3 on ∂c3Ω. Concerning (pII , V II ), it satisfies (1-3) with the imposed boundary
velocity 0 on ∂c1Ω, f2(x)n2 on ∂c2Ω and −(F2/F3)f3(x)n3 on ∂c3Ω.
As Stokes problem (1-3) is linear and time-invariant, the solution v can be obtained for any set of boundary condi-
tions by superposition:

v = Vc1V I + Vc2V II (8)

Substituting the expression (8) in the data misift functional (6), the minimization problem is:

Find V c = {Vc1 , Vc2} such thatA V c = b where

A =


2∑

j=1

(∫
Ω

ψr
jV I .d dΩ

)2 2∑
j=1

(∫
Ω

ψr
jV I .d dΩ

)(∫
Ω

ψr
jV II .d dΩ

)
2∑

j=1

(∫
Ω

ψr
jV I .d dΩ

)(∫
Ω

ψr
jV II .d dΩ

) 2∑
j=1

(∫
Ω

ψr
jV II .d dΩ

)2



b =



2∑
j=1

(∫
Ω

ψr
jV I .d dΩ

)
vmes
j

2∑
j=1

(∫
Ω

ψr
jV II .d dΩ

)
vmes
j



(9)

Note that the matrix A only involves the elementary solutions V I and V II . As a consequence, this matrix can
be precomputed offline from the elementary solutions. Contrary to the matrix A, the second member b has to be
computed online using the sensor outputs and the elementary solutions.

To summarize, with the superposition principle method, the velocity and pressure fields of a laminar flow can be
reconstructed by

1. solving numerically nc − 1 elementary Stokes problems

2. computing offline the matrix A once and for all

3. computing online the second member b

4. solving online a linear system of nc − 1 unknowns

5. deducing the last control velocity by means of the incompressibility condition (5)

6. post processing the velocity and pressure fields, according to (8).

2.3 Numerical results

After solving offline the 2 elementary Stokes problems with the finite element code FreeFem++, we construct the
matrix A. Then, we compute the second member b using the elementary solutions V I , V II and the sensor outputs
simulated numerically from the Navier-Stokes reference flow.
The solution of the linear system (9) gives Vc1 = −0.02 m/s and Vc2 = 0.015 m/s. We deduce the reconstructed
flow v using (8). To evaluate the error between the reference Navier-Stokes flow vex and the reconstructed flow v,
we introduce the error field εv as the Euclidean norm of vex − v

εv(x) =
√

((vex)x − vx)2 + ((vex)y − vy)2 (10)
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The error field εv is represented in Figure 2. We observe that the error is less than 5.10−4 m/s in most of the domain.
As expected, the highest error is located in the bend pipes and in the junctions. In the bend pipes and in the junctions,
2D local Navier-Stokes computations should be used to get a more efficient reconstructed flow [7].

Figure 2: Error field εv (m/s) between the reference Navier-Stokes flow vex and the reconstructed flow v.

3 CONCLUSIONS
We presented a fast inverse technique to reconstruct a 2D laminar flow. The main idea is to identify boundary
control velocities which minimize a data misfit functional. Velocity sensor outputs are considered. The method was
illustrated on a real water network.
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