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Abstract. In this work, a finite-element formulation for geometrically exact multi-layer beams without considering
the interlayer slip and uplift is proposed. Numerical examples indicate that, in comparison with the existing geomet-
rically non-linear sandwich beam models, the 2D plane-stress elements and the analytical results from the theory
of elasticity, the multi-layer beam model is very efficient for modelling thick beams where warping of cross-sections
has to be considered.

Keywords: multi-layer beam; geometrically exact theory; non-linear analysis; cross-sectional warping.

1 INTRODUCTION
Research and application of layered composite structures using beam elements in many areas of engineering has
increased considerably over the past couple of decades and continues to be a topic of undiminished interest in the
computational mechanics community [1, 2, 3, 4, 5, 6, 7]. This work intoduces a finite-element formulation for a
geometrically exact multi-layer beam element. The number of layers (n) is arbitrary and they are assembled in a
composite beam with the interlayer connection allowing only for the occurrence of independent rotations of each
layer. In other words, interlayer slip and uplift effects are not considered. Vu-Quoc et al. [2] also proposed a formu-
lation for a geometrically exact multi-layer beam and they used the Galerkin projection to obtain the computational
formulation of the resulting non-linear equations of equilibrium in the static case, while in the present work the
equlibrium equations are derived form the principle of virtual work. While the resulting numerical procedure is of
necessity equal, here we focus on the actual transformation of the displacement vector for each layer to the displace-
ment vector of the beam reference line and show that it may be written in a remarkably elegant form allowing for
simple numerical implementation. Furthermore, we specifically analyse the problems with large number of layers
and on the thick beam problems with pronounced cross-sectional warping compare the performance of the elements
derived to the analytical results and the finite-element results obtained using 2D plane-stress elements. Detailed
analysis of this problem is given in [8].

2 PROBLEM DESCRIPTION
Consider an initially straight composite beam of length L and a cross-section composed of n parts with heights hi
and areas Ai, where i ∈ [1, n] is an arbitrary layer. Layers are made of linear elastic material with Ei and Gi acting
as Young’s and shear moduli of each layer’s material. The reference axes of all layers in the initial undeformed
state are defined by the unit vector t01 which closes an angle ψ with respect to the axis defined by the base vector
e1 of the spatial co-ordinate system. During the deformation the cross-sections of the layers remain planar but not
necesarily orthogonal to their reference axes (Timoshenko beam theory with the Bernoulli hypothesis).

3 GOVERNING EQUATIONS
In the assemlby equations, the displacements of each layer (ui) are expressed in terms of the basic unknown func-
tions u and θi. For each layer, the kinematic and constitutive equations are derived. The equilibrium equations are
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derived from the principle of virtual work. The displacement of each layer can be, according to Fig. 1, expressed in
terms of the displacement of an arbitrarily chosen main layer α (denoted by u) and corresponding rotations θi as [8]

ui = u+ di,ζ(tζ,2 − t0,2) + di,ξ(tξ,2 − t0,2) +
ξ−1∑
s=ζ+1

di,s(ts,2 − t0,2), (1)

where ζ represents the bottom and ξ the upper layer between layers i and α, while di,j , (j = ζ, ξ, s), are the
distances depending on the mutual position between layers i and α. The reference axis of the layer α then becomes
the reference axis of the composite beam and u, θi, i ∈ [1, n], become the basic unknown functions of the problem
which are assembled in a vector as pT

f =
〈
u θ1 . . . θn

〉T
.

Figure 1: Undeformed and deformed state of the multilayer composite beam

Non-linear kinematic equations are defined according to Reissner’s beam theory [9] as

γi =
{
εi
γi

}
= ΛT

i r
′
i − e1 = ΛT

i (t01 + u′i)− e1, κi = θ′i, (2)

where εi, γi, κi are the axial strain, shear strain and curvature, respectively, with respect to the reference axis of the
i-th layer. The constituive law is given asNiTi

Mi

 =
{
N i

Mi

}
= Ci =

 EiAi 0 −EiSi
0 GikiAi 0

−EiSi 0 EiIi

εiγi
κi

 = Ci

{
γi
κi

}
, (3)

where Ni, Ti,Mi are the axial force, shear force and bending moment with respect to the reference axis of layer
i, respectively, while ki is the shear correction coefficient. Si and Ii are the first and the second moment of area
of the cross-section of layer i, respectively, and εi, γi and κi are the axial strain, shear strain and the curvature.
Equilibrium equations are derived using the principle of virtual work for a static problem (G ≡ Gi − Ge ≡ 0),
which for a multilayer beam composed of n layers after a series of transformations becomes [8]

G =
n∑
i=1

 L∫
0

pT
fB

T
i

(
DT
i L

T
i Ci

{
γi
κi

}
−
{
f i
wi

})
dX1 − pT

f,0B
T
i,0

{
F i,0
Wi,0

}
− pT

f,LB
T
i,L

{
F i,L
Wi,L

} ≡ 0. (4)

Matrix Bi transforms the vector of displacements and rotation of the layer i to the basic the unknown functions,
while the matricesLi andDi transform the vector of virtual strains and curvature to the vector of virtual displacme-
nents and rotation of the layer i. Indices 0 and L represent the beam ends where the boundary point forces F j,0,
F j,L and bending moments Wj,0, Wj,L are applied. The distributed force and moment loads are denoted by f j and
wj . Finally, pf is the vector of the virtual basic unknown functions.
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4 SOLUTION PROCEDURE
The governing equations of the problem are highly non-linear and cannot be solved in a closed form. Thus, it is
necessary to choose in advance the shape of test functions (u, θi), and later also the shape of trial functions (u, θi),
where i ∈ [1, . . . , n] as

pf =
N∑
j=1

Ψj(X1)pj , ∆pf =
N∑
k=1

Ψk(X1)∆pk, (5)

where Ψj are the matrices of interpolation functions, pj is the vector containing nodal displacements and rotations of
node j, while ∆pf and ∆pj are the vectors of the increments of the basic unknown functions and nodal increments
of the displacements and rotations of the node j, respectively. From expression (4) we can easily obtain the vector
of residual forces for the node j as

G ≡
N∑
j=1

pT
j gj = 0. (6)

After the linearisation of the nodal vector of residual forces

gj + ∆gj = gj +
N∑
k=1

Kj,k∆pk = 0, j = 1, . . . , N. (7)

the nodal tangent stiffness matrices are obtained as

Kj,k =
n∑
i=1

( L∫
0

ΨT
j J i,1ΨkdX1 − δj,1δk,1J i,0 − δj,Nδk,NJ i,L

)
, (8)

which are of dimension (2 + n)× (2 + n) and are assembled into an element tangent stiffness matrix of dimension
N(2 + n) × N(2 + n). Matrices J i,l, (l = 1, 0, L) are produced in the process of linearisation of the vector of
residual forces (see [8] for details). For integration in (8) we use the Gaussian quadrature with N − 1 integration
points in order to avoid shear-locking [10]. From (7) we finally obtain

∆p = −K−1g, (9)

where vectors ∆pk and gj are assembled into vectors ∆p and g, respectively. The solution is obtained iteratively
using Newton-Raphson method until a satisfying accuracy is achieved.

5 NUMERICAL EXAMPLES
5.1 Roll-up Maneuver

A comparison of the presented formulation with [1] and [2] is given for the roll-up maneuver (a moment M =
2EIπ/L at the beam tip which bends the cantilever beam into an exact circle). Both for a single layer beam and
for a sandwich beam with three identical layers using the so-called ”normal” moment distribution over the layers
(M1 : M2 : M3 = 7 : 13 : 7) the present formulation shows excellent accordance with the results from [1, 2] and
the analytical results [8].

5.2 Thick beam tests

The presented multi-layer beam model is further compared to a homogeneous beam divided into a finite number
of equal laminae (layers) with identical geometrical and material properties and no interlyer slip and uplift. The
independent cross-sectional rotations of each layer allow the cross-section to deform in a piecewise linear form.
This is compared to the results from the theory of elasticity [11] where the cross-sectional warping occurs in the
deformed state. For a one-point-clamped thick cantilever beam with a narrow rectangular cross-section of unit
width subjected to a transverse force F at the free end the solution, for a geometrically linear case, the multilayer
formulation is compared to a two-dimensional finite element mesh. The results (see Fig.2) show that the multilayer
formulation gives considerably better results with less degrees of freedom in comparison with the two-dimensional
finite element meshes. A more detailed analysis is provided in [8].
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Figure 2: A comparison between the warped cross-section of the left-hand end of the beam according to the theory of
elasticity and the linear-piecewise cross-sections obtained by the multi-layer beam model and the two-dimensional
finite element models for different meshes

6 CONCLUSIONS
In this work we have presented a geometrically exact multi-layer beam element with rigid connection between the
layers and arbitrary position of the layers’ and the composite beam’s reference axes, thus allowing for arbitrary
position of the applied loading. We have shown that the kinematic constraint relating the displacement vector of an
arbitrary layer and the displacement vector of the beam reference line may be written in a unique way regardless
of the positions of the layer and the beam reference axes. The element has been verified against the results in
[1, 2] and its capabilities tested on a thick beam example against analytical and numerical results coming form 2D
elasticity. While the beam theory utilised obviously cannot recognise the existence of the transverse normal stresses
and strains, it shows remarkable ability to capture the cross-sectional warping effect and give good approximation
of 2D elasticity results using far less degrees of freedom.
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[8] Škec, L., Jelenić, G.. Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection. Submitted to

Acta Mechanica, 2013.
[9] Reissner, E.. On one-dimensional finite-strain beam theory; the plane problem. J. Appl. Math. Phys. (ZAMP) 23(5): 795-

804, 1972.
[10] Simo, J.C., Vu-Quoc, L.. On the Dynamics of Flexible Beams Under Large Overall Motions - The Plane Case: Part I and

II. J. Appl. Mech. 53(4): 849-863, 1986.
[11] Timoshenko, S.P., Goodier, J.N.. Theory of Elasticity. McGraw-Hill, 1951.


