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In this work, a finite-element formulation for geometrically exact multi-layer beams without considering the interlayer slip and uplift is proposed. Numerical examples indicate that, in comparison with the existing geometrically non-linear sandwich beam models, the 2D plane-stress elements and the analytical results from the theory of elasticity, the multi-layer beam model is very efficient for modelling thick beams where warping of cross-sections has to be considered.

INTRODUCTION

Research and application of layered composite structures using beam elements in many areas of engineering has increased considerably over the past couple of decades and continues to be a topic of undiminished interest in the computational mechanics community [START_REF] Vu-Quoc | Galerkin Projection for Geometrically Exact Sandwich Beams Allowing for Ply Drop-off[END_REF][START_REF] Vu-Quoc | Multilayer Beams: A Geometrically Exact Formulation[END_REF][START_REF] Girhammar | Exact static analysis of partially composite beams and beam-columns[END_REF][START_REF] Schnabl | Analytical Solution of Two-Layer Beam Taking into account Interlayer Slip and Shear Deformation[END_REF][START_REF] Kroflič | Analytical solution of two-layer beam including interlayer slip and uplift[END_REF][START_REF] Kroflič | Non-linear analysis of two-layer beams with interlayer slip and uplift[END_REF][START_REF] Škec | Analytical modelling of multilayer beams with compliant interfaces[END_REF]. This work intoduces a finite-element formulation for a geometrically exact multi-layer beam element. The number of layers (n) is arbitrary and they are assembled in a composite beam with the interlayer connection allowing only for the occurrence of independent rotations of each layer. In other words, interlayer slip and uplift effects are not considered. Vu-Quoc et al. [START_REF] Vu-Quoc | Multilayer Beams: A Geometrically Exact Formulation[END_REF] also proposed a formulation for a geometrically exact multi-layer beam and they used the Galerkin projection to obtain the computational formulation of the resulting non-linear equations of equilibrium in the static case, while in the present work the equlibrium equations are derived form the principle of virtual work. While the resulting numerical procedure is of necessity equal, here we focus on the actual transformation of the displacement vector for each layer to the displacement vector of the beam reference line and show that it may be written in a remarkably elegant form allowing for simple numerical implementation. Furthermore, we specifically analyse the problems with large number of layers and on the thick beam problems with pronounced cross-sectional warping compare the performance of the elements derived to the analytical results and the finite-element results obtained using 2D plane-stress elements. Detailed analysis of this problem is given in [START_REF] Škec | Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection[END_REF].

PROBLEM DESCRIPTION

Consider an initially straight composite beam of length L and a cross-section composed of n parts with heights h i and areas A i , where i ∈ [1, n] is an arbitrary layer. Layers are made of linear elastic material with E i and G i acting as Young's and shear moduli of each layer's material. The reference axes of all layers in the initial undeformed state are defined by the unit vector t 01 which closes an angle ψ with respect to the axis defined by the base vector e 1 of the spatial co-ordinate system. During the deformation the cross-sections of the layers remain planar but not necesarily orthogonal to their reference axes (Timoshenko beam theory with the Bernoulli hypothesis).

GOVERNING EQUATIONS

In the assemlby equations, the displacements of each layer (u i ) are expressed in terms of the basic unknown functions u and θ i . For each layer, the kinematic and constitutive equations are derived. The equilibrium equations are derived from the principle of virtual work. The displacement of each layer can be, according to Fig. 1, expressed in terms of the displacement of an arbitrarily chosen main layer α (denoted by u) and corresponding rotations θ i as [START_REF] Škec | Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection[END_REF] 

u i = u + d i,ζ (t ζ,2 -t 0,2 ) + d i,ξ (t ξ,2 -t 0,2 ) + ξ-1 s=ζ+1 d i,s (t s,2 -t 0,2 ), (1) 
where ζ represents the bottom and ξ the upper layer between layers i and α, while d i,j , (j = ζ, ξ, s), are the distances depending on the mutual position between layers i and α. The reference axis of the layer α then becomes the reference axis of the composite beam and u, θ i , i ∈ [1, n], become the basic unknown functions of the problem which are assembled in a vector as

p T f = u θ 1 . . . θ n T .
Figure 1: Undeformed and deformed state of the multilayer composite beam Non-linear kinematic equations are defined according to Reissner's beam theory [START_REF] Reissner | On one-dimensional finite-strain beam theory; the plane problem[END_REF] as

γ i = i γ i = Λ T i r i -e 1 = Λ T i (t 01 + u i ) -e 1 , κ i = θ i , (2) 
where i , γ i , κ i are the axial strain, shear strain and curvature, respectively, with respect to the reference axis of the i-th layer. The constituive law is given as

   N i T i M i    = N i M i = C i =   E i A i 0 -E i S i 0 G i k i A i 0 -E i S i 0 E i I i      ε i γ i κ i    = C i γ i κ i , (3) 
where N i , T i , M i are the axial force, shear force and bending moment with respect to the reference axis of layer i, respectively, while k i is the shear correction coefficient. S i and I i are the first and the second moment of area of the cross-section of layer i, respectively, and ε i , γ i and κ i are the axial strain, shear strain and the curvature. Equilibrium equations are derived using the principle of virtual work for a static problem (G ≡ G i -G e ≡ 0), which for a multilayer beam composed of n layers after a series of transformations becomes [START_REF] Škec | Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection[END_REF] 

G = n i=1   L 0 p T f B T i D T i L T i C i γ i κ i - f i w i dX 1 -p T f,0 B T i,0 F i,0 W i,0 -p T f,L B T i,L F i,L W i,L   ≡ 0. ( 4 
)
Matrix B i transforms the vector of displacements and rotation of the layer i to the basic the unknown functions, while the matrices L i and D i transform the vector of virtual strains and curvature to the vector of virtual displacmenents and rotation of the layer i. Indices 0 and L represent the beam ends where the boundary point forces F j,0 , F j,L and bending moments W j,0 , W j,L are applied. The distributed force and moment loads are denoted by f j and w j . Finally, p f is the vector of the virtual basic unknown functions.

SOLUTION PROCEDURE

The governing equations of the problem are highly non-linear and cannot be solved in a closed form. Thus, it is necessary to choose in advance the shape of test functions (u, θ i ), and later also the shape of trial functions (u, θ i ), where i ∈ [1, . . . , n] as

p f = N j=1 Ψ j (X 1 )p j , ∆p f = N k=1 Ψ k (X 1 )∆p k , (5) 
where Ψ j are the matrices of interpolation functions, p j is the vector containing nodal displacements and rotations of node j, while ∆p f and ∆p j are the vectors of the increments of the basic unknown functions and nodal increments of the displacements and rotations of the node j, respectively. From expression (4) we can easily obtain the vector of residual forces for the node j as

G ≡ N j=1 p T j g j = 0. ( 6 
)
After the linearisation of the nodal vector of residual forces

g j + ∆g j = g j + N k=1 K j,k ∆p k = 0, j = 1, . . . , N. (7) 
the nodal tangent stiffness matrices are obtained as

K j,k = n i=1 L 0 Ψ T j J i,1 Ψ k dX 1 -δ j,1 δ k,1 J i,0 -δ j,N δ k,N J i,L , (8) 
which are of dimension (2 + n) × (2 + n) and are assembled into an element tangent stiffness matrix of dimension N (2 + n) × N (2 + n). Matrices J i,l , (l = 1, 0, L) are produced in the process of linearisation of the vector of residual forces (see [START_REF] Škec | Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection[END_REF] for details). For integration in (8) we use the Gaussian quadrature with N -1 integration points in order to avoid shear-locking [START_REF] Simo | On the Dynamics of Flexible Beams Under Large Overall Motions -The Plane Case: Part I and II[END_REF]. From [START_REF] Škec | Analytical modelling of multilayer beams with compliant interfaces[END_REF] we finally obtain

∆p = -K -1 g, (9) 
where vectors ∆p k and g j are assembled into vectors ∆p and g, respectively. The solution is obtained iteratively using Newton-Raphson method until a satisfying accuracy is achieved.

NUMERICAL EXAMPLES

Roll-up Maneuver

A comparison of the presented formulation with [START_REF] Vu-Quoc | Galerkin Projection for Geometrically Exact Sandwich Beams Allowing for Ply Drop-off[END_REF] and [START_REF] Vu-Quoc | Multilayer Beams: A Geometrically Exact Formulation[END_REF] is given for the roll-up maneuver (a moment M = 2EIπ/L at the beam tip which bends the cantilever beam into an exact circle). Both for a single layer beam and for a sandwich beam with three identical layers using the so-called "normal" moment distribution over the layers (M 1 : M 2 : M 3 = 7 : 13 : 7) the present formulation shows excellent accordance with the results from [START_REF] Vu-Quoc | Galerkin Projection for Geometrically Exact Sandwich Beams Allowing for Ply Drop-off[END_REF][START_REF] Vu-Quoc | Multilayer Beams: A Geometrically Exact Formulation[END_REF] and the analytical results [START_REF] Škec | Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection[END_REF].

Thick beam tests

The presented multi-layer beam model is further compared to a homogeneous beam divided into a finite number of equal laminae (layers) with identical geometrical and material properties and no interlyer slip and uplift. The independent cross-sectional rotations of each layer allow the cross-section to deform in a piecewise linear form. This is compared to the results from the theory of elasticity [START_REF] Timoshenko | Theory of Elasticity[END_REF] where the cross-sectional warping occurs in the deformed state. For a one-point-clamped thick cantilever beam with a narrow rectangular cross-section of unit width subjected to a transverse force F at the free end the solution, for a geometrically linear case, the multilayer formulation is compared to a two-dimensional finite element mesh. The results (see Fig. 2) show that the multilayer formulation gives considerably better results with less degrees of freedom in comparison with the two-dimensional finite element meshes. A more detailed analysis is provided in [START_REF] Škec | Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection[END_REF]. 

CONCLUSIONS

In this work we have presented a geometrically exact multi-layer beam element with rigid connection between the layers and arbitrary position of the layers' and the composite beam's reference axes, thus allowing for arbitrary position of the applied loading. We have shown that the kinematic constraint relating the displacement vector of an arbitrary layer and the displacement vector of the beam reference line may be written in a unique way regardless of the positions of the layer and the beam reference axes. The element has been verified against the results in [1, 2] and its capabilities tested on a thick beam example against analytical and numerical results coming form 2D elasticity. While the beam theory utilised obviously cannot recognise the existence of the transverse normal stresses and strains, it shows remarkable ability to capture the cross-sectional warping effect and give good approximation of 2D elasticity results using far less degrees of freedom.
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 2 Figure 2: A comparison between the warped cross-section of the left-hand end of the beam according to the theory of elasticity and the linear-piecewise cross-sections obtained by the multi-layer beam model and the two-dimensional finite element models for different meshes
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