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Abstract The design of a knee joint is a key issue in robotics and biomechanics to

improve the compatibility between prosthesis and human movements, and to improve

the bipedal robot performances. We propose a novel design for the knee joint of a planar

bipedal robot, based on a four-bar linkage. The dynamic model of the planar bipedal

robot is calculated. Two kinds of cyclic walking gaits are considered. The first gait

is composed of successive single support phases with stance flat-foot on the ground

separated by impacts. The second gait is a succession of finite time double support

phases, single support phases, and impacts. During the double support phase, both

feet rotate. This phase is ended by an impact of the toe of the forward foot, while the

rear foot is taking off. The single support phase is ended by an impact of the swing foot

heel, the other foot keeping contact with the ground through its toe. For both gaits, the

reference trajectories of the rotational joints are prescribed by cubic spline functions

in time. A parametric optimization problem is presented for the determination of the

parameters corresponding to the optimal cyclic walking gaits. The main contribution

of this paper is the design of a dynamical stable walking gait with double support

phases with feet rotation, impacts, and single support phases for this bipedal robot.

1 Introduction

The researchers in biomechanics have improved a lot the understanding of the human

lower limb and especially the knee joint [1], and the ankle joint [2]. Indeed, these two

joints have a complex architecture formed by non symmetric surfaces. Their motion

is more complex than a revolute joint motion. In the case of the human knee, the

joint is formed by different surfaces, the two non symmetrical femoral condyles and the

tibial plateau. This architecture probably appeared in the evolution of many species

of animals 320 million years ago. This common architecture of the knee has not really

changed the last 300 million years despite an important diversity of the functional

need [3]. The motions of the femur with respect to the tibia are limited due to many
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ligaments and the patella. In addition to the flexion in the sagittal plane, there is an

internal rotation with a displacement of the Instantaneous Center of Rotation (ICR)

of the knee joint and a posterior translation of the femur on the tibia. These motions

are guided by the cruciate ligaments and the articular contacts [4], and [1]. These

complex motions cannot be represented by one or two revolute joints. Different studies

have confirmed these results by an observation of the motions of the human knee in

the 3D space [5]. The modeling of the knee is still currently a great challenge. A novel

approach for testing total knee replacements with respect to stability of the artificial

knee joint is presented by Herrmann et al, see [6]. A method to include a multibody

natural knee model within a forward dynamics simulation of a dual-limb squat, see

[7]. Argotov [8] has proposed a modeling articular tibio-femoral contact through an

asymptotic model of frictionless elliptical contact interaction between thin biphasic

cartilage layers. Ribeiro et al [9] have developed a computational multi body knee

model to capture some of the fundamental properties of the human knee articulation.

To reproduce the displacement of the ICR of the joint knee the four-bar linkage

have been proposed by scientists in biomechanics, see for example [10] , which was one

of the first published works on this issue or [11], which studied the influence of four-

bar linkage knees on prosthetic swing-phase floor clearance. This architecture forms

a closed-loop mechanism, which allows a combined rotation and translation of the

knee joint in the sagittal plane without any artificial ligament to keep the rigidity of

the mechanism. In 1974, A. Menschik [12] proposed to represent the knee joint by a

crossed four-bar linkage. This mechanism is the dual solution of the classical four-bar

knee but does not have any singularity of the input-output function that is governed

by the driven input joint in the range of motion typically used. As a matter of fact,

the kinematic singularities of the mechanism may limit its range of motion of, mainly

when an important knee flexion is required. The dimensions of the crossed four-bar

linkage can be chosen by measuring, on a real subject: (i) the length of the anterior

and posterior ligaments; (ii) the position of the cross ligament attachments on the tibia

and the femur, projected on the sagittal plane in the maximum extension position [13].

As a result, the motions of the mechanical knee joint in the sagittal plane should be

similar to the motions of the human knee [4]. In this case, we can reproduce the motion

of the knee joint with a posterior displacement of the contact point of the femur on

the tibia as shown in Figure 1.

Roboticists have come up with new and better bipedal robots recently. For instance,

the HRP-2 [14] and the RABBIT [15], which are able to run, are quite efficient in terms

of energy consumption. A. Grishin et al. [16] focused on the design of a bipedal robot

with telescopic legs. T. Yang et al. [17] used a compliant parallel knee to improve the

walking motion. Some authors also dealt with the walking and running gaits using the

toe rotation [18], [19], [20]. Our objective is to improve the bipedal robot performance

thanks to a new design of the knee joint. Several papers deal with the bipedal robots

equipped with complex knees, like G. Gini et al. [21] which used knee joints based on the

human knee surfaces. F. Wang et al. [22] developed a bipedal robot with two different

joints, namely, a revolute joint and a four-bar linkage. However, the singularities of

the input-output function of the common four-bar linkage, i.e., non crossed four-bar

linkage, usually limit the flexion of the knee. On the contrary, the flexion of the knee

joint based on a crossed four-bar linkage is usually not too limited with the kinematic

singularities. We also proved in [23] that a a knee based on a crossed four-bar linkage

is better than a knee designed with a revolute joint in terms of energy consumption.
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This paper aims to study the performance of a planar bipedal robot equipped

with knees based on crossed four-bar linkages for both families of cyclic walking gaits.

Kinematic analysis is proposed to compare a four-bar linkage with respect to a crossed

four-bar linkage. The first gait is composed of successive single support phases with

stance flat-foot on the ground separated by impacts. The second gait is composed

of finite time double support phases, single support phases, and impacts. During the

double support phase, both feet rotate. This phase ends with a contact of one toe with

the ground while the other foot is taking off. The single support phase ends with an

impact of the swing foot heel, the toe of the other foot being in contact with the ground.

We also present the dynamic model of a planar bipedal robot whose knees are composed

of a crossed four-bar linkage. We developed a parametric optimization method to define

a set of optimal reference trajectories for both cyclic gaits. We studied the energy

consumption of the bipedal robot for different velocities. The main contribution of this

paper is the design of a dynamical stable walking gait with double support phases,

impacts, and single support phases for this bipedal robot. Note that there is a feet

rotation around the front heel and the rear toe during the double support phases.

This paper is organized as follows. Section 2 presents the planar bipedal robot

whose knees are based on four-bar linkages. A kinematic analysis of the proposed

four-bar linkage is explained in Section 3. Section 4 is devoted to the dynamic models.

Section 5 deals with the trajectory planning. Section 6 proposes numerical results about

the evaluation of the energy consumption as a function of the bipedal robot velocity.

Finally, Section 7 presents some conclusions and future works.

Fig. 1 Representation of the human knee joint composed of a four-bar linkage. Illustration of
the posterior translation of the contact point between the femur and the tibia.

2 Presentation of the bipedal robot with knees composed of a four-bar

linkage

Let us introduce the bipedal robot, which is depicted in Figure 2. Table 1 gathers

the physical data of the biped, which are taken from Hydroid, a humanoid bipedal

robot [24].

The dimensions of the four-bar linkage are chosen with respect to the human char-

acteristics measured by J. Bradley et al. through radiography in [25].
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Mass (kg) Length (m) Inertia (kg.m2) Center of
mass (m)

foot 0.678 Lp = 0.207 0.002 spx = 0.0135
lp = 0.072 spy = 0.0321
Hp = 0.059

shin 2.188 0.392 0.027 s1 = s4 = 0.169
thigh 5.025 0.392 0.066 s2 = s3 = 0.169
trunk 24.97 0.403 1.036 s5 = 0.192

four-bar mb = 0.3 a = AB = 0.029 m
knee md = 0.3 b = BC = 0.035 m

c = CD = 0.015 m
d = AD = 0.025 m

Table 1 Physical parameters of the bipedal robot.
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Fig. 2 Schematic of a planar bipedal robot. Absolute angular variables and torques.
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Fig. 3 Details of the four-bar joint and position of the Instantaneous Center of Rotation
(ICR)

Figures 2 and 3 depict the bipedal robot under study and its four-bar knee linkage.

The angular variable α1 is the actuated variable of the four-bar linkage. The orientation

variable of each link of the biped and its four-bar knees is an absolute angle with respect

to the (dotted drawn) global vertical axis.

3 Kinematic analysis of the four-bar linkage

3.1 Position of the Instantaneous Center of Rotation

It is noteworthy that Instantaneous Center of Rotation (ICR on figure 3) of the four-

bar linkage moves with respect to the shin and the thigh. Figure 4 shows the motion

of the ICR of the four-bar linkage with respect to point A.
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Fig. 4 Motion of the ICR of the four-bar linkage with respect to point A.

3.2 Singularity Analysis

Let us consider the closed loop four-bar linkage depicted in Figure 5. We assume that

the actuator is located in joint D, and applies a torque between links AD and CD.

The α is the actuated joint variable.
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Fig. 5 Four-bar linkage.

This section aims to compare the accessible motion of a crossed four-bar linkage

and a classic four-bar linkage. In this vein, we determine the equation of motion that
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depends on the input angle α and the output angle θ only, according to the Freuden-

stein’s formalism [26]. In case the knee of the bipedal robot is composed of a four-bar

linkage, the femur and the tibia are perpendicular to its lower and the upper bars.

Consequently, the output angle θ is directly the flexion angle of a knee joint.

First, AB = a e1, BC = b e2, AD = c e3 and DC = d e4 where ei, i = 1, 2, 3, 4

are unit vectors such as:

e1 =

(

cosϕ

sinϕ

)

, e2 =

(

cos θ

sin θ

)

, e3 =

(

1

0

)

, e4 =

(

cosα

sinα

)

(1)

From the closed loop kinematic chain A-B-C-D, we can write:

ae1 = −be2 + ce3 + de4 (2)

By equating the 2-norm of both sides of Eq. (2), we obtain:

F (α, θ) = 0 (3)

with :

F (α, θ) = k1 + k2 cosα− k3 cos θ − cos(θ − α) (4)

where k1 =
a2 + c2 + d2 − b2

2cd
, k2 =

a

c
and k3 =

a

d
. Equation (3) can be rewritten as

follows:

Xsinα+ Y cosα = Z (5)

with

X = −sin θ, Y = k2 − cos θ and Z = −k1 + k3cos θ. The function sinα and cosα

are obtained from [27]:



















sinα =
X Z + ǫ Y

√
X2 + Y 2 − Z2

X2 + Y 2

cosα =
Y Z − ǫ X

√
X2 + Y 2 − Z2

X2 + Y 2

(6)

where ǫ = ±1. So we obtained α :

α = atan2 (sinα, cosα) (7)

The angular variable θ can be plotted as a function of the angular variable α.

Singularities of the input-output function that is governed by the driven input joint

appear when
∂F

∂α
= 0 or

∂F

∂θ
= 0 (8)

with
∂F

∂α
= −k2 sinα+ sin(α− θ) (9)

and
∂F

∂θ
= k3 sin θ − sin(α− θ). (10)

Figure 6 illustrates the output angle θ as a function of the input angle α for the four-bar

linkage under study. Figure 7 illustrates the six postures of the four-bar linkage corre-

sponding to the six points shown in the Figure 6. We can notice that the mechanism

reaches singular configurations when the output angle θ is equal to 60◦ and 300◦.
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Fig. 6 The output angle θ as a function of the input angle α for the four-bar linkage.
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Fig. 7 Six postures of the four-bar linkage.

In [28], the authors have introduced a transmission factor for a four-bar linkage.

This factor depends on the transmission angle β on the figure 5. We define the trans-

mission factor for a given posture by:

µ = |sin β| (11)
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On Figure 8, we present the transmission factor µ as a function of the output θ. On

this figure, we can also notice the singular configuration for µ = 0.
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Fig. 8 Transmission factor µ as a function of the output θ for the four-bar linkage.

4 Dynamic model

4.1 General dynamic model in double support

The bipedal robot is equipped with two closed-loop knees. Let us introduce the con-

straint equations solving the dynamic model [29]. Equations for knee joints 1 and 2 are

similar. For a sake of clarity we consider knee joint 1 only. Let us write the vectorial

equation BA+AD=BC+CD from Figure 3. With this vectorial equality, two scalar

equations of the closed-loop geometric constraints are defined as follows:

a cos q1 − b sin qg11 + c cos q2 + d sin qg12 = 0

a sin q1 + b cos qg11 + c sin q2 − d cos qg12 = 0
(12)

Their first and second time derivatives are

−aq̇1 sin q1 − bq̇g11 cos qg11 − cq̇2 sin q2 + dq̇g12 cos qg12 = 0

aq̇1 cos q1 − bq̇g11 sin qg11 + cq̇2 cos q2 + dq̇g12 sin qg12 = 0
(13)
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and
−aq̈1 sin q1 − bq̈g11 cos qg11 − cq̈2 sin q2 + dq̈g12 cos qg12

−aq̇21 cos q1 + bq̇2g11 sin qg11 − cq̇22 cos q2 − dq̇2g12 sin qg12 = 0

aq̈1 cos q1 − bq̈g11 sin qg11 + cq̈2 cos q2 + dq̈g12 sin qg12
−aq̇21 sin q1 − bq̇2g11 cos qg11 − cq̇22 sin q2 + dq̇2g12 cos qg12 = 0.

(14)

Through the virtual work principle [30], these constraint equations can be expressed in

the dynamic model by adding term Jt1λ. Here J1 is the 2 × 13 Jacobian matrix such

as equations (13) and (14) can be rewritten under the compact forms

J1ẋ = 0 (15)

and

J1ẍ+ J̇1ẋ = 0. (16)

and vector λ = fc1 = [fx1
, fy1

]t defines the constraint force for the loop closure of the

four-bar mechanism of the knee 1 (Figure 3). We can apply the same principle for the

knee joint 2 and through the Lagrange equations to obtain a dynamic model of the

bipedal robot with the four-bar knees, which takes explicitely into account the contact

with ground:

A(x)ẍ + h(x, ẋ) =
[

DΓ Jt
1 Jt

2

]

[

Γm

fc

]

+ Jt
r1r1 + Jt

r2r2 (17)

with the constraint equations:

Jri ẍ+ J̇ri ẋ = 0 for i = 1 to 2 (18)
[

J1
J2

]

ẍ+

[

J̇1

J̇2

]

ẋ = 0. (19)

Here Γm = [Γp1
, Γp2

, Γ1, Γ2, Γ3, Γ4]
t is the vector of the applied joint torques and

fc = [f tc1 , f
t
c2 ]

t. The generalized vector x is such as

x = [qp1
, qp2

, q1, q2, q3, q4, q5, qg11 , qg12 , qg21 , qg22 , xh, yh]
t

where xh and yh are the hip coordinates. A(x) is the 13 × 13 symmetric positive

definite inertia matrix, h(x, ẋ) is the 13×1 vector, which groups the centrifugal, Coriolis

effects, and the gravity forces. Both matrices Jr1 and Jr2 are jacobian matrices of the

constraint equations in position and orientation for the two feet, respectively. Their

size depends on the kind of contact between the stance foot and ground, which is

described with Eq. (18). For example let us consider foot 1. If the contact is flat foot

on the ground, the orientation of foot 1 will be null and any point of its sole is a fixed

point on the ground. Then the size of Jr1 is (3 × 13). If there is a heel contact or

a toe contact, it can described through a perfect joint pivot without any moment of

the ground reaction. Then the size of Jr1 becomes (2 × 13). DΓ is a 13 × 6 matrix

composed of the 0 and ±1. Because the generalized vector is composed of absolute

angle variables instead of joint variables we applied the principle of virtual work to

calculate DΓ. Let us detail this calculation. The virtual work δWi (i = 1, ..., 6) of each

torque Γmi, applied to the corresponding joint variable δθi, is as follows

δWi = δθiΓmi

= Dt
Γmi

δxΓmi
(20)
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Then the matrix of torques is DΓ = [DΓm1
, ...,DΓmi

, ...,DΓm6
] with:

DΓmi
=

∂

∂Γmi

(

∂δW

∂δx

)

. (21)

The principle of virtual work can be similarly used to obtain both matrices Jt
r1 and

Jt
r2 .

This dynamic model (17) with constraints (18-19) is valid in single and double

support phases. During a single support phase the ground reaction force is zero on the

swing foot.

Remark: During the optimization process that we will present later, we calculate

numerically, with a Newton-Raphson method, qg11 , qg12 , qg21 , and qg22 as a function

of the coordinates q1, q2, q3, and q4 through 12 for knee 1 and its equivalent for knee

2.

4.2 Reduced model in single support

The aim is to propose a dynamic model with an implicit liaison of the stance foot

with the ground to calculate the torques during the optimization process, with the

knowledge of the reference trajectories for the generalized coordinates. This reduced

dynamic model is only valid if the stance foot does not take off and there is no sliding

during the swing phase.

Then, during the single support phase, there is a flat contact between the foot and

the ground, i.e., there is no sliding motion, no take-off, no rotation (qp1
= 0). In this

case, the configuration of the biped can be described only with the articular variable.

We can use a new generalized vector q = [qp2
, q1, q2, q3, q4, q5, qg11 , qg12 , qg21 , qg22 ]

t.

The reduced dynamic model does not depend on the ground reaction force, which is

applied in the stance flat-foot. The dynamic model in single support phase for the

biped equipped with the four-bar knees is given by the simplification of the dynamic

model (17) and (18-19):

A(q)q̈+ h(q, q̇) =
[

DΓ Jt1 Jt2
]

[

Γm

fc

]

. (22)

with the constraint matrix equation,

[

J1

J2

]

q̈+

[

J̇1

J̇2

]

q̇ = 0. (23)

Here vector fc is such as f c = [f tc1 , f
t
c2 ]

t. A(x) is the 10×10 symmetric positive definite

inertia matrix, h(x, ẋ) is the 10×1 vector, which groups the centrifugal, Coriolis effects,

and the gravity forces. DΓ is a 10× 6 matrix composed of the 0 and ±1 given by the

principle of virtual work.



12

x

y

Hp

lp lZMP

Lp

z

Gfspx

spy

r
P

O

Fig. 9 Details of the foot.

To define the constraints about the ground reaction, the no take-off of the stance

flat-foot during the optimization process, we recall the calculation of position of the

Zero Momentum Point. The resultant force R of the ground reaction can be calculated

by applying the second Newton law at the center of mass of the biped:

mγ = r+mg, (24)

where m is the global mass of the biped, γ = [ẍg, ÿg ]
t are the horizontal and vertical

components of the acceleration for its center of mass in the world frame. g = [0,−g]t is

the vector of the acceleration of the gravity. This equation allows directly to get r during

the single support. Assuming the center of mass Gf of the foot has for coordinates

(spx, spy), see Figure 9. Let mf be the mass of the foot. The application point P of

this resultant force r = [rx, ry, rz]
t of the ground reaction, where the moment m =

[mx,my, mz]
t has its components, which are null following axes x and z, mx = mz = 0,

is called the Zero Moment Point. One necessary and sufficient condition for the foot

to keep the flat contact is, that P belongs to the convex hull of the supporting area

(Vukobratovic [31]). In this case the ZMP is merged with the center of pressure. Let

fO and mO be the force and the moment exerted by the mechanism above the ankle,

defined by pointO, of the supporting foot. Let us state the static equilibrium in rotation

for the supporting foot:

mO +OO× FO +OGf ×mfg +OP× r+m = 0, (25)

where OP, OGf and OO are radius vectors from the origin of the coordinate system

O. For the planar biped the coordinate of the ZMP can be obtained through the

calculation of the global equilibrium of the bipedal robot around axis z, which gives:

lZMP =
Γp1

+ spxmfg −Hprx

ry
, (26)

where Γp1
is the applied torque on the ankle.
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To calculate the applied joint torques, which are used to obtain the energy con-

sumption of each bipedal robot during the optimization process, we use the dynamic

model (22).

We assume the friction effects due to the four-bar mechanism are negligible with

respect to those in the gearbox of the actuators. Then only the performances of actu-

ators are considered to compare the energy consumption for the biped equipped with

both types of knee joints successively. No friction terms are included in the model.

4.3 Impact model

Usually during a biped’s gait, impacts occur, when the sole, the heel or the toe of

the swing foot swing touches the ground. For the walking optimal gaits, which will be

defined later, the impact, occurring between different phases, will be included a priori

in the optimization process. And the velocities just before impact and just after impact

will be obtained from the known velocities of the generalized coordinates x. At the

end of the optimization process the walking gait must be cyclic and satisfy several

constraints that we will also present later. Let T be the instant of an impact. We

assume that the impact is absolutely inelastic and that the foot does not slip. Given

these conditions, the ground reactions at the instant of an impact can be considered as

impulsive forces and defined by Dirac delta-functions rj = ijδ(t − T ) (j = 1, 2). Here

ij = [ijx, ijy ]
t is the magnitudes vector of the impulsive reaction in foot j (see [32]).

Impact equations can be obtained through integration of the matrix motion equation

(17) for the infinitesimal time from T− to T+. The torques provided by the actuators

in the joints, Coriolis and gravity forces have finite values. Thus they do not influence

the impact. Consequently the impact equations can be written in the following matrix

form:
A(x(T ))(ẋ+ − ẋ−) =

[

Jt
1 Jt

2

]

ifc + Jtr1 i1 + Jt
r2 i2 (27)

Here x(T ) denotes the configuration of the biped at instant t = T , (this configu-

ration does not change at the instant of the impact), ẋ− and ẋ+ are respectively the

velocity vectors just before and just after an inelastic impact. To take into account of

the closed-loop of the four-bar knee linkage we have to complete (27) with:

[

J1

J2

]

ẋ+ = 0 (28)

The velocity of the contact part of the stance foot (j = 1) before an impact is null.

Jr1 ẋ
− = 0 (29)

The swing foot (j = 2) after the impact becomes a stance foot. Therefore, the velocity

of its contact part with the ground becomes zero after the impact,

Jr2 ẋ
+ = 0 (30)

Generally speaking, two results are possible after the impact, if we assume that there

is no slipping of the stance feet. The stance foot lifts off the ground or both feet remain

on the ground. In the first case, the vertical component of the velocity of the taking-off

foot just after the impact must be directed upwards. Also there is no interaction (no
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friction, no sticking) between the taking-off foot and the ground. The ground reaction

in this taking-off leg tip must be null. In the second case, the stance foot velocity has

to be zero just after the impact. The ground produces impulsive reactions (generally,

ij 6= 0, j = 1, 2) and the vertical components of the impulsive ground reactions in both

feet are directed upwards. For the second case, the passive impact equation (27) must

be completed by one matrix equations.

Jr1 ẋ
+ = 0 (31)

In general, the result of an impact depends on two factors: the biped’s configuration

at the instant of an impact and the direction of the swing foot velocity just before

impact [32]. After an impact for a biped, there are two possible phases: a single support

or a finite time double support. The resolution of the system composed (27), (28), (30)

and eventually (31) gives the velocity vector ẋ+ just after the impact, the impulsive

reaction forces i1, i2 and the impulsive forces ifc = [itfc1 , i
t
fc2

]t relatively to the velocity

vector ẋ− just before the impact.

To calculate the position of the ZMP at the impact with flat-foot, we have to take

into account of the impulsive ground reaction in the global equilibrium of the stance

foot and the result is:

lZMP = −Hp ijx
ijy

. (32)

5 Gait optimization for the cyclic walking

5.1 Principle

The biped is driven by six torques, and its configuration is given by vector q of the

generalized coordinates. To transform the optimization problem into a finite dimension

problem, the joint motion is described as a parametric function. We choose, for each

phase, a cubic spline function of time.

To insure continuity between two successive phases, the position and velocity of

the biped at the beginning and at the end of each phase must be taken into account

by the parameters of the cubic spline functions.

To design a cyclic walking gait, the behavior of the actuated joint variables are

prescribed using cubic spline functions. The set of parameters are used to calculate

these cubic spline functions, taking into account the properties of continuity between

each step. From the final state of a step to the initial state of the following step, there

is an exchange of the number of the joints, since the legs swap their roles, we have:

qp1i = qp2f , q1i = q4f , q2i = q3f and q5i = q5f . (33)

Values for these parameters are calculated by minimizing a criterion based on the

energy consumption. Physical conditions of contact between the feet and the ground

and limits on the actuators define non-linear constraints of this optimization process.

5.2 Studied Gaits

In the following, two gaits will be studied.
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– Gait 1: The cyclic motion is composed of single support phases see Figure 10. These

single supports are separated by impulsive impacts. The supporting foot is always

flat on the ground, the impacting foot is flat on the ground.

foot 1

foot 2

a) single support

foot 2foot 1

b) end of the single support: Impact with flat foot

Fig. 10 Walking gait 1.

– Gait 2: The cyclic motion is composed of single support and double support phases,

see Figure 11. In double support phase both feet rotate. The double support is

ended when one foot impacts the ground with the toe, the other foot takes off the

ground. The single support takes place. At the end of the single support phase, the

impacting foot touches the ground with its heel. The other foot keeps contact with

the ground through its toe.
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foot 1foot 2

a) double support

foot 1foot 2

b) end of the double support, toe impact of foot 1

foot 1

foot 2

c) single support

foot 1 foot 2

d) end of the single support, heel impact of foot 2

Fig. 11 Walking gait 2.

5.3 Parametric functions: Cubic spline

Cubic spline functions [33] are used to define the useful joint trajectories during a given

phase of the walking gait,

Θi(t) =































ϕi,1(t) if t1 ≤ t ≤ t2
ϕi,2(t) if t2 ≤ t ≤ t3

.

.

.

ϕi,n−1(t) if tn−1 ≤ t ≤ tn.

i = 1, 2, ..., nj (34)

Here n is the number of selected knots and nj is the number of joints. ϕi,1(t), ..., ϕi,n−1(t)

are polynomials of third-order such that:

ϕi,k(t) =

3
∑

j=0

aj
i,k

(t− tk)
j , for t ∈ [tk, tk+1], k = 1, ..., n− 1

where the coefficients aj
i,k

are calculated such that the trajectory, velocity and accel-

eration are continuous in t1, ..., tn. The cubic spline functions are uniquely defined by

specifying an initial angular position Θi(0), an initial angular velocity Θ̇i(0) (both

at t = t1 = 0), a final configuration Θi(T ) , and a final velocity Θ̇i(T ) (both at

t = tn = T ), with n− 2 intermediate configurations and T the duration of the phase.
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Consequently, the configurations will be defined by a small number of optimization

parameters.

5.4 The different phases

5.4.1 The single support phase:

The biped with a stance flat-foot is driven by six torques, and its configuration is

given in single support phase by six generalized coordinates: qp2
, q1, q2, q3, q4, q5 and

nj = 6. Let T be the duration of the single support phase. The cubic spline functions

Θi(t), i = 1, ..., 6 are defined for an initial value in position and velocity, an intermediate

position and a final value in position and velocity, with three selected knots, n = 3. The

intermediate configuration for the biped is calculated at t = T/2. Thus for each joint

we need to define five parameters of position and velocity to design the trajectories.

If the gait is only composed of flat-foot single support phases and impacts, the final

configuration is an instantaneous double support configuration with both flat-feet on

the ground. Thus only four independent variables are necessary to define it. We use

the distance d between the front heel and the rear toe, Figure 12, the position of the

hip xh, yh and the inclination of the torso q5. If this phase is followed by a double

support phase, the final configuration is a double support configuration with the heel

of the front leg on the ground. Thus five independent variables are necessary to define

it. The angle of the front foot has to be added. The final velocity is described by six

variables.

When functions Θi(t), i = 1, ..., 6 are chosen, the joint velocity and the joint accel-

eration can be deduced through the derivation of the polynomial function. The torques

required to produce the given motion are calculated solving the inverse dynamic model

(22). The reaction force are calculated through the matrix equation (24) with qp1
= 0,

q̇p1
= 0 and q̈p1

= 0.

5.4.2 The double support phase:

The biped with a stance flat-foot is driven by six torques. Its configuration is given in

double support phase with five generalized coordinates only because the positions of

the front heel and the rear toe are constant. These five independent coordinates are the

orientation of feet qp1
and qp2

, the orientation of the leg 1 q1, q2 and the inclination

of the torso q5. For these coordinates cubic spline functions Θi(t), i = 1, ..., nj = 5 are

defined with an initial value in position and velocity and a final value in position and

velocity, with two selected knots, n = 2. Thus for each joint we need to define four

parameters of position and velocity to design the trajectories. The final configuration

of the biped is with one flat-foot on the ground. Thus only four independent variables

are necessary to define it. We use qp2
, q1, q2 and the inclination of the torso q5.

Only five components of the joint velocities are independent during this phase, thus

the final velocity can be defined with five variables at maximum. At the end of this

phase from the impact, which occurs on the front toe, six initial angular velocities

can be determined for the next single phase. When functions Θi(t), i = 1, ..., 5 are

chosen, the joint velocity and the joint acceleration can be deduced by the derivation

of the polynomial function. For a given motion the torques required could be calculated

solving the inverse dynamic model (17). However there are 14 unknown variables (six
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torques, four components for the internal forces in both knees and four components for

both ground reactions), for 13 scalar equations only. Consequently we have to prescribe

one unknown variable like a parameter. To highlight this point let us consider the global

equilibrium in translation and rotation of the biped (35), with Figure 12. For a given

movement of the biped, it is possible to calculate the center of mass of the biped, its

velocity and acceleration. After its possible to calculate the global equilibrium in forces

and moments in the center of mass. Asssuming that both feet have only a point contact

with the ground, this global equilibrium will be defined with three external forces, the

gravity force and both ground reaction forces, and two moments with respect to the

center of mass of the biped. These moments are produced through the ground reaction

forces. The center of mass G of the biped is located with the coordinates xg and yg ,

r1 and r2 are the ground reaction acting in the front hell and the rear toe, δg is the

dynamic momentum of the biped with respect to its center of mass. We have four

unknown variables, r1x, r2x, r1y and r2y for three equations only.







yg(r1x + r2x) + (d− xg)r2y − xgr1y = δg
r1x + r2x = mẍg

r1y + r2y −mg = mÿg

(35)

If the sum r1x + r2x is unique, there are an infinity of solutions for r1x or r2x which

xg

zg

d

r1r2

G

Fig. 12 Ground reactions in double support phase and the center of mass of the biped.

satisfy (35). As a consequence r2x can be defined as a second order polynomial function

in time:

r2x(t) = d0 + d1t+ d2t
2 (36)

5.5 Number of optimization variables

Depending on the gait studied, the number of optimization variables can be deduced

from the description of each phase. For the cyclic walking gait 1 depicted by cubic
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spline functions the number of optimization variables is equal to 16.

P =
[

xh(T ), yh(T ), d, q5(T ), qp2(
T
2
), q1(

T
2
), q2(

T
2
), q3(

T
2
), q4(

T
2
),

q5(
T
2
), q̇p2(T ), q̇1(T ), q̇2(T ), q̇3(T ), q̇4(T ), q̇5(T )

]

(37)

For the cyclic walking gait 2 this number is equal to 29.

P =
[

q1(TDS), q2(TDS), q5(TDS), qp2(TDS), qp2(
TSS

2
), q1(

TSS

2
), q2(

TSS

2
), q3(

TSS

2
), q4(

TSS

2
),

q5(
TSS

2
), q̇p1(TDS), q̇p2(TDS), q̇1(TDS), q̇2(TDS), q̇5(TDS), xh(TSS), yh(TSS),

q5(TSS), d, q̇p2(TSS), q̇1(TSS), q̇2(TSS), q̇3(TSS), q̇4(TSS), q̇5(TSS), d0, d1, d2, TDS

]

(38)

The variables TSS and TDS are the duration of the single support and the double

support respectively for the cyclic walking gait 2. Only TDS is used as a parameter of

the optimization problem. TSS is deduced from the walking velocity. These results are

summarized and concatenated in Table 2.

phase variables Gait
1 2

single final configuration 4 4
support final velocity 6 6

flat intermediate
foot configuration 6 6

double final configuration 4
support final velocity 5

duration 1
R2x 3

total 16 29

Table 2 Number of optimization variables

5.6 Parametric optimization problem

By parameterizing the joint motion in terms of cubic spline functions, the optimization

problem is reduced to a constrained parameter optimization problem of the form:

Minimize CW (P)

subject to gj (P) ≤ 0 for j = 1, 2, ...l
(39)

where P is the set of optimization variables. CW (P) is the criterion to minimize with

l inequality constraints gj(P) ≤ 0 to satisfy. The criterion and constraints are given in

the following sections.

We used the SQP method (Sequential Quadratic Programming) [34], [35] with the

fmincon function of Matlab R© to solve this problem.
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5.6.1 The criterion

Many criteria can be used to produce an optimal trajectory. A sthenic criterion is

chosen to obtain optimal trajectories:

CW =
1

d

∫ T

0

6
∑

i=1

Γ t
mi

Γmi
dt, (40)

where T is the step duration and Γmi
is the torque applied to the joint i. During an

optimization process the step length d is an optimization variable and the walking speed

v is fixed, such as the step duration is directly given through the relation T = d/v.

The resulting optimal control is continuous and cancels the risks of a jerky func-

tioning [36]. This smoothness property also guarantees a better numerical efficiency for

the algorithm used for the optimization problem-solving

5.6.2 The constraints

Two types of constraints are used to obtain a realistic gait.

– The necessary constraints, which ensure a valid walking gait.

The first constraint ensures the supporting leg tip does not take off or slide on the

ground. So, the ground reaction force is inside a friction cone, defined with the

coefficient of friction f :

{

max(−f riy − rix) ≤ 0

max(−f riy + rix) ≤ 0
(41)

j = 1 or 2. rx and ry are the normal and tangential component of the reaction force.

Moreover, we can introduce a constraint on the ground reaction at the impact:

{

(−f i1y − i1x) ≤ 0

(−fi2y + i2x) ≤ 0
(42)

To ensure the non rotation of the supporting foot we introduce a constraint on the

ZMP during the single support phase and at the instant of the impact:

(lp − Lp) ≤ lZMP ≤ lp (43)

Here Lp is the length of the foot and lp is the distance between the heel and the

ankle along the horizontal axis, see Figure 9.

Just after the impact, the velocity of the taking-off foot should be directed upward.

In consequence, the positivity of the vertical component of the velocities for the

heel and the toes is added to the set of constraints.

The last constraint allows to ensure the non penetration of the swinging foot in the

ground.

– The unnecessary constraints, which ensure a technological realistic gait.

We introduced mechanical stops on the joint variables. Moreover, we limited the

torques with a constraint, which sets a template of the maximum torque of the

motor relatively to the velocity [15].



21

6 Results

In this part, we use the parametric optimization method, presented previously, to

produce a set of optimal reference walking trajectories for the biped with four-bar

knees. To estimate the effect of these knee joints, we compare with a set of optimal

trajectories for the same bipedal robot equipped with revolute knee joints.

The numerical values of the parameters P obtained for a walking gait 1 at 2.2Km/h

are :

P = [0.1221, 0.7938, 0.2485,−0.0338, 0.0124, 0.0165,−0.0194,−0.0419,

−0.0894,−0.0063, 0.7358,−2.6541, 0.2075,−1.6897, 3.3207, 0.8978]

(44)

The parameters P obtained for a walking gait 2 at 2.2Km/h are :

P = [0.1339, 0.2044,−0.1649,−0.0262,−0.1649,−0.1834,−0.0071, 0.0210,

0.1863,−0.2859,−0.1242,−2.0181,−2.2213,−0.4860,−1.2059, 0.8486,

0.1964, 0.8611,−0.1824, 0.0782,−3.2424,−1.3756,−0.6881, 0.6367,

−2.0984, 0.3225, 54.6085,−249.6218, 410.1424, 0.1306]

(45)

6.1 Simulation of walking gaits with single support and impulsive impact

For the cyclic walking gait 1, composed of single support phases and impulsive impacts,

we obtain walking motions for different velocities.

Figure 13 gives the energy consumption of the bipedal robot as a function of the

walking velocity for both solutions of knee joints. We can see a smaller energy con-

sumption with the biped equipped of four-bar knees than with the biped which uses

single revolute knee joints.
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Fig. 13 Evolution of the energy consumption for the bipedal robot as a function of the walking
velocity. Solid line: biped with four-bar knee linkages. Dashed line: biped with revolute knee
joint.

Figure 14 presents the vertical component of the ground reaction in the foot for

different velocities. We can see the type of knee joint does not have many effects on

the ground reaction force.
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Fig. 14 Evolution of the vertical component of the ground reaction during a walking gait for
different walking velocities for both types of knee joints. Solid line: biped with four-bar knees.
Dashed line: biped with revolute knees.
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The evolution of the ZMP for both solutions of knee joints is presented on the

Figure 15. We can see the position of the ZMP of the biped equipped with four-bar

knee joints has less variations than a bipedal robot, which uses revolute knee joints.
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Fig. 15 Evolution of the position of the ZMP during a walking gait for different walking
velocities for both types of knee joints. Solid line: biped with four-bar knees. Dashed line:
biped with revolute knee joints. Dashed-dot line: Limit of the foot.

To explain the reduction of the energy consumption let us draw the evolution of

the vertical position of the hip and the evolution of the center of mass of the biped in

the reference frame, Figures 16 and 17. We can see, a smaller variation of the vertical

position of the hip and the vertical position of the center of mass for the biped equipped

with four-bar knees. This result induces a smaller variation of the potential energy by

using of four-bar knees, this may explained the reduction of the energy consumption.
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Fig. 16 Evolution of the hip joint position during a walking gait for different walking veloci-
ties. Solid line: biped with four-bar knees. Dashed line: biped with revolute knees.
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Fig. 17 Evolution of the center of mass position during a walking gait with v = 2.2 km/h.
Solid line: biped with four-bar knees. Dashed line: biped with revolute knees.

On this type of walking trajectories, we have proved that a bipedal robot equipped

of four-bar knees has a better performance with respect to the energy consumption

than a biped which uses revolute knees. This mechanism for the knees can reduced

the energy consumption for the walking velocities lower than 2.9 km/h. This reduction
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can be explained by a greater space of admissible trajectories without violation of the

constraints. These trajectories impracticable with the biped equipped with revolute

knee joints admit a lower variation of the vertical position of the center of mass, which

leads to a reduction of the variation of the potential energy.

In the next part, we generalized these results for the trajectories of type 2.

6.2 Simulation of walking gaits with double support, single support and impact

For the cyclic walking gait 2, composed of single support phases, double support phases

and impacts, we calculate walking movements for different velocities.

The Figure 18 gives the energy consumption of the bipedal robot as a function

of the walking velocity. The energy consumption of bipedal robot is reduced through

using the four-bar knees.
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Fig. 18 Evolution of the energy consumption of the bipedal robot as a function of the walking
velocity. Solid line: biped with four-bar knees. Dashed line: biped with revolute knees.

The energy consumption of the biped for the walking gait 2 is widely increased than

the energy consumption for the walking gaits 1. This important difference of energy

consumption can be explained by an increase of the potential energy variation between

both types of walking gait. Figures 19 shows the profile of the potential energy during

the walking gaits 1 and 2 for the biped equipped with revolute knee joints and four-bar

knee joints. We can note on this figure the duration of the step is increased for the

walking trajectory of type 2 than the walking trajectory of type 1. This difference is

due to an increase of the step length. Figure 19d for the biped with four-bar knees we

observe that there is a discontinuity in the first derivative of the potential energy during

the walking gait 2. It is due to the impact on the toe 1 at the end of the double support

phase, see Figure 11b. The discontinuities of the joint velocities lead to a discontinuity
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of the velocity of the center of mass. As a consequence there is a discontinuity in the

first derivative of the potential energy. We can observe a similar phenomenon for the

biped with revolute joint knees. However, we can hardly see it in Figure 19b because

the impact of toe 1 is almost null. Moreover, Figure 19d the maximum potential energy

peaks for the crossed four bar knee are higher than for revolute knees. Indeed, the size

of the biped is larger with the crossed four-bar knees than the revolute knees.
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(a) Revolute knees, type 1 trajectory.
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(b) Revolute knees, type 2 trajectory.
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(c) Four-bar knees, type 1 trajectory.
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(d) Four-bar knees, type 2 trajectory.

Fig. 19 Evolution of the potential energy during a gait for both types of walking movement
for the biped equipped with revolute knees and four-bar knees for trajectory types 1 and 2 for
a step at 2.2 km/h. The dashed-dot lines give the end of the double support phase.

As in the first type of trajectories, we compare the evolution of the position of the

center of mass, on figure 20, for both solutions of knee joints. For the trajectories of

type 2, we can see a reduction of the variation of the position of the center of mass of

the biped by using of four-bar knees.
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Fig. 20 Evolution of the center of mass position during a walking gait for different velocities.
Solid line: biped with four-bar knees. Dashed line: biped with revolute knees.

Figure 21 presents the distribution, between the phases of double support and single

support, of the energy consumption as a function of the walking velocity for the biped

equipped of four-bar knees. The energy consumption during the double support phase

takes the major part of the total energy consumption. Then the double support phase

plays the role of a propulsive phase for the walking gait.
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Fig. 21 Evolutions of the energy consumption during the double support phase (Plus markers)
and the energy consumption during the single support phase (Diamonds marker) of the bipedal
robot in function the walking velocity.

7 Conclusions

We have studied a closed-loop linkage for the knees of a planar bipedal robot for two

types of walking gaits. The study of the singularities of the input-output function that

is governed by the driven input joint of the closed-loop linkage shows that the four-bar

mechanism is a convenient solution for the walking gaits of our biped. We have produced

with a parametric optimization method a set of optimal reference walking trajectories

for a bipedal robot. We have compared the energy consumption of a bipedal robot

equipped of four-bar knees joint with energy consumption of a bipedal robot equipped

of revolute knees. This comparison has shown a less energy consumption by using of

four-bar knees.

The perspective of this study is to extend this work for a 3D bipedal robots and to

test experimentally this new structure for an experimental bipedal robots. Moreover,

a measure of the evolution of the center of rotation of the human knee will be utilized

to choose with a better accuracy the dimensions of the four-bar mechanism.
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