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This work concerns the Proper Generalized Decomposition (PGD), an a priori model reduction technique used to solve problems, eventually nonlinear, defined over the time-space domain. PGD seeks the solution of a problem in a reduced-order basis generated by a dedicated algorithm. This is the LATIN method, an iterative strategy which generates the approximations of the solution over the entire time-space domain by successive enrichments. Herein an algebraic framework adapted to PGD is proposed. It defines a compressed version of the data making less expensive the elementary algebraic operations.

INTRODUCTION

Numerical simulation has been playing an increasingly important role in science and engineering. However, when dealing with high-fidelity models, the number of degrees of freedom can lead to systems so large that direct techniques are unsuitable. Model reduction techniques constitute an efficient way to circumvent this obstacle by seeking the solution of a problem in a reduced-order basis (ROB), whose dimension is much lower than the original vector space. A posteriori methods usually consist in assuming this ROB by the decomposition of the solution of a surrogate model relevant to the initial model (see e.g. [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF][START_REF] Cizmas | Acceleration techniques for reduced-order models based on proper orthogonal decomposition[END_REF][START_REF] Carlberg | Efficient nonlinear model reduction via a least-squares petrov-galerkin projection and compressive tensor approximations[END_REF][START_REF] Ladevèze | Nonlinear Computationnal Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF]). A priori methods follow a different path by building progressively an approximate separated representation of the solution, without assuming any basis (see e.g. [START_REF] Chinesta | A short review on model order reduction based on proper generalized decomposition[END_REF][START_REF] Pruliere | On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition[END_REF][START_REF] Ladevèze | On a multiscale computational mechanics with time-space homogenization[END_REF][START_REF] Ladevèze | Nonlinear Computationnal Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF]). This work focusses on the Proper Generalized Decomposition (PGD) which belongs to the second family and is used herein to solve problems defined over the time-space domain and which are eventually nonlinear. For solving such problems, the PGD, originally introduced as the radial loading approximation in [START_REF] Ladevèze | A computational technique for the integrals over the time-space domain in connection with the LATIN method[END_REF], consists in seeking a separated time-space representation of the unknowns and the iterative LATIN method is used to generate the approximation by successive enrichments [START_REF] Ladevèze | Nonlinear Computationnal Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF]. At a particular iteration, the ROB which has been already formed is first used to compute a reduced-order model (ROM) and find a new approximation of the solution. If the quality of this approximation is not sufficient, the ROB is enriched by determining a new functional product using a greedy algorithm. The PGD has been applied for solving many types of problems in the context of the LATIN method and allowed to decrease the CPU cost drastically [START_REF] Pruliere | On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition[END_REF][START_REF] Ladevèze | On a multiscale computational mechanics with time-space homogenization[END_REF]).

However, model reduction techniques are more particularly efficient when the ROM needs to be constructed only once, which is not the case with the greedy algorithm, especially for nonlinear problems. In that case, the various operators must be updated along the iterations and the calculation of the ROM represents a large part of the global CPU cost (see e.g. [START_REF] Carlberg | Efficient nonlinear model reduction via a least-squares petrov-galerkin projection and compressive tensor approximations[END_REF]). A new algebric framework is, herein, proposed to simplify the elementary operations on PGD fields, making the ROM generation less expensive. It is based on the concept of reference times, points and parameters and allows to define a compressed version of the data. The space of compressed data shows interesting properties dealing the elementary algebric operations. That should lead to important improvements in terms of calculation performance.

DATA COMPRESSION

For the sake of semplicity, in this artcile, we will restrict the development of the proposed method to the case of fields depending on time and space, but it could be easily extended to the space of parameters.

Representation in a separated variables framework

In our algorithms previously developed, PGD has been employed to represent only few quantities which solution needed the resolution of problems global in space and defined on the whole time domain. These quantities used to cohabit with functions defined in a standard form (called "full" below). To take advantage of the PGD representation in terms of stockage and calculation cost (in particular, to compute an integral over the time-space domain it allows to separate the integration over the space from the intergation over the time), PGD representation must be extended the to the others fields of the problem. The aim of this work is to semplify the calculation of the standard algebric operation (products, additions, integration, ..) for the fields defined in the PGD form and to avoid the artificial increasing of the PGD modes representing a function. An exemple is presented to clarify. Let's consider the calculation of the product F = f f , where the functions are described on a reduced order basis of the order of 20. Formal representations yields to:

f (t, M ) = m i=1 λ i (t) Λ i (M ) and f (t, M ) = m i=1 θ i (t) Θ i (M ) (1) 
where m and m are of the order of 20. We intend obtain their product F in the separeted variables form, in order to remain in the PGD framework :

F (t, M ) = f (t, M ) f (t, M ) ≈ M i α i (t)β i (M ). (2) 
A first way is to perform the product term by term. It leads to a function described by the sum of M = m × m products, where M is of the order of 400. These are, clearly, much more than the required functions to represent it and this number can increase swiftly over the executing operations.

The second approach is to rebuild the full version of the function f and f , and then to perform the product getting F . After that it's necessary to carry out the Singular Value Decomposition to achieve a separated variable representation of F with the desired approximation. This way is expensive as well as the first one due to the SVD that can lead to a vectorial space of large dimension. Herein a different algebric framework is proposed. It is capable to build a first approximation of the function, solution of the operation which has to be executed. The concept of reference times and reference points is introduced [START_REF] Ladevèze | A computational technique for the integrals over the time-space domain in connection with the LATIN method[END_REF] (cf. Fig. 1). The time domain is splitted in m 1 sub-intervals I i of the size ∆t i . The centers t i of the sub-interval I i are called reference times. For the space domain m 2 points M j are introduced and the domain Ω is divided in the sub-domains Ω j . The M j are called reference points and the size of the patch are indicated ω j . 

f := āij (t) = f (t, M j ) si t ∈ I i | bij (M j ) = f (t i , M ) si M ∈ Ω j āij (t) = 0 sinon | bij (M j ) = 0 sinon i=1,..,m1; j=1,..,m2 (3) 

ALGEBRA IN THE COMPRESSED FRAMEWORK

The space of compressed fields shows interesting properties when the elementary operations must be executed. Tab. 1 shows some operations on two compressed field f and f . Table 1: Elementary operations in the compressed space.

Addition f + f = f + f Multiplication f f = f f Derivation ∂f /∂t = ∂ f /∂t Operator H f = H f
Returning, for instance, on the multiplication seen in the equation ( 2) between the two fields f and f described in the PGD form. This will be computed following the procedure below : 

1. f = {(ā ij , bij )} and f = {(ā ij , b ij )},

RECONSTRUCTION BY THE COMPRESSED VERSION

The generation of a first approximation of F in the separated variables form gives just one pairs of functions for each time-space patch I i × Ω j . It produces :

F (t, M ) ≈ F 0 (t, M ) = α ij (t)β ij (M ) ∀(t, M ) ∈ I i × Ω j (5) 
where the set of α i j(t)β i j(M ) are defined by the set of Āi j(t) Bi j(M ) resulting of a minimization problem. Practically, for the mechanics problems, which is addressed this work, the chosen reconstruction method gives more importance to space domain. Normally, in fact, variations of the quantities over the space domain are stronger than variations over the time. The minimization problem leads to the explicit formulas :

∀(t, M ) ∈ I i × Ω j , α ij (t) = m2 k=1 ω k Āik (t) Bik (M k )λ 2 k m2 k=1 ω k Bik (M k ) Bik (M k )λ 2 k and β ij (M ) = Bij (M ) (6) 
The computational cost to generate F 0 is moderate since the explicit form of the formulas [START_REF] Ladevèze | On a multiscale computational mechanics with time-space homogenization[END_REF]. To quantify the quality of this first approximation the error and the related norm are introduced below :

e = F -F 0 F 0 , F 2 Ii×Ωj = I×Ω F 2 dΩdt = m1 i=1 m2 j=1 Ii×Ωj F 2 dΩdt. (7) 
This evaluation can be executed cheaply exploiting that F is the product by two functions described in the PGD form, thus, their modes are sorted descending with respect their own importance. It could be sufficient to take in account the first terms to have a good forecast of e. Whether e exceeds a given threshold some PGD pairs can be added to the first approximation F 0 in order to have a finer representation of F . Mostly the quality of the first approximation is sufficient.

Numerical example

Let's consider two random functions f and f , described in the PGD form on a base of 10 functions (m = m = 10).

The goal is to approximate their product in the compressed form in order to have a PGD representation of it by only one pair of time-space functions. Reference solution, that is exacte, (Fig. 2, left), is obtained performing the product of the full fields of f and f . These are gained by their PGD representation :

F (t, M ) = f (t, M ) f (t, M ) = 10 i=1 λ i (t)Λ i (M ) 10 i=1 θ i (t)Θ i (M ) . (8) 
The reconstruction by the compressed representation on m 1 = 17 reference times and m 2 = 17 reference points (Fig. 2, right) leads to an error e = 1% with respect to the exact solution. This is obtained generating only one PGD pair of F reconstructed for each time-space patch. 

CONCLUSION

Models reduction techniques based on PGD can be the framework to build up high performance calculation codes in order to simulate complex models, with high numbers of degrees of freedom and eventually parametric. Nevertheless in the current codes, only a limited amount of the fields is represented in the PGD form. That leads to manage fields with different representations and it hinders the potential gain of the PGD in terms of calculation and storage.

In this work the concept of a "compressed" representation of the fields has been introduced. It allows to manage all the fields in the PGD form. All the operations can be redefined in this framework, in order to have a first approximation in a separated variables form of themselves. Implementation in a complete calculation code is a work in progress. It should allow to gain a drastically reduction of CPU costs.
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 1 Figure 1: Reference times and reference points
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 434 compressed version of f and f , are calculated as shown in the equation (3).2. F = {( Āij , Bij )}, compressed version of the operation F = f f is calculated as shown in Tab. 1. It yields : Āij = āij ā ij and Bij = bij b ij (A reconstruction of F in a separated variables form is sought. It arises from its compressed version F . Whether the quality of the approximation is poor, this is improved adding new PGD pairs.
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 2 Figure 2: The function F = f f exact (letf) and its aprroximation by m 1 = 17 reference times and m 2 = 17 reference points (right).