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Abstract. We propose an algorithm for preconditioning and solving high dimensional linear systems of equations
in tensor format. The algorithm computes an approximation of a tensor in hierarchical Tucker format in a subspace
constructed from successive rank one corrections. The algorithm can be applied for the approximation of a solution
or of the inverse of an operator. In the latter case, properties such as sparsity or symmetry can be imposed to
the approximation. The methodology is applied to high dimensional problems arising from the discretization of
stochastic parametric problems.
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Introduction

We are interested in linear systems in high order tensor spaces, such as the ones arising from the discretization of
stochastic parametric partial differential equations. Such systems are of the form

Au = b, (1)

where u and b belong to a finite dimensional tensor space V =
⊗d

µ=1 Vµ '
⊗d

µ=1 Rnµ and A ∈ L(V) =⊗d
µ=1 L(Vµ) '

⊗d
µ=1 Rnµ×nµ . In order to circumvent the curse of dimensionality, methods based on low-rank

approximations have recently been proposed. The first class of methods consists in introducing low-rank tensor
approximation methods in classical iterative solvers [1, 2]. This approach is simple but generally requires good
preconditioners in low-rank tensor format. We can find in the literature rank one preconditioners [3, 4, 5, 6] and
predefined rank r preconditioners [7, 8, 9]. The second approach, sometimes called Proper Generalized Decompo-
sition (PGD), tries to find a direct approximation of the solution in low-rank tensor sets [10, 11, 12].

Here, we propose a new algorithm for the progressive construction of low-rank approximations in hierarchical
Tucker tensor format. This algorithm can be applied for the direct approximation of the solution of a linear system
and also for obtaining an approximation of the inverse of an operator that can be used as a preconditioner.

Tensor spaces and low-rank subsets

Let d ≥ 2 and D = {1, . . . , d}. We consider the finite dimensional Hilbert space X µ equipped with the inner
product 〈·, ·〉µ and the associated norm ‖·‖µ, for µ ∈ D. The space X =

⊗
µ X µ, where

⊗
µ stands for

⊗d
µ=1, is

a Hilbert space equipped with the induced inner product 〈·, ·〉 defined for rank one tensors by
〈⊗

µ x
µ,
⊗

µ y
µ
〉
=∏

µ∈D 〈xµ, yµ〉µ and extended to X by linearity. The norm associated to 〈·, ·〉 is noted ‖·‖. We consider the set of
rank r tensors, denoted Cr(X ) and defined by

Cr(X ) =

{
x =

r∑
i=1

⊗
µ

xµi ; x
µ
i ∈ X

µ

}
.
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The set of rank-r Tucker tensors, with r = (r1, . . . , rd), contains tensors of the form

x =

r1∑
i1=1

. . .

rd∑
id=1

αi1...id
⊗
µ

xµiµ . (2)

This format has nice approximation properties but with a core tensor α ∈
⊗

µ Rrµ , it again suffers from the curse
of dimensionality. Letting T be a dimension tree on D and r = (rt)t∈T be a set of integers, the set HTr (X ) of
rank-r Hierarchical Tucker tensors contains tensors of the form (2) where the tensor α ∈ HTr (

⊗
µ Rrµ) has a low-

rank tensor structure. More precisely, for t ∈ T , the t-matricization M t(α) of α has a rank less than rt, where
M t(α)(iµ,µ∈t)(iµ,µ∈D\t) = αi1,...,id .

Algorithm for the approximation of a tensor in hierarchical format

We are interested in approximating a tensor x ∈ X with respect to a certain norm ‖·‖X by solving the problem

inf
y∈M

‖x− y‖2X

When the norm is not an induced norm, this minimization problem can not be solved using standard SVD based
algorithms [13].
The proposed algorithm consists in constructing a sequence of approximations x(k) in a sequence of approximation
spaces U (k) =

⊗
µ Uµ,(k), where the {Uµ,(k)}k≥0 form an increasing sequence of k-dimensional spaces in X µ

which is constructed from successive rank-one corrections of the iterates x(k). More precisely, the algorithm is as
follows: starting from x(0), for all k ≥ 1, do

1. Compute z(k) =
⊗

µ z
µ,(k) by solving miny∈C1(X )

∥∥x− x(k−1) − y∥∥X
2. Set Uµ,(k) = Uµ,(k−1) + span

{
zµ,(k)

}
3. Compute x(k) by solving miny∈HT

r(k)
(U(k)) ‖x− y‖X

Steps 1 and 3 are solved via an alternating minimization algorithm. We can show that the sequence
(
x(k)

)
k≥1 con-

verges toward x if the problem in step 1 is solved exactly [14].

If we set X = V , and ‖·‖X = ‖·‖A∗A (or ‖·‖A if A is symmetric positive definite) a norm induced by the operator,
the algorithm enables to compute an approximation of the solution of the linear system (1).
Now, for X = L(V), if ‖·‖X is the norm induced by the inner product 〈·AA∗, ·〉 (resp. 〈·A, ·〉), one can compute a
left approximate inverse of the definite operatorA (resp. symmetric definite positive operatorA). In order to impose
properties to the approximation, we introduce in step 1 a minimization in the subset C1(X̃ ) ⊂ C1(X ) where X̃ is
a space of operators satisfying particular properties such that symmetries or sparsities. For imposing symmetry,
we need to solve a Sylvester equation at each step of the alternate algorithm. For imposing sparsity, we use an
adaptation of the SParse Approximate Inverse (SPAI) method which allows the adaptive construction of patterns
[15].

Application

The methodology will be illustrated on high dimensional problems arising from the discretization of stochastic
equations.
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