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We propose an algorithm for preconditioning and solving high dimensional linear systems of equations in tensor format. The algorithm computes an approximation of a tensor in hierarchical Tucker format in a subspace constructed from successive rank one corrections. The algorithm can be applied for the approximation of a solution or of the inverse of an operator. In the latter case, properties such as sparsity or symmetry can be imposed to the approximation. The methodology is applied to high dimensional problems arising from the discretization of stochastic parametric problems.

Introduction

We are interested in linear systems in high order tensor spaces, such as the ones arising from the discretization of stochastic parametric partial differential equations. Such systems are of the form

Au = b, (1) 
where u and b belong to a finite dimensional tensor space V =

d µ=1 V µ d µ=1 R nµ and A ∈ L(V) = d µ=1 L(V µ ) d µ=1 R nµ×nµ .
In order to circumvent the curse of dimensionality, methods based on low-rank approximations have recently been proposed. The first class of methods consists in introducing low-rank tensor approximation methods in classical iterative solvers [START_REF] Ballani | A projection method to solve linear systems in tensor format[END_REF][START_REF] Kressner | Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems[END_REF]. This approach is simple but generally requires good preconditioners in low-rank tensor format. We can find in the literature rank one preconditioners [START_REF] Ghanem | Numerical solution of spectral stochastic finite element systems[END_REF][START_REF] Langville | A Kronecker product approximate preconditioner for SANs[END_REF][START_REF] Ullmann | A Kronecker Product Preconditioner for Stochastic Galerkin Finite Element Discretizations[END_REF][START_REF] Zander | Tensor Approximation Methods for Stochastic Problems[END_REF] and predefined rank r preconditioners [START_REF] Touzene | A Tensor Sum Preconditioner for Stochastic Automata Networks[END_REF][START_REF] Khoromskij | Tensor-Structured Preconditioners and Approximate Inverse of Elliptic Operators in R d[END_REF][START_REF] Dolgov | A reciprocal preconditioner for structured matrices arising from elliptic problems with jumping coefficients[END_REF]. The second approach, sometimes called Proper Generalized Decomposition (PGD), tries to find a direct approximation of the solution in low-rank tensor sets [START_REF] Beylkin | Algorithms for Numerical Analysis in High Dimensions[END_REF][START_REF] Nouy | Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems[END_REF][START_REF] Chinesta | A Short Review on Model Order Reduction Based on Proper Generalized Decomposition[END_REF].

Here, we propose a new algorithm for the progressive construction of low-rank approximations in hierarchical Tucker tensor format. This algorithm can be applied for the direct approximation of the solution of a linear system and also for obtaining an approximation of the inverse of an operator that can be used as a preconditioner.

Tensor spaces and low-rank subsets

Let d ≥ 2 and D = {1, . . . , d}. We consider the finite dimensional Hilbert space X µ equipped with the inner product •, • µ and the associated norm • µ , for µ ∈ D. The space X = µ X µ , where µ stands for d µ=1 , is a Hilbert space equipped with the induced inner product •, • defined for rank one tensors by µ x µ , µ y µ = µ∈D x µ , y µ µ and extended to X by linearity. The norm associated to •, • is noted • . We consider the set of rank r tensors, denoted C r (X ) and defined by

C r (X ) = x = r i=1 µ x µ i ; x µ i ∈ X µ .
The set of rank-r Tucker tensors, with r = (r 1 , . . . , r d ), contains tensors of the form

x = r1 i1=1 . . . r d i d =1 α i1...i d µ x µ iµ . (2) 
This format has nice approximation properties but with a core tensor α ∈ µ R rµ , it again suffers from the curse of dimensionality. Letting T be a dimension tree on D and r = (r t ) t∈T be a set of integers, the set H T r (X ) of rank-r Hierarchical Tucker tensors contains tensors of the form (2) where the tensor α ∈ H T r ( µ R rµ ) has a lowrank tensor structure. More precisely, for t ∈ T , the t-matricization M t (α) of α has a rank less than r t , where M t (α) (iµ,µ∈t)(iµ,µ∈D\t) = α i1,...,i d .

Algorithm for the approximation of a tensor in hierarchical format

We are interested in approximating a tensor x ∈ X with respect to a certain norm • X by solving the problem

inf y∈M x -y 2 X
When the norm is not an induced norm, this minimization problem can not be solved using standard SVD based algorithms [START_REF] Grasedyck | Hierarchical Singular Value Decomposition of Tensors[END_REF]. The proposed algorithm consists in constructing a sequence of approximations x (k) in a sequence of approximation spaces k) , where the {U µ,(k) } k≥0 form an increasing sequence of k-dimensional spaces in X µ which is constructed from successive rank-one corrections of the iterates x (k) . More precisely, the algorithm is as follows: starting from x (0) , for all k ≥ 1, do

U (k) = µ U µ,(
1. Compute z (k) = µ z µ,(k) by solving min y∈C1(X ) x -x (k-1) -y X 2. Set U µ,(k) = U µ,(k-1) + span z µ,(k) 3. Compute x (k) by solving min y∈H T r (k) (U (k) )
x -y X Steps 1 and 3 are solved via an alternating minimization algorithm. We can show that the sequence x (k) k≥1 converges toward x if the problem in step 1 is solved exactly [START_REF] Falcó | Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces[END_REF].

If we set X = V, and • X = • A * A (or • A if A is symmetric positive definite) a norm induced by the operator, the algorithm enables to compute an approximation of the solution of the linear system (1). Now, for X = L(V), if • X is the norm induced by the inner product •AA * , • (resp. •A, • ), one can compute a left approximate inverse of the definite operator A (resp. symmetric definite positive operator A). In order to impose properties to the approximation, we introduce in step 1 a minimization in the subset C 1 ( X ) ⊂ C 1 (X ) where X is a space of operators satisfying particular properties such that symmetries or sparsities. For imposing symmetry, we need to solve a Sylvester equation at each step of the alternate algorithm. For imposing sparsity, we use an adaptation of the SParse Approximate Inverse (SPAI) method which allows the adaptive construction of patterns [START_REF] Grote | Parallel Preconditioning with Sparse Approximate Inverses[END_REF].

Application

The methodology will be illustrated on high dimensional problems arising from the discretization of stochastic equations.