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We present an Isogeometric Analysis study of for the strain gradient fracture problem. In particular we consider an anti-plane formulation (Mode III). The numerical approximation we resort to a standard Galerkin isogeometric formulation and the results are in agreement with the theoretically expected behavior.

INTRODUCTION

Many engineering materials exhibit a micro-structure, as it is the case, e.g, of composite materials, MEMS and, more in general in all situations, where a local effect shows up, as it is typical in fracture problems. To model this kind of problems it is desiderable to use an enriched continuum; an example is the Cosserat continuum where the couples added to the equilibrium equations generate a new internal length-scale; another relevant example of analysis of micro-structured continuum was proposed in [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF]. Recent studies developed in [START_REF] Dell'isola | Generalized Hook's law for isotropic second gradient materials[END_REF] introduced the micro scale using a strain gradient formulation where the potential energy is a function of displacement, strain, and strain gradient. The goal of this work is to numerically analyze the particular case of anti-plane fracture. For a given specif problem, the focus of the paper is the determination of the process zone where the effect of the second gradient is significative. This is accomplished via isogeometric analysis [START_REF] Hughes | Isogeometric analysis: CAD, finite element, NURBS, exact geometry and mesh refinement[END_REF][START_REF] Cottrell | Isogeometric Analysis "Toward Integration of CAD and FEA[END_REF], that is an analysis framework characterized by high-regularity functions, allowing to tackle high-order PDEs in primal form, within a standard Galerkin formulation (see [START_REF] Fischer | Isogeometric analysis of 2D gradient elasticity[END_REF] for a first application of isogeometric analysis to strain gradient elasticity).

STRONG FORM GOVERNING EQUATIONS

The governing equation of the second gradient anti plane problem reported in [START_REF] Sciarra | Asymptotic fracture models in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials[END_REF] is:

∆w + l 2 s ∆∆w = 0 (1)
where the variable w is a transverse scalar displacement field, while l s is a shear length-scale that is related to strain gradient (see [START_REF] Dell'isola | Generalized Hook's law for isotropic second gradient materials[END_REF] for more details). In equation ( 1) it is possible to distinguish two parts; the first one related to the effect of first gradient and the second related to the second gradient. Due to the presence of the bilaplacian operator, Neumann boundary conditions may apply for distributed couples and tractions as well as concentrated forces. For this problem such boundary conditions are:

         Π = l 2 s ∆w - l 2 t 2 ∂ 2 w ∂τ 2 e 3 t = ∂w ∂ν -l 2 s ∂ ∂ν (∆w) - l 2 t 2 ∂ 3 w ∂ν∂τ 2 e 3 f = -l 2 t ∂ 2 w ∂ν∂τ e 3 (2) 
where Π , t and f are the distributed couple, and traction, and the concentrated force, respectively, while e 3 is the out-of plane unit normal vector and ∂ ∂ν , ∂ ∂τ are the normal and tangent derivatives.

WEAK FORMULATION

The weak formulation of the problem is obtained testing the strong form (1) and integrate by parts, as follows:

Ω l 2 s D 2 w : D 2 v dΩ + Ω w • v dΩ (3) 
- Γ ∂w ∂ν -l 2 s ∂ ∂ν ∆w -l 2 s ∂ 3 w ∂ν∂τ 2 v dΓ - Γ l 2 s ∂ 2 w ∂ν 2 ∂v ∂ν dΓ - ∂Γ l 2 s ∂ 2 w ∂ν∂τ v d∂Γ = 0 ∀ v ∈ H 2 (Ω)
Finally, substituting the Neumann conditions (2), one gets:

Ω l 2 s D 2 w : D 2 v dΩ + Ω w • v dΩ (4) 
- Γ t + l 2 t 2 -l 2 s ∂ 3 w ∂ν∂τ 2 v dΓ - Γ Π + l 2 t 2 -l 2 s ∂ 2 w ∂τ 2 ∂v ∂ν dΓ - ∂Γ l 2 s l 2 t f v d∂Γ = 0
where

D 2 w : D 2 v = 2 i,j=1 ∂ 2 w ∂x i ∂x j ∂ 2 v ∂x i ∂x j , (5) 
w • v = 2 i=1 ∂w ∂x i ∂v ∂x i (6) 

DISCRETIZATION VIA ISOGEOMETRIC ANALYSIS

Discretization of problem ( 4) is then directly performed via a displacement-based isogeometric formulation [START_REF] Hughes | Isogeometric analysis: CAD, finite element, NURBS, exact geometry and mesh refinement[END_REF][START_REF] Cottrell | Isogeometric Analysis "Toward Integration of CAD and FEA[END_REF]. The function used for representing both geometry and displacements (within an isoparametric approach) are Non-Uniform Rational B-Spline and their higher regularity allows the discretization of the weak form (4) in primal form within a standard plain Galerkin fomulation (in a similar way as shown in [START_REF] Auricchio | A fully locking-free isogeometric approach for plane linear elasticity problems: A stream function formulation[END_REF]). The implementation has been done within the open source isogeometric software GeoPDEs [START_REF] De Falco | GeoPDEs: A research tool for Isogeometric Analysis of PDEs[END_REF]. The performed test is the one described in [START_REF] Sciarra | Asymptotic fracture models in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials[END_REF] as shown in figure [START_REF] Auricchio | A fully locking-free isogeometric approach for plane linear elasticity problems: A stream function formulation[END_REF]. The displacement field is antisymmetric so that the analysis may be limited to half of the domain. As boundary conditions, we impose homogeneous Dirichlet conditions on the horizontal right edge and we prescribe the far field solution along the circular boundary :

w D (r, θ) = Γ r sin θ + C III r 3/2 3 sin θ/2 16(l s /l t ) 2 -3 -sin 3θ 2 , (7) 
where Γ and C III are two arbitrary constants. Within the numerical simulations Γ and C III are set equal to 1 and l s and l t are selected to be 0.2. Figure [START_REF] Cottrell | Isogeometric Analysis "Toward Integration of CAD and FEA[END_REF] shows the adopted mesh, while figures (3) and ( 4) show the leap and its zoommed version. One may notice the effect of the second gradient in this zone. In figure [START_REF] Dell'isola | Generalized Hook's law for isotropic second gradient materials[END_REF] we show the displacement leap in the case of first gradient effect only (blue line), the effect of the second gradient (green line) and the global effect (red line). The obtained numerical results are in good agreement with the theoretically expected behavior (cf. [START_REF] Sciarra | Asymptotic fracture models in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials[END_REF]).

CONCLUSIONS

In this paper some results on the numerical approximation of anti-plane fracture problems are presented. In particular, a good qualitative agreement with the theoretical results presented in [START_REF] Sciarra | Asymptotic fracture models in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials[END_REF] are obtained. More comparisons and test will be performed and reported.
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