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Abstract. We present an Isogeometric Analysis study of for the strain gradient fracture problem. In particular
we consider an anti-plane formulation (Mode IIl). The numerical approximation we resort to a standard Galerkin
isogeometric formulation and the results are in agreement with the theoretically expected behavior.
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1 INTRODUCTION

Many engineering materials exhibit a micro-structure, as it is the case, e.g, of composite materials, MEMS and, more
in general in all situations, where a local effect shows up, as it is typical in fracture problems. To model this kind of
problems it is desiderable to use an enriched continuum; an example is the Cosserat continuum where the couples
added to the equilibrium equations generate a new internal length-scale; another relevant example of analysis of
micro-structured continuum was proposed in [8]. Recent studies developed in [5] introduced the micro scale using a
strain gradient formulation where the potential energy is a function of displacement, strain, and strain gradient. The
goal of this work is to numerically analyze the particular case of anti-plane fracture. For a given specif problem, the
focus of the paper is the determination of the process zone where the effect of the second gradient is significative.
This is accomplished via isogeometric analysis [7, 2], that is an analysis framework characterized by high-regularity
functions, allowing to tackle high-order PDEs in primal form, within a standard Galerkin formulation (see [6] for a
first application of isogeometric analysis to strain gradient elasticity).

2 STRONG FORM GOVERNING EQUATIONS

The governing equation of the second gradient anti plane problem reported in [3] is:

Aw + 2AAw =0 (D)

where the variable w is a transverse scalar displacement field, while I, is a shear length-scale that is related to strain
gradient (see [5] for more details). In equation (1) it is possible to distinguish two parts; the first one related to the
effect of first gradient and the second related to the second gradient. Due to the presence of the bilaplacian operator,
Neumann boundary conditions may apply for distributed couples and tractions as well as concentrated forces. For
this problem such boundary conditions are:
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where 11 , ¢t and f are the distributed couple and traction, and the concentrated force, respectively, while e; is the
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are the normal and tangent derivatives.

3 WEAK FORMULATION

The weak formulation of the problem is obtained testing the strong form (1) and integrate by parts, as follows:
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Finally, substituting the Neumann conditions (2), one gets:
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4 DISCRETIZATION VIA ISOGEOMETRIC ANALYSIS

Discretization of problem (4) is then directly performed via a displacement-based isogeometric formulation [7, 2].
The function used for representing both geometry and displacements (within an isoparametric approach) are Non-
Uniform Rational B-Spline and their higher regularity allows the discretization of the weak form (4) in primal form
within a standard plain Galerkin fomulation (in a similar way as shown in [1]). The implementation has been done
within the open source isogeometric software GeoPDEs [4].

The performed test is the one described in [3] as shown in figure (1). The displacement field is antisymmetric so
that the analysis may be limited to half of the domain. As boundary conditions, we impose homogeneous Dirichlet
conditions on the horizontal right edge and we prescribe the far field solution along the circular boundary :
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where I" and C7;y are two arbitrary constants. Within the numerical simulations I and C; are set equal to 1 and
ls and [; are selected to be 0.2. Figure (2) shows the adopted mesh, while figures (3) and (4) show the leap and
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its zoommed version. One may notice the effect of the second gradient in this zone. In figure (5) we show the
displacement leap in the case of first gradient effect only (blue line), the effect of the second gradient (green line)
and the global effect (red line). The obtained numerical results are in good agreement with the theoretically expected
behavior (cf. [3]).

S CONCLUSIONS

In this paper some results on the numerical approximation of anti-plane fracture problems are presented. In partic-
ular, a good qualitative agreement with the theoretical results presented in [3] are obtained. More comparisons and
test will be performed and reported.
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Figure 1: Problem geometry and initial control

Figure 2: Adopted mesh.
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Figure 4: Zoom on the
Leap Solution.

Figure 3: Frontal View Solution.

REFERENCES

[1] F. Auricchio, L. Beirdo da Veiga, A. Buffa, C. Lovadina, A. Reali, G. Sangalli. ”A fully locking-free isogeometric ap-
proach for plane linear elasticity problems: A stream function formulation”, Computer Methods in Applied Mechanics and
Engineering, 197: 160-172, 2007 .

[2] J. Austin Cottrell, Thomas J.R. Hughes, Yuri Bazilevs. Isogeometric Analysis “Toward Integration of CAD and FEA”,
Wiley, 2009.

[3] G. Sciarra, S. Vidoli. ”Asymptotic fracture models in strain-gradient elasticity: size effects and characteristic lengths for
isotropic materials”, Journal of Elasticity, vol. 92 pp. 401-9, 2002.

[4] C. de Falco, A. Reali, R. Vazquez. "GeoPDEs: A research tool for Isogeometric Analysis of PDEs”, Advances in Engi-
neering Software, 42: 1020-1034, 2011.



M. Pingaro et al. | Young Investigators Conference 2013

Solution on the Leap
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Figure 5: Solution on The Leap
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