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Abstract In this paper we present the regularized form of the shallow water equations

for ideal magnetohydrodynamics, that allows its efficient numerical solution using central-
difference approximation for all space derivatives. The non-negative form of the dissipative
function for the new system is shown together with the examples of numerical simulations
of two test problems.

1. Magnetohydrodynamic equations for the shallow water and its regulariza-
tion form

These equations were first introduced by Gilman [1] in order to obtain a simplified set
of equations from the full MHD equations. This system can be used as a mathematical
model in certain applications, such as in the dynamics of the solar tachocline. According
to [2] the system of the MHD equations in the shallow water approximation has a form

∂h

∂t
+ div(hu) = 0,

∂hu

∂t
+ div(hu⊗ u)− div(hB⊗B) +∇

(
gh2

2

)
= div ΠNS − gh∇b,

∂hB

∂t
+ div(hu⊗B)− div(hB⊗ u) = 0,

div(hB) = 0,

(1)

where h(x, y, t) is a fluid level, u and B are velocity and magnetic field strength vectors
correspondingly, b(x, y) is a bottom profile, ΠNS is a deformation velocity tensor

ΠNS = 2µσ̂(u) = 2hνσ̂(u), (2)

where σ̂(u) = 1
2

[
(∇⊗ u) + (∇⊗ u)T

]
, µ – dynamic viscosity coefficient, ν – kinematic

viscosity coefficient. The expression (u⊗u) denotes a tensor product of u and u vectors.
The regularized system of the shallow water equations with magnetic field can be

obtained in the same way, as quasi-gas dynamic systems and regularized shallow water
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equations were obtained earlier, e.g. [3] and [4]. For this procedure one can take a small
time interval ∆t and calculate the average values in (t, t + ∆t) interval.

All averaged variables denoted here by (∗) are expanded in Teylor series where second
time derivatives and terms of order O(τ 2) and O(τν) are neglected. Here τ is a time
smoothing parameter.

h∗ = h + τ
∂h

∂t
= h− τ div(hu),

u∗ = u + τ
∂u

∂t
= u−w1,

w1 = τ((u∇)u− (B∇)B + g∇(b + h)),

(hu)∗ = hu + τ
∂hu

∂t
= h(u−w) = j,

w =
τ

h
(div(hu⊗ u)− div(hB⊗B) + gh∇(b + h)),

(hB)∗ = hB + τ
∂hB

∂t
= hB + τ(div(hB⊗ u)− div(hu⊗B)) = hB + β,

β = τ
∂hB

∂t
= τ (div(hB⊗ u)− div(hu⊗B)) ,

B∗ = B + τ
∂B

∂t
= B + τ((B∇)u− (u∇)B) = B + γ,

γ = τ
∂B

∂t
= τ ((u∇)B− (B∇)u) .

(3)

Then the regularized system of the MHD shallow water equations takes a form

∂h

∂t
+ div j = 0,

∂hu

∂t
+ div(j⊗ u)− div(hB⊗B) +

1

2
g∇h2 = div(hu⊗w1) + div(β ⊗B)+

+ div(hB⊗ γ) + g∇(τh div hu)− g∇b(h− τ div hu) + div ΠNS,

∂hB

∂t
+ div(j⊗B)− div(hB⊗ u) = div(β ⊗ u)− div(hu⊗ γ)− div(hB⊗w1),

div hB + div β = 0.

(4)

The strongly non-linear terms in τ have the form of the second order space derivatives
and may be regarded as regularizators. In the limit τ → 0 regularized system (4) goes to
(1).

2. Equation for the specific entropy

The growth of the specific entropy for the regularized equation system is the important
feature of the proposed model. It was shown, that the main energetic equity takas place
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for the system (4). It was obtained using the approach from [6] and has a form

∂

∂t

(
h
u2

2
+ h

B2

2
+ g

h2

2

)
+ div

[
j

(
u2

2
+

B2

2
+ gh

)
− 2hν(σ̂u)− gτhu div(hu)−

−hu(w1u) + hB(w1B)− hB(uγ) + hu(Bγ)− hB(uB)− β(uB)
]

= −Φ,
(5)

where

Φ = 2hν(σ̂ : σ̂) + h
(w1)2

τ
+ h

(γ)2

τ
+ gτ (div(hu))2 (6)

is a non-negative dissipative function of the regularized system of the shallow water equa-
tions with magnetic field.

Here

(σ̂ : σ̂) =
2∑

i, j=1

σi jσi j =
2∑

i, j=1

σ2
i j =

1

4

2∑
i, j=1

(
∂ui

∂xj

+
∂uj

∂xi

)2

(7)

is an inner tensor product of symmetric matrix σi j by itself.

3. 1D-test-cases

We use explicit schemes with central differences. The regularization parameter is
calculated as

τ = α
hx√

B2
1 + gh(x)

, µ = hν = τ
gh2

2
, (8)

where hx is the step of spatial grid. We take the regularization coefficient α from 0.3 to
0.5.

Test №1 corresponds to [2], where initial conditions are

UT
L = 1, 0, 0, 1, 0, UT

R = 2, 0, 0, 0.5, 1. (9)

Time calculation is t = 0.4 sec. This problem corresponds to a decay of a strong discon-
tinuity and is similar to one presented in [7], where time calculation is t = 0.5 sec.

Test №2 corresponds to [7], where initial conditions are

UT
L = 1, 0, 1, 1, 1, UT

R = UT
L + 10−4

(−1, 0, 0, (1− 10−4)−1, 2
)
. (10)

Time calculation is t = 0.5 sec. This problem corresponds to a decay of a weak disconti-
nuity, Fig.1.

The convergence of the numerical solution for tests cases from [2] and [7] by refinement
of a spatial grid was revealed in all cases.
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Figure 1: Test 2. h(x)u2(x) and h(x)B2(x) on the refined grids.
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