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Quasi-Gasdynamic Algorithm for Magnetohydrodynamic Shallow Water Equations

In this paper we present the regularized form of the shallow water equations for ideal magnetohydrodynamics, that allows its efficient numerical solution using centraldifference approximation for all space derivatives. The non-negative form of the dissipative function for the new system is shown together with the examples of numerical simulations of two test problems.

Magnetohydrodynamic equations for the shallow water and its regularization form

These equations were first introduced by Gilman [START_REF] Gilman | Magnetohydrodynamic "shallow water" equations for the solar tachocline[END_REF] in order to obtain a simplified set of equations from the full MHD equations. This system can be used as a mathematical model in certain applications, such as in the dynamics of the solar tachocline. According to [START_REF] Rossmanith | A wave propagation method with constrained transport for ideal and shallow water magnetohydrodynamics[END_REF] the system of the MHD equations in the shallow water approximation has a form ∂h ∂t + div(hu) = 0,

∂hu ∂t + div(hu ⊗ u) -div(hB ⊗ B) + ∇ gh 2 2 = div Π N S -gh∇b, ∂hB ∂t + div(hu ⊗ B) -div(hB ⊗ u) = 0, div(hB) = 0, (1) 
where h(x, y, t) is a fluid level, u and B are velocity and magnetic field strength vectors correspondingly, b(x, y) is a bottom profile, Π N S is a deformation velocity tensor

Π N S = 2µσ(u) = 2hν σ(u), (2) 
where σ(u) = 1 2 (∇ ⊗ u) + (∇ ⊗ u) T , µ -dynamic viscosity coefficient, ν -kinematic viscosity coefficient. The expression (u ⊗ u) denotes a tensor product of u and u vectors.

The regularized system of the shallow water equations with magnetic field can be obtained in the same way, as quasi-gas dynamic systems and regularized shallow water equations were obtained earlier, e.g. [START_REF] Elizarova | Time averaging as the approximate method of building quasigasdynamic and quasi-hydrodynamic equations[END_REF] and [START_REF] Elizarova | Regularized shallow water equations and a new method of simulation of the open channel flows[END_REF]. For this procedure one can take a small time interval ∆t and calculate the average values in (t, t + ∆t) interval.

All averaged variables denoted here by ( * ) are expanded in Teylor series where second time derivatives and terms of order O(τ 2 ) and O(τ ν) are neglected. Here τ is a time smoothing parameter.

h * = h + τ ∂h ∂t = h -τ div(hu), u * = u + τ ∂u ∂t = u -w 1 , w 1 = τ ((u∇)u -(B∇)B + g∇(b + h)), (hu) * = hu + τ ∂hu ∂t = h(u -w) = j, w = τ h (div(hu ⊗ u) -div(hB ⊗ B) + gh∇(b + h)), (hB) * = hB + τ ∂hB ∂t = hB + τ (div(hB ⊗ u) -div(hu ⊗ B)) = hB + β, β = τ ∂hB ∂t = τ (div(hB ⊗ u) -div(hu ⊗ B)) , B * = B + τ ∂B ∂t = B + τ ((B∇)u -(u∇)B) = B + γ, γ = τ ∂B ∂t = τ ((u∇)B -(B∇)u) .
(

) 3 
Then the regularized system of the MHD shallow water equations takes a form ∂h ∂t + div j = 0,

∂hu ∂t + div(j ⊗ u) -div(hB ⊗ B) + 1 2 g∇h 2 = div(hu ⊗ w 1 ) + div(β ⊗ B)+ + div(hB ⊗ γ) + g∇(τ h div hu) -g∇b(h -τ div hu) + div Π N S , ∂hB ∂t + div(j ⊗ B) -div(hB ⊗ u) = div(β ⊗ u) -div(hu ⊗ γ) -div(hB ⊗ w 1 ), div hB + div β = 0. (4) 
The strongly non-linear terms in τ have the form of the second order space derivatives and may be regarded as regularizators. In the limit τ → 0 regularized system (4) goes to (1).

Equation for the specific entropy

The growth of the specific entropy for the regularized equation system is the important feature of the proposed model. It was shown, that the main energetic equity takas place for the system (4). It was obtained using the approach from [START_REF] Suhomozgiy | Sheretov Solution uniqueness of the regularised Sen-Venan equation in the linear approximation[END_REF] and has a form

∂ ∂t h u 2 2 + h B 2 2 + g h 2 2 + div j u 2 2 + B 2 2 + gh -2hν(σu) -gτ hu div(hu)- -hu(w 1 u) + hB(w 1 B) -hB(uγ) + hu(Bγ) -hB(uB) -β(uB) = -Φ, ( 5 
)
where

Φ = 2hν(σ : σ) + h (w 1 ) 2 τ + h (γ) 2 τ + gτ (div(hu)) 2 (6) 
is a non-negative dissipative function of the regularized system of the shallow water equations with magnetic field. Here

(σ : σ) = 2 i, j=1 σ i j σ i j = 2 i, j=1 σ 2 i j = 1 4 2 i, j=1 ∂u i ∂x j + ∂u j ∂x i 2 (7) 
is an inner tensor product of symmetric matrix σ i j by itself.

1D-test-cases

We use explicit schemes with central differences. The regularization parameter is calculated as

τ = α h x B 2 1 + gh(x) , µ = hν = τ gh 2 2 , ( 8 
)
where h x is the step of spatial grid. We take the regularization coefficient α from 0.3 to 0.5. Test №1 corresponds to [START_REF] Rossmanith | A wave propagation method with constrained transport for ideal and shallow water magnetohydrodynamics[END_REF], where initial conditions are

U T L = 1, 0, 0, 1, 0, U T R = 2, 0, 0, 0.5, 1. (9) 
Time calculation is t = 0.4 sec. This problem corresponds to a decay of a strong discontinuity and is similar to one presented in [START_REF] Sterck | Hyperbolic theory of the "shallow water[END_REF], where time calculation is t = 0.5 sec. Test №2 corresponds to [START_REF] Sterck | Hyperbolic theory of the "shallow water[END_REF], where initial conditions are

U T L = 1, 0, 1, 1, 1, U T R = U T L + 10 -4 -1, 0, 0, (1 -10 -4 ) -1 , 2 . ( 10 
)
Time calculation is t = 0.5 sec. This problem corresponds to a decay of a weak discontinuity, Fig. 1. The convergence of the numerical solution for tests cases from [START_REF] Rossmanith | A wave propagation method with constrained transport for ideal and shallow water magnetohydrodynamics[END_REF] and [START_REF] Sterck | Hyperbolic theory of the "shallow water[END_REF] by refinement of a spatial grid was revealed in all cases. 
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 1 Figure 1: Test 2. h(x)u 2 (x) and h(x)B 2 (x) on the refined grids.