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Abstract. Reverse Time Migration technique produces underground images using wave propagation. A discretiza-
tion based on the Discontinuous Galerkin Method unleashes a massively parallel elastodynamics simulation, an
interesting feature for current and future architectures. In this work, we propose to combine two recent HPC tech-
niques to achieve a high level of efficiency: the use of runtimes (StarPU and PaRSEC) to easily exploit the hardware
capabilitites, and the intergration of accelerators (Intel Xeon Phi). Preliminary results are presented.
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1 INTRODUCTION

Reverse Time Migration (RTM) is one of the most widely used technique of Seismic Imaging. It is a particular
instance of the depth migration algorithm, a technique that can be successfully applied in areas with lateral velocity
variations, as those of main interesting to petroleum geologists. Thanks to the space discretization by the Discontin-
uous Galerkin Method (DGM)), associated with a leap-frog time scheme, the numerical problem becomes essentially
local. Besides, it generates a massively amount of computations with inherent parallelism, an interesting property
to take advantage of, on the current and future, heterogeneous many-cores architectures.

While, the use of supercomputers is mainstream in all scientific areas, efficiently exploiting the available hardware
remains a challenging task. The increasing level of hierarchization of the memory and the hybridization of the un-
derlying hardware, force the programmers to develop and refine specialized algorithms, so as to expose an adequate
degree of parallelism which encompasses all available resources, including accelerators. This highlights the limits
of current programming paradigms to deal with this raise in heterogeneity, and as a result the portability of scientific
applications is strongly impacted, lower the productivity in the long term.

In this context, the use of programming paradigms based on task-graph approaches allows deep parallelism auto-
matic scheduling over dynamic runtimes. This sets up the hope for a stable and portable efficiency of algorithms,
expressed in this paradigm, across generation of architectures. In this paper we will explore this approach applied
to elastodynamics simulation.
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2 ELASTODYNAMICS

Let Q be an open bounded domain of R3, its boundary is denoted by I' = 9 with the exterior normal nr. Let
X = (z,y,%) € Qand t € [0,T] be the space and time variables, the velocity-stress formulation of the elastic wave
equation is
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with p > 0 the volumic mass, v € H'(Q x [0,T7]) the unknown velocity field, 0 € H 4in (82 [0,T7) the stress

tensor, C the stiffness tensor (elasticity coefficients) and e(v) = (Vv + (Vv)T) the strain tensor (infinitesimal
strain theory) with V the divergence and V the gradient.
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2.1 Discretization

Let 2}, be a polygonal mesh (composed of tetrahedra K in 3D) forming a partition of 2. Contrary to FEM, the
principle of DGM consists in approximating the functions v and ¢ by discontinuous functions v, and o N such that
{vn, 0o, } € L3(Qy, x [0,T]) with {onlk.a, |k} € H'(K x [0,T)) VK. Thus, the integration against discontinuous
test functions w and ¢ can be performed locally on each tetrahedron. Then, the sum can be written as
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with the centered fluxes formulation: {{u}} = (uk, + uk,)/2, [u] = vk, — uk,.
These equations can be written as a linear system,
pM.Orvn + Rog, = 0 3
Mgﬁtgh +Ryv, =0

with M,,, M, block-diagonal mass matrices and I?,,, 1%, stiffness matrices.

The time discretization is done with the classical leap-frog time scheme, leading to an explicit scheme which is
stable under a CFL condition available in [1]. Time domain [0, 7] is divided into time steps At. Let v}’ be the
approximation of the velocity vy, (t) at the discrete time ¢ = nAt and gZH/ ? the approximation of the stress tensor

g, (t) at the discrete time ¢ = (n + 1)At. Semi-discrete linear system (3) becomes
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Since M, and M, are block-diagonal due to DGM, this scheme is quasi-explicit. Indeed, each block has the size of
the cell (i.e. the number of degrees of freedom, see Figure 1 for a 2D illustration), allowing its direct inversion.

3 HPC OPTIMIZATIONS

Several approaches have been investigated in the context of this work, starting from a reordering of the data to
maximize the cache locality, re-describing the underlying algorithms using novel programming techniques and,
finally, including the usage of accelerators.

Cache optimization/reordering and vectorization The overall efficiency is strongly correlated to the efficiency of
the most used part of the algorithm. A poorly-parallelized detail in the code would lead to a severe bottleneck.
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Figure 1: DGM local degrees of freedom in 2D

A dissection of the original code revealed several cache under-utilization problems and a lack of vectorization in
the main computational algorithms. The accesses to the data were scattered in the memory, leading to significantly
more cache misses than necessary. Moreover, the communications moved too much data to and from the memory
according to what was really needed. A major reordering of the loops and memory accesses have allowed the
compilers to expose more vectorization possibilities and to realize a better instruction level scheduling. This involves
a direct result of a significantly improved processing time, as highlighted in Table 1.

The vectorization point is particularly essential for the use of Intel Xeon Phi accelerators, which are based on large
SIMD (Single Instruction Multiple Data) units. The cache-reuse is a more general common source of optimizations
which always offers good acceleration.

Task-based description for the use of runtimes Runtimes, like StarPU [2] (Inria, Bordeaux, France) and PaR-
SEC [3] CL, University of Tennessee, USA), offer automatic parallelism which maximize the performance of the
algorithm while hiding the cluster complexity (heterogeneity, NUMA, network, etc). The principle lies in describing
the algorithm using a task-based description (computations, communication, dependencies), and then, allowing the
runtime to choose where and when to schedule these tasks in order to minimize the waiting time, to maximize the
overlap between communications and computations, and to maximize the utilization of all heterogeneous resources.

Heterogeneity (accelerators) with the same code kernels GPGPU suffers from several critical points (new lan-
guage, long formation-time, etc) but can improve significantly numerous codes. The current programming ap-
proaches are too tailored for this specific hardware (CUDA, OpenCL), with a lack of long term vision regarding the
performance portability and the implementation perennially. The new Intel accelerator, Xeon Phi [4], is based on a
mix of CPU and GPU architectures and seems to have multiple advantages. First it is based on the x86 instruction
set architecture, this means that it can manage the classical languages C, C++, FORTRAN. Next, it can be viewed
as a little standalone cluster, allowing the use of classical parallel tools and libraries as OpenMP and MPI. The idea
here is to use accelerator capabilities through only one optimized version of the code kernels.

3.1 Preliminary results

In order to use both the Intel accelerator and the runtimes capabilities, we began by adding OpenMP in the original
code. This did not bring acceleration compared to full MPI parallelism but it will be very useful for the future
benchmarks, especially with the combined HPC techniques. Then we redesigned the main algorithms correcting the
above listed issues. The solution involved a little bit more computations and less communications. Nevertheless, the
simulation time decreased seriously with two-fold acceleration on average. The Table 1 presents a range of results
on 8 processors with different MPI-OpenMP distribution over various discretization configurations.

Table 1: Speedup between the original code and the optimized code

Distribution 2D-P1 2D-P2 2D-P3 3D-P1 3D-P2 3D-P3
1 mpi, 8omp  2.46 2.44 2.17 3.24 2.51 2.40
2mpi,4omp 247 2.24 2.15 2.74 2.13 2.09
4mpi,2omp 241 2.19 2.15 2.49 1.93 1.81
8 mpi, 1 omp  2.57 2.16 2.13 241 1.70 1.76
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3.2 Scalability benchmark

A scalability study was performed on a 3D case. The unstructured meshes represent one homogeneous subsurface
layer. The mesh size (in number of tetrahedra) begins at 50.000 and stops to 800.000. As the number of time-steps
depends on the element size, the code is voluntarily stopped after 5.000 iterations, in order to allow the comparison.
The number of CPUs starts from 4 and goes up to 256 so as to ensure that in the range of mesh sizes, the volume
of computations is enough on the one hand, and the communications are dominant on the other hand. Moreover, a
run with only one CPU is done to catch reference time for the efficiency computation. Figure 2 confirms that the
redesigned code achieves a good parallel efficiency (> 90% and even > 95%) as soon as the mesh size is large
enough according to the number of CPUs.

Strong scalability on cpu range (MPI)
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Figure 2: Efficiency results of the scalability study

4 CONCLUSIONS

The first step of optimizing the elastodynamics simulation code provided a two-fold acceleration and a good scala-
bility. These modifications laid down a cleaner path to move the code over to a task-based programming paradigm
and to benefit from dynamic runtimes. This work is still ongoing. Simultaneously, specialized version of the com-
putational code kernels will be implemented to take advantage of the Intel Xeon Phi accelerators, supported by these
runtimes. The final purpose is to combine the two HPC techniques allowing automatic parallelism and efficiency on
heterogeneous clusters from a unique optimized code.
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