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Abstract. The paper presents the concept of “Virtual Charts” applied to computational structural mechanics.
Based on the Proper Generalized Decomposition (PGD), a model reduction method, the idea is to create a nu-
merical tool to help engineers to perform shape optimization, where quantities of interest, computed for all the
geometrical configurations, will be stored. Two different approaches have been developed in order to introduce
geometry variations as parameters in the PGD. Promising results were obtained for academic examples.
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1 INTRODUCTION

Despite constant progress in computing power over the past years, experimental testing is still essential during design
stage of industrial structures because numerical resolution of high sized complex models often remains out of reach.
And even when it is possible, each new structure is considered as a new problem, and treated independently of cases
previously studied. Therefore, a very large number of simulations have to be computed. The use of experimental
testing combined to the calculation of many simulations increases time and financial costs. Hence, the reduction of
these costs is a crucial industrial issue.

The idea, developed here, consists in putting together similar structures, which differ from each other for the values
given to some parameters, in “families” and to compute offline the general parametrized solution for each family.
The quantities of interest, used for structural design, are stored in “Virtual Charts”, which will be used online by
the engineer during the conception step. Hence the conception time will be highly reduced due to the fact that all is
remaining for the engineer is to particularize the general solution with the values of the considered parameters.

The construction of these charts is based on the model reduction method called Proper Generalized Decomposition
(PGD) introduced for the first time in 1985 by P. Ladevèze under the name “Radial Approximation” [1] in order
to deal with time-dependent non-linear problems. It allows to generate the solution of a problem for a whole set
of parameters and its efficiency was proven for time-space [2], multiscale [3], multiphysics [4] and parametrized
problems [5]. In the framework of this study in partnership with ASTRIUM-ST, the virtual charts are created to
take into account geometry variations, which are a key point of the conception process. The geometry variations
are considered as parameters in the PGD method and the quantities of interest are computed from the resolution of
adjoint problems setting up some error estimators that allow to master the simulations.

First of all, after a short review on the PGD method, we present two different strategies developed to adapt the Proper
Generalized Decompostion to geometry variations and then the capabilities of these two methods are discussed
through a bidimensional academic example.
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2 PROPER GENERALIZED DECOMPOSITION AND GEOMETRY VARIATIONS
2.1 Proper Generalized Decomposition

An extended presentation of the PGD method can be read in [6] and a detailed bibliography in [7]. The PGD
method is based on the idea that the solution can be approximated with a good precision thanks to a reduced number
of modes. One can notice the analogy with dynamics where the major part of the information is contained in the
first modes and while new modes are added, the solution is enriched.
For this purpose, a separated variables representation of an unknow field f is sought. An example of a PGD
approximation is given below for a time-space problem:

∀(M, t) ∈ Ω× [0, T ], f(M, t) ≈ f̂n(M, t) =

n∑
i=1

λi(t)Λi(M) (1)

where Λi are the spatial modes and λi are the time functions.

In practical cases, n happens to be very small so the computation and storage costs are highly reduced. Furthermore,
the functions λi and Λi are not given a priori. They will be computed through an iterative process.

This method can be easily extend to parametric and multidimensional problems as shown in Equation (2).

f(M, t, α1, . . . , αk) ≈ f̂n(M, t, α1, . . . , αk) =

n∑
i=1

f1
i (α1) . . . fki (αk)λi(t)Λi(M) (2)

where α1, . . . , αk are the parameters defining the geometry.
The aim is to build the solution for all the geometrical configurations, i.e. for all the values of α1, . . . , αk. A quantity
of interest can be, then, determined and stored in a Virtual Chart.

2.2 Example

Figure 1 presents an example of structure to optimize with respect to two geometrical dimensions and where the
Von Mises stress maximum was considered as a quantity of interest. α and β denote the geometrical parameters
associated, respectively to a length and a radius of curvature to take into account in the PGD method. The structure
is clamped and a constant load is applied on the opposite extremity. It remains to adapt the PGD method in order to
introduce geometry variations.

Figure 1: Test structure

2.3 Method 1

A reference structure Ω0 is defined and meshed. Then, for each configuration Ωααα, corresponding to a geometrical
configuration parametrized by ααα = {α1, . . . , αk}, it is possible to go back to the reference structure thanks to
geometric transformations [8], as shown in Equation (4). For this purpose, one writes the variational formulation of
the parametric problem:
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∀δu ∈ U?,
∫
A

∫
Ωααα

εεε (u(M,ααα)) : κκκεεε (δu(M,ααα)) dαααdΩ =

∫
A

∫
∂fΩααα

fT δu(M,ααα) dαααdΓ (3)

• A: space of geometrical parameters where ααα belongs
• εεε: strain field
• κκκ: hooke’s tensor
• u: displacement vector
• f : load vector

It is, then, possible to study the problem with respect to the reference structure thanks to a change of variables.

∀δu ∈ U?,
∫
A

∫
Ω 0

εεε(u(M 0,ααα)) : κκκεεε(δu(M 0,ααα))|det J
ααα
|dαααdΩ =

∫
A

∫
∂fΩ0

fT δu(M 0,ααα) dαααdΓ (4)

where J
α

is the Jacobian matrix of the geometric transformation which transforms Ω0 in Ωααα:

∀M 0 ∈ Ω0, M = T (M 0) ∈ Ωααα (5)

The unknown field, here the displacement u, is sought in the form of a separated variables representation:

u(M 0,ααα) ≈
n∑
i=1

gi(ααα)U i(M 0) (6)

2.4 Method 2

In this method, the reference structure Ω0 is defined as the union of all the different geometric configurations Ωααα.
For each geometric configuration, the structure is like ”sunk” in a very soft material. A new constitutive has to be
defined on Ω0:

κ̃κκ = κκκψααα + aκκκ(1− ψααα) with a� 1 (7)

where {
ψααα(M) = 1 if M ∈ Ωααα

= 0 otherwise
(8)

To compute the stiffness matrix of a finite element, one made the assumption that the reference structure is very
finely meshed and so the stiffness matrix becomes:

K̃
el

=

{
K
el

if the whole element belongs to Ωααα

aK
el

otherwise
(9)

where K
el

is the classic stiffness matrix of a finite element computed with the constitutive law κκκ.

Then the displacement u is written in the form of a PGD approximation and the problem is solved on the reference
structure.

2.5 Results

Both methods were tested on the example presented in Section 2.2. Figure 2a depicts the convergence of method 1
with respect to the number of PGD couples computed. It can be noticed that, with only four couples, a error inferior
to 1% is reached. The error was calculated with respect to a reference solution computed thanks to a EF resolution
for each geometrical configuration. An example of virtual chart built with this method is also presented in Figure 2b
where the quantity of interest considered is the maximum of the Von Mises stress.
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(b) Example of possible virtual chart

Figure 2: Results of a simulation using method 1

3 CONCLUSIONS
Two different approaches were introduced within the Proper Generalized Decomposition framework and used in
academic examples where geometry variations were introduced as parameters. It was, then, possible to build “Virtual
Charts” for quantities of interest, used for structural design. The next step is to apply these methods for more
complex problems in order to approach the industrial issues of ASTRIUM-ST. In the example presented in this
article, the quantity of interest (maximum of the Von Mises stress) was computed from the direct problem. The next
step will be to determine the quantities of interest from the resolution of adjoint problems with error estimators.
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[7] Chinesta, F., Ladevèze, P., Cueto, E.. A short review on model order reduction based on Proper Generalized Decomposition.

Archives of Computational Methods in Engineering. 18:395-404, 2011
[8] Ghnatios, C., Ammar, A., Cimetire, A., Hamdouni, A., Leygue, A., Chinesta, F.. First steps in the space separated represen-

tation of models defined in complex domains. In: Proceedings of the ASME 2012 11th Biennal Conference On Engineering
Systems Design and Analysis., Nantes, France, 2-4 July 2012.


