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Abstract. Soft biological tissues are characterized by a highly nonlinear, time dependent mechanical response.
Constitutive model equations capturing this material behavior often make use of evolution equations given in rate
form (see [4]). In this contribution a new perspective of the mixed finite element formulation was developed together
with a strongly objective integration scheme of the evolution equations. The capability of the developed finite element
formulation and the strongly objective integrator was demonstrated by an indentation example.
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1 INTRODUCTION

Understanding the mechanical behavior of facial soft tissue has become an important aspect in problems concerning
computational simulation of surgical intervention, the evaluation of optimal surgerical and suturing procedures, and
the design of prosthetics. Many different constitutive model formulations have been introduced in recent years that
describe the highly nonlinear, time dependent force deformation characteristics of soft biological tissues. The first
fully three-dimensional finite strain viscoelastic model was introduced by Simo (1987) [6]. Further developments
in the direction of fibre-reinforced, i.e. anisotropic, composite models specifically thought to predict the material
response of soft tissues, followed thereafter, see [3] for example.
Alongside the advancements in modeling, the experimental characterization of time dependent material behavior
of facial tissues allowed to validate models due to data available for pre-conditioning effects, stress relaxation at
constant strain, hysteresis loops in cyclic loading and unloading. Rubin and Bodner [4] introduced a nonlinear
model for dissipative soft tissue response which considers changing material response through history dependent
state variables that are governed by evolution equations. The elastic part of this model was adopted by Barbarino
et al. [1, 2] for simulations concerning an anatomically based finite element model of the face. Specifically, the
model was used to understand the mechanical response of facial soft tissues under different loading conditions and
the predictions of the model were compared to ex-vivo and in-vivo experimental data.

2 CONSTITUTIVE EQUATIONS AND STRESS UPDATE ALGORITHM

Rubin and Bodner [4] developed three dimensional constitutive equations that are valid for finite elasto-viscoplastic
deformations and which produce reasonable agreement with experimental data of facial tissue. Specifically, Rubin
and Bodner [4] considered the tissue as a composition of an elastic component and a dissipative component. In
particular, the strain energy function W is given by

W =
µ0

2q
(eqg − 1) , (1)
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where µ0 and q are material parameters, and the function g = g (J, β1, λI , α1) was decoupled into four parts such
that

g (J, β1, λI , α1) = g1 (J) + g2 (β1) + g3 (λI) + g4 (α1) ,

g1 (J) = 2m1 (J − 1− ln (J)) , g2 (β1) = m2 (β1 − 3) ,

g3 (λI) =
m3

m4

Nfib.∑
I=1

(λI − 1)
2m4 , g4 (α1) = α1 − 3,

J = det(F), λI =
√
FMI · FMI , β1 = b′

e : I α1 = b′
de : I,

(2)

where the function g1 (J) accounts for total volume dilatation, g2 (β1) accounts for the distortional deformation of
the isotropic matrix, g3 (λI) accounts for the stretch of the I’th fiber family and g4 (α1) accounts for the elastic
distortional deformation of the dissipative component of the tissue. The tensor F is the deformation gradient and
the unit vectors MI characterize the orientations of fibers. Furthermore, the evolution equations of the tensorial
measure of the elastic distortion of the elastic and dissipative components, respectively, {b′

e, b
′
de} are

ḃ′
e = lb′

e + b′
el

T − 2

3
(d : I)b′

e,

ḃ′
de = lb′

de + b′
del

T − 2

3
(d : I)b′

de − Γad.

(3)

Note that the inelastic deformation is determined by the scalar Γ and the tensor ad. The tensor ad causes the
tensorial measure of the elastic distortion of the dissipative component, b′

de, to evolve toward unity. Moreover,
the contribution Γad is subtracted from the elastic distortion rate b′

de and therefore the term Γad weakens it in the
direction of the tensor ad. In particular, Rubin and Bodner [4] suggested the following specific form for the scalar
Γ and the tensor ad

Γ = (Γ1 + Γ2ε̇) exp

(
−1

2

(
β

βde

)2n
)
, ad = b′

de −
3

b′−1
de : I

I, (4)

where {Γ1, Γ2, n} are material parameters, ε̇ is the effective total distortional deformation rate, βde is a measure of
elastic distortional deformation associated with the dissipative component, and β is the hardening variable associated
with fluid flow through the cells of the tissue. In particular, the specific forms of {ε̇, βde, β} are given by

ε̇ =

√
2

3
dev (d) : dev (d), βde =

√
3

2
dev (b′

de) : dev (b
′
de), β̇ =

r1r3 + r2ε̇

r3 + ε̇
Γβde − r4β

r5 , (5)

where the constants r1, ..., r5 are material parameters. Note that the first part on the right hand side of Eq. (5c) causes
β to grow, while the second part is responsible for material recovery. Now, using the Clausis-Duhem inequality, it
can be shown that the Cauchy stress tensor is given by

σ =
µ0e

qg

J

m1 (J − 1) I+m2dev (b
′
e) +m3

Nfib.∑
I=1

⟨λI − 1⟩2m4−1

λI
(FMI)⊗ (FMI) + dev (b′

de)

 . (6)

It can be seen from Eq. (6) that the stress tensor depends on the tensors {b′
e, b

′
de}, which are given by evolution

equations. Therefore, it is necessary to develop a strongly objective integrator (see [5]) for the evolution equations of
the tensors {b′

e, b
′
de} in the sense, that the tensors {b′

e, b
′
de} at time increment tn+1 (i.e. b′

e(tn+1) and b′
de(tn+1))

have the same invariance properties under superposed rigid body motions as the exact tensors {b′
e, b

′
de, β}. In this

regard the solution of Eq. (3) and Eq. (5c) read

b′
e(tn+1) = F′

r(tn+1)b
′
e(tn)F

′T
r (tn+1),

b′
de(tn+1) = F′

r(tn+1)b
′
de(tn)F

′T
r (tn+1)−∆tΓ(tn+1)ad(tn+1),

β(tn+1) = β(tn) + ∆t

[
r1r3 + r2ε̇(tn+1)

r3 + ε̇(tn+1)
Γ(tn+1)βde(tn+1)− r4β(tn+1)

r5

]
,

(7)
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where F′
r = (det(Fr))

−1/3
Fr and Fr is the relative deformation gradient that maps the motion from time increment

tn to time increment tn+1. Moreover, using Eqs. (4a) and (7b) it is possible to show, that

dev (b′
de(tn+1)) =

1

1 + ∆tΓ(tn+1)
dev

(
F′

r(tn+1)b
′
de(tn)F

′T
r (tn+1)

)
. (8)

Finally, the scalar Γ and the hardening variable β can be obtained by solving the nonlinear equations given by Eqs.
(4b) and (7c). For the numerical study, a new perspective of the mixed finite element formulation was developed in
which the constitutive equations of soft tissues and the strongly objective integration algorithm were implemented.
It was found that the developed finite element formulation is very suitable for viscoplastic models that are described
through evolution equations. Most significantly however, it turned out that the reference configuration of the body
became irrelevant for the calculations obtained by the developed finite element formulation.

3 NUMERICAL EXAMPLE
The following example demonstrates the capability of the constitutive equations described in the previous section
together with the developed finite element formulation to capture the nonlinear behavior of soft tissues and the
possible stress relaxation. Specifically, consider a block of SMAS (superficial muscloaponeurotic system) subjected
to indentation by a smooth rigid sphere (see Figure 1a). The total length of 2L1, total depth 2L2, total hight L3 of
the block, and the radius R of the spherical punch are specified by

L1 = L2 = L3 = 1.0m, R = 0.5m. (9)

The bottom surface of the block (X3 = 0) remains in contact and slides freely on the plane X3 = 0 and the
remaining surfaces of the block are traction free, except for the points of contact between the rigid spherical punch
and the deformed top surface of the block (X3 = L3). Moreover, due to symmetry only one quarter of the block
is analyzed and is modeled by {15, 15, 15} eight nodes brick elements. The rigid punch can only move vertically
with displacement u3 = δ in the e3 direction. The prescribed vertical displacement δ of the spherical punch is given
in Figure 2a. In particular, the prescribed vertical displacement is ramped to δ = −0.25m and then kept constant
for the remaining simulation time.

(a) (b)

2L2 2L1L3

R

e1 e2

e3

Figure 1: Indentation of a smooth rigid sphere into a SMAS block. (a) Reference geometry; (b) Deformed shape

The normalized vertical reaction force at the spherical punch (F3/F0, F0 = −341.8 kN) versus the normalized
prescribed δ/δ0, δ0 = −0.25m is given in Figure 2b. It can be seen that the response is highly nonlinear. Moreover,
Figure 2c shows the variation of the normalized vertical reaction force. It can be seen that in the ramping stage, the
reaction force increases, while during the second stage, at which the prescribed displacement was kept constant, the
vertical reaction force decreases. This example shows the capability of the model to represent stress relaxation in
soft tissues. Finally, the deformed shape is given in Figure 2b.

4 CONCLUSION
In face of the significant challenges with respect to the numerical implementation of elasto-viscoplastic constitutive
equations describing the highly nonlinear, time dependent mechanical response of soft tissues, a newly developed
mixed finite element formulation with a strongly objective time integrator algorithm is presented. The proposed
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Figure 2: (a) Normalized vertical displacement history; (b) Load-displacement cure; (c) Normalized vertical reaction
force history

numerical scheme allows to compute the history dependent state variables, governing the time dependent mate-
rial mechanics. Specifically, the obtained response of the indentation example demonstrates the capability of the
developed model.
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