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Abstract. This paper investigates the possibility to estimate the discretization error of large finite element problems
solved by BDD or FETI domain decomposition methods. We show that a simple processing of the fields available
during the iterations enables us to compute strict error bounds where we tell the difference between the effects of
the FE discretization and the effects of the interface incompatibility. We then can stop iterations when the former
prevail over the later and trigger mesh adaptation procedures.
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1 INTRODUCTION
Virtual testing is the industrialist’s aim to minimize the number of experimental tests by replacing them by numerical
simulations even for part of the certification process. To achieve that objective, we must propose computational
methods for large systems which incorporate verification and adaptation tools.
A classical strategy for the parallel resolution of large systems is to employ solvers based on domain decomposition
methods (DD), in particular we focus on FETI and BDD [3, 9, 10] methods which are now well mastered and remain
scalable even for very complex problems [6, 15]. Schematically these methods consist in satisfying exactly the finite
element equations inside subdomains whereas the continuity of the displacement and the balance of reactions on the
interfaces are iteratively sought.
The a posteriori estimation of the error due to the finite element (FE) discretization can be done according several
principles: equilibrium residual [1], flux projection [16] and error in constitutive relation [7]. A solution to obtain
a strict estimation (an upper bound for the error), without involving hard to compute constants (related to the shape
of the domain), is to make use of statically admissible fields (equilibrated residuals) which can be done by several
techniques: in [5] a full dual analysis is conducted leading to an optimal estimator whereas in [11, 8, 13] the finite
element stress is postprocessed which leads to lower quality estimations but at a much lower cost.
In [12] we proposed a way to process the fields obtained during FETI or BDD resolution [4] in order to enable a
parallel reconstruction of (kinematic and static) admissible fields and a full parallel error estimation based on the
error in constitutive equation. This estimation was possible even before convergence of the iterations associated to
domain decomposition. We observed that the total error is due to the contribution of both the discretization inside
subdomains and the discontinuities at the interface but that the latter quickly became negligible with respect to the
former long before the domain decomposition method converged according to classical criterion.
Thanks to the results of [2] we are now able to propose a new strict error estimator for FETI and BDD domain
decomposition methods which is the sum of a term purely associated to the interface error and an error dominated by
the discretization error. This result enables us to propose an unbiased stopping criterion for domain decomposition.
The rest of this short paper is organized as follow: we first introduce notations and give the main results then we
show the performance of the various estimators on a classical example.
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2 NOTATIONS AND RESULTS
Let us consider the static equilibrium of a (polyhedral) structure which occupies the open domain Ω Ă Rd and which
is subjected to given body force f within Ω, to given traction force g on BgΩ and to given displacement field ud on the
complementary part of the boundary BuΩ ‰ H. We assume that the structure undergoes small perturbations and that
the material is linear elastic, characterized by Hooke’s elasticity tensor H. Let u be the unknown displacement field,
ε puq the symmetric part of the gradient of u, σ the Cauchy stress tensor. Let KA “

 

u P H1pΩq, u “ udonBuΩ
(

the set of admissible displacements and KA0 the associated vector space. The problem to solve writes:

Find uex P KA, σ P
`
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ż
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Let uH be a finite element approximation of previous problem, σ
H
“ H : ε puHq be the associated stress and σ̂

H
be a post processed field which satisfies all equations except the constitutive equation, we then have the following
bound for the energy norm of the error [7]:
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2
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Let us now consider the resolution of previous finite element problem by a domain decomposition method. Let
pΩpsqq be a partition of Ω. The principle of domain decomposition method is to satisfy at any time the conservation
of momentum independently on subdomains whereas the continuity of displacement upsq “ upsq and the action-
reaction principle σpsq ¨ npsq ` σps

1
q ¨ nps

1
q “ 0 on BΩpsq X BΩpsq are alternatively satisfied. During any iteration of

the DD solver we can deduce the following fields:

• uD: a displacement field continuous at the interface, hence kinematically admissible on the whole domain Ω,
which solves local Dirichlet problems.

• uN : a displacement field so that the associated stress field σ
N

is equilibrated on the interface, which solves
local Neumann problems and which can be the input to the parallel computation of a stress field satisfying the
global equilibrium σ̂

N
.

We then have the following bounds [12, 14]:
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The second term of the second expression can be expressed in term of a specific norm of the residual of the domain
decomposition method which we note

?
rT z.

3 ASSESSMENTS
Let us consider the structure of Figure 1 first proposed in [11]. We impose homogeneous Dirichlet boundary condi-
tions in the central hole and on the base. The smaller hole is subjected to a constant unit pressure p0. A unit traction
force g is applied normally to the surface on the left upper part. The remaining boundaries are traction-free. A crack
is also initiated from the smaller hole. The structure is homogeneous linear elastic (unit Young modulus) with Pois-
son coefficient of 0.3. We mesh the structure with first order triangular linear elements and create 16 subdomains by
an automatic splitting of the mesh by Metis library, as shown in Figure 2. We use the FETI algorithm to solve the
substructured problem with a Dirichlet preconditioner. The construction of statically admissible fields is performed
using the Element Equilibration Technique (EET) with p+2-refinement.
Figure 3(a) presents the estimator of [12] and the new estimator during the DD iterations. They both converge close
to the sequential estimator. On Figure 3(b) the two contributions to the new estimator are plotted, the DD-residual
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Figure 1: Cracked structure model problem Figure 2: Decomposition in 16 subdomains
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Figure 3: Error estimates

decreases whereas the contribution bearing the discretization error is almost constant. We observe that the DD-
iterations after the 6th do not improve the global solution while the DD-residual is only 100 times smaller than the
initial residual (a classical stopping criterion would correspond to a ratio of 106). Moreover Figure 4 enables us
to verify that the map of the element contribution to the error estimator is converged when the algebraic error is
negligible (10 times smaller) with respect to the discretization error: the maps represent the difference between the
final element contributions (iteration 20) and the current element contributions at iterations 1 (initialization) and 7
(algebraic error is negligible). This means that the map at iteration 7 is sufficient to be used as an input to a mesh
adaptation procedure.

4 CONCLUSION

Verification can be easily conducted in parallel when using a FETI or BDD domain decomposition method. The
quality of the parallel estimator is very close to the sequential one with CPU cost divided by the number of proces-
sors. Moreover, a new bound enables to separate the contributions of the discretization and of the DD residual. This
enables us to give an unbiased stopping criterion for the DD when the global error is no more minimized by the
iterations and mesh adaptation is required.
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Figure 4: Convergence of the element contribution to the estimator
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[8] P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method and application. SIAM Journal of

Numerical Analysis, 20(3):485–509, 1983.
[9] Patrick Le Tallec. Domain decomposition methods in computational mechanics. Comput. Mech. Adv., 1(2):121–220, 1994.

[10] Jan Mandel. Balancing domain decomposition. Communications in Numerical Methods in Engineering, 9(3):233, 1993.
[11] N. Parés, P. Dı́ez, and A. Huerta. Subdomain-based flux-free a posteriori error estimators. Computer Methods in Applied

Mechanics and Engineering, 195(4-6):297–323, 2006.
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[13] F. Pled, L. Chamoin, and P. Ladevèze. On the techniques for constructing admissible stress fields in model verification:

Performances on engineering examples. International Journal for Numerical Methods in Engineering, 88(5):409–441,
2011.

[14] Valentine Rey, Pierre Gosselet, and Christian Rey. A guaranteed error bound separating algebraic and discretization
contributions in non overlapping domain decomposition method. submitted, 2013.

[15] N. Spillane, V. Dolean, P. Hauret, F. Nataf, and D.J. Rixen. Solving generalized eigenvalue problems on the interfaces to
build a robust two level feti method. submitted, available on HAL, 2012.

[16] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineerng analysis.
International Journal for Numerical Methods in Engineering, 24(2):337–357, 1987.


