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Abstract. Spinodal decomposition of highly viscous binary mixtures near the critical composition is well described
by the Cahn-Hilliard equation. In this short communication we present a model that introduces the thermal effects
due to the presence of a solid structure immersed in a phase-separating mixture. The presence of solid boundaries
is taken into account by means of a volume-penalisation method based on the phase-field formalism. Numerical
experiments are carried out to show the influence of the temperature on the final morphology of the system.
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1 INTRODUCTION
Phase demixing of binary solutions with critical or nearly-critical compositions can be accurately described by
the Cahn-Hilliard equation (CH). According to this model, the phase separation is driven by the gradients of a
generalized chemical potential that can be formally derived from a double well free energy function, [1].
Dimensional analysis [2] and numerical experiments [3] have shown that phase-separating systems described by
the CH equation exhibit a dynamical scaling behaviour, that is the morphology of the system at a given time is
statistically equivalent to the morphology at a previous time under an appropriate change of spatial scale. The
characteristic length describing such scale is known to grow as the power 1/3 of time, meaning that the separation
process never reaches an equilibrium in unbounded domains or alternatively that equilibrium is only reached when
the characteristic length scale becomes of the same order of magnitude as the macroscopic size of the system. At
this stage the separation is influenced by the presence of the boundaries.
The introduction of a temperature dependence in both the mobility and the miscibility of upper critical solution tem-
perature (UCST) systems allows equilibrium at smaller scales since the latter results from the competition between
the phase separation process and the rate at which the solution is quenched.
The determination of the morphology in UCST systems is a problem of major interest in the field of material pro-
cessing technologies since the mechanical properties of composite materials are greatly influenced by the phase
distribution at microscopic scale. Furthermore, thermal interactions between a phase separating solution and an
immersed solid structure may produce temperature gradients and consequently compositional and structural gradi-
ents. As a result all the properties that are sensitive to these characteristics also display gradients across the system.
This feature is particularly attractive since it might allow to locally tune up a specific property by controlling the
temperature field.
In this short paper we discuss a model including temperature effects in phase separation and we present a numerical
procedure to solve the CH equation for the case of weak thermal coupling with solid boundaries. The method
proposed in section 2 relies on the Fourier Spectral Method (FSM) and thus retains the computational advantages
typical of spectral methods while relying on a volume penalisation technique to take into account for the presence
of solid boundaries inside the domain. In section 3, the case of longitudinal fibres immersed in a two-phase medium
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is analysed, while conclusions are drawn in section 4.

2 MODEL FOR THERMALLY INDUCED PHASE SEPARATION
The volume penalisation method that we present in this section is based on the assumption that the presence of
solid boundaries in a binary separating solution can be circumvented by considering the whole system as a ternary
system characterized by the presence an artificially diffused interface between the solid and liquid phases in the limit
of small thickness of said interface. In this way the problem can be reformulated through a phase-field approach
eliminating the complexity introduced by the domain topology in presence of solid boundaries.

2.1 Governing equations

As in the CH equation for binary solutions the phase-field formalism consists in defining a free energy density
function, which for ternary system reads as:

f (c1, c2, c3) = c1c2 + c2c3 + c3c1 (1)

where ci is the volume fraction of the i-th species. The temporal evolution of each phase is governed by the
equations:

∂ci
∂t

= ∇Di · ∇
(
∂f

∂ci
+ ε2∆ci

)
+ ξ (2)

where i = 1, 2, 3, Di is the mobility, ε is an interaction length determining the interface width and ξ is a Lagrange
multiplier used to ensure that c1 + c2 + c3 = 1 everywhere in the solution. Assuming 3 as the solid phase, D3 = 0
and D1 = D2 = m0 (1− c3). The latter condition is the volume penalisation equivalent of the Neumann condition
for the chemical potential ∂nµi = 0 prescribing no phase diffusion through solid walls. Replacing c2 = 1− c1− c3
in the equation for c1 and c1 = 1− c2 − c3 in the equation for c2, we obtain two constrained equations (having the
same formal expression) to be solved simultaneously.
The miscibility dependence on temperature is introduced through a parameter χ = Tcr/T , with Tcr the critical
temperature, while the mobility is modelled as D = D1 = D2 = max [m0 (1− c3) (T − Ts) , 0] where Ts can be
seen as the temperature at which the solution changes into a solid-like state.
The non-dimensionalisation of eq. (2) leads to the following expression:

∂φi
∂t

= ∇D · ∇
[
φ3i + g2 (φ3)φ2i + g1 (φ3)φi + g0 (φ3)−∆φi

]
+ ξ (3)

With i = 1, 2, g0 =
1

2
(φ3 + 1)

(
φ23 + 3φ3

)
, g2 =

3

2
(φ3 + 1) and g1 =

9

16
χφ23 + (3χ/4 + 2)φ3 −

21

16
χ+ 5. Note

that the non-dimensional variable φ denotes the normalised deviation from the critical point concentration and is
defined over the interval [−1, 1]. For φ3 = −1, that is in the fluid phase, equation (3) assumes the same form as the
traditional CH equation.
The equation for the temperature reads as follows:

∂T

∂t
= Le∇ · κ∇T +

1

C
(1− φ3)

(
1− φ21

) ∂φ1
∂t
− λT (4)

Where Le = α/m0, is the Lewis number expressing the ratio between the thermal diffusivity and the the mass
diffusivity, while κ is the non-dimensional thermal conductivity . The second term in the right hand side of equation
(4) expresses the energy dissipation due to the entalpy of mixing and depends on the inverse of the non-dimensional
specific heat C. Finally, the last term is an artificial source term introduced to control the cooling rate.

2.2 Numerical method

The model presented in the previous section is completed by the further assumptions that the two phase-separating
components, 1 and 2, have the same thermal properties and that the heat produced by the phase separation reaction
is negligible. These two hypothesis are fairly reasonable for polymeric materials for which the differences in the
thermal conductivities are small and Le � C−1 by several orders of magnitude. As a direct consequence, the
thermal conductivity is only function of φ3 and the equation for the temperature can be solved separately from the
equations for φ1,2.
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Figure 1: Schematic of the periodic two-dimensional system consisting of the fibre section immersed in a bicompo-
nent phase-separating system.

For both equations (3) and (4), a first order implicit-explicit splitting time stepping scheme is adopted to enhance
numerical stability. The latter is inspired by the scheme proposed in [4] for the CH equation.
Since the implicit part corresponds to a linear elliptic operator with constant coefficients, the linear system aris-
ing from the spectral method discretisation can be efficiently solved by means of the Fast Fourier Transform
and its inverse. The solution for the phase field is composed of two parts. In a first prediction step, equation
(3) is solved for φ∗1,2 assuming ξ = 0, while in the correction step the Lagrange multiplier is determined as
ξ = − (1 + φ3 + φ∗1 + φ∗2) /2 and φ1 = φ∗1 + ξ, φ2 = φ∗2 + ξ.

3 SPINODAL DECOMPOSITION OF A BINARY SOLUTION WITH IMMERSED FI-
BRES

(a) (b) (c)

Figure 2: Phase separation evolution for Le = 1000 at t = 1520 (a), t = 3020 (b), t = 19820 (c).

In this section we consider, as a numerical application, the determination of the final morphology resulting from
the phase separation process of a binary solution in presence of longitudinal fibres. The numerical simulations
are carried out in two dimensions, in the plane orthogonal to the fibres as sketched in fig. 1, while the presence
of multiple fibres is taken into account by imposing periodic boundary conditions. This simplified model can be
descriptive of the thermal effects in a bicomponent polymeric matrix with immersed carbon micro-fibres. Since the
the conductivity of carbon fibres is in general at least one order of magnitude greater than that of polymeric resins,
the conductivity ratio is taken as 1/20. The control parameter λ in equation (4) is taken as 10−3κ. This is done in
order to model the fact that the fibres cool down more rapidly than the surrounding medium. With reference to fig.
1, the Cahn number of the system is defined as Cn = (L − D)/ε and expresses the ratio between the inter-fibre
distance and the thickness of the interface between the phases 1 and 2. The latter represents the phase separation
natural length scale. In our simulations Cn = 374, L = 1024, D = 650 and ∆x = ∆y = 1. As initial condition
we assume a homogeneous solution with critical composition (i.e. φ1 = φ2 = 0) at T = Tcr.
To investigate the influence of thermal effects in phase separation we carried out simulations for different values of
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the Lewis number. For Le = 1000, that is when the thermal diffusion is faster than the phase separation, the solution
is rapidly cooled and the separation process occurs almost uniformly around the fibre. The observed static contact
angle between the the two phases at the solid wall is of 90. This is a direct consequence of the choice for the free
energy density expressed by the function (1), in which the surface tensions between the three phases are implicitly
taken as equal.
For Le = 1 the thermal and phase separation characteristic times are of the same order of magnitude. The phase
demixing process results in the formation of domains that are parallel to the isothermal lines, as observed in fig. 3.
This result is also confirmed by the numerical simulations in [5]. The formation of this particular morphology is a
consequence of the fact that the isothermal line corresponding to T = Tcr, delimiting the unstable region around
the fibre where the decomposition takes place, propagates at the same velocity at which the two phases separate.
This means that as the unstable region radially expands, the phase separation instantaneously attains equilibrium,
generating a morphology pattern that aligns with the isothermal lines.

(a) (b) (c)

Figure 3: Phase separation evolution for Le = 1 at t = 1800 (a), t = 5400 (b), t = 95400 (c).

4 CONCLUSIONS
We presented a volume-penalisation spectral method that can be used to solve the Cahn-Hilliard equation in pres-
ence of immersed obstacles with natural boundary conditions on the solid boundaries, i.e. homogeneous Neumann
conditions for the phase and the chemical potential. More general wall affinity conditions can be assigned by specif-
ically selecting the form of the free energy density function. We used the proposed model to describe the effects of
temperature in phase separation of fibre-reinforced binary mixtures and we showed the role of the Lewis number in
determining the final morphology pattern. The dependence of the morphology on fibre diameter and spacing is the
subject of an ongoing investigation.
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