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Abstract. In this paper we present a modeling tool used for representing ductile fracture. A coupled damage-
plasticity model has been implemented. The model induces a softening behavior and the strong discontinuity method
was implemented as a regularization method. In addition, a linear displacement jump has been introduced in a four
node quadrilateral finite element.
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1 INTRODUCTION

Ductile materials are characterized by a severe non-linear behavior that induces two distinct phases of the global
response to failure analysis : the pre-peak phase in which plasticity and damage are evolving, and the softening post-
peak phase leading to a macro-crack growth responsible for the failure of the structure. The Lemaitre model[1], in
which plasticity and damage are evolving, is used to represent the different dissipative mechanisms during the pre-
peak phase. With regard to the post-peak phase, regularization is carried out using the strong discontinuity method
whose efficiency has been demonstrated in the description of brittle failure [2]. Most works on strong discontinuity
analysis consider a constant jump along the discontinuity surface within an element and this leads, in some cases,
to the well known ”locking phenomenon”. Furthermore, this hypothesis does not allow the representation of a
potential heterogeneous stress state within an element. In order to improve the description of a displacement jump
that enables the objective characterization of the post-peak phase, a four node quadrangular element enhanced with
a linear displacement jump is considered [3]. The determination of the local unknown variables is carried out by
the resolution of the discretized weak form of the equation of continuity of tractions, at the element level. The
global resolution is performed by performing a few modifications of the elementary tangent stiffness matrix in
order to consider the evolution of the discontinuity surface. Another contribution of this work is the consideration
of a coupled damage-elastoplastic model often used in the characterization of ductile fracture but never combined
with the strong discontinuity method that enables the regularization of the post-peak phase. This model enables
the discontinuity introduction criterion to be based on a physical consideration such as a damage threshold. The
present work is limited to the study of quasi-static loadings assuming both plane strain and axisymmetric hypothesis.
The regularization aspect of the method and the benefit of the linear jump on the discontinuity are proved with a
numerical three-point bending test.

2 THEORETICAL FORMULATION

In this section, we briefly present the models considered to represent both pre-peak and post-peak parts of the
material behavior, this means both bulk model and surface model used on the discontinuity.
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2.1 Bulk material model : Lemaitre damage model

With the aim of representing the pre-peak phase of the material behavior, we consider the coupled damage-plasticity
Lemaitre model [1] widely used in the literature to model ductile metal failure. We limit the study to the conside-
ration of isotropic damage (the scalar variable D is the isotropic damage) and isotropic hardening (ξ̄ represents the
accumulated plastic strain and q̄ its dual variable). In this case, the yield function is very close to the Von Mises
yield function constitutive model taking into account the effective stress σ̃ = σ/(1−D), and is written as follow :

φ̄(σ,D, q̄) =

√
3

2
dev(σ̃) : dev(σ̃)−

(
σy0 + q̄(ξ̄)

)
(1)

where σy0
is the elastic limit, q̄ is the hardening variable associated to the accumulated plastic strain ξ̄. In the

Lemaitre model, the damage evolution is written as follow :

Ḋ =
γ̇

1−D

(
−Y
S

)r

(2)

where Y is the thermodynamic force associated to the damage variable D, γ̇ is the plastic multiplier, and S and r
are the two Lemaitre parameters that characterize damage evolution.

2.2 Surface material model : strong discontinuity

Because of the damage evolution, the above described model presents a softening phase that requires a specific
treatment in order to ensure the objectivity of the solution. We choose to use the strong discontinuity method [6, 2]
in which strain band localization is taken into account by introducing a discontinuity surface of the displacement
jump.
The constitutive law chosen to represent the discontinuity surface behavior is a multi-surface damageable law [2]).
The associated yield function takes the form :

{ ¯̄φn(tΓs
, ¯̄q) = tΓs

· n− (¯̄σf − ¯̄qn)
¯̄φm(tΓs , ¯̄q) = |tΓs ·m| − (¯̄σs − ¯̄qm)

(3)

where n and m represent, respectively, the unit normal and tangential vectors to the discontinuity surface.

3 NUMERICAL IMPLEMENTATION
Introducing a displacement field discontinuity requires an enhancement of the standard shape functions with in-
compatible shape functions enabling to interpolate the displacement jump on the discontinuity. The enhancement
being based on the incompatible modes method, only the strains interpolations are modified. As specified above, we
consider a quadrangular element with four nodes and a linear displacement jump. On the basis of the works of [3],
the displacement jump is projected on a basis (n0, n1,m0,m1) that corresponds to the different modes of separation
of a crack, in the linear case : a constant normal separation mode n0, a linear normal mode n1 equivalent to the
rotation of the discontinuity around the discontinuity midpoint xΓs

, a constant tangential separation mode m0 and
a linear tangential separation mode m1.
The kinematics proposed (described in figure 1) allow to represent every possible separation modes in two dimen-
sions, in the case of a linear displacement jump.
Derivation of the interpolated displacement field gives the following strain interpolation :

εh(x) =

a=4∑
a=1

Ba(x)ua −

 ∑
a∈Ω+

Ba(x)−N

 [αn0 , αm0]
T

+αn1

− ∑
a∈Ω+

Ba(x)

[
0 1
−1 0

]
(xa − xΓs) + ξΓsN · n δΓs


+αm1

− ∑
a∈Ω+

Ba(x) ((xa − xΓs) ·m)m+MmHΓs + ((x− xΓs) ·m)NmδΓs


(4)
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FIGURE 1: (a) constant (red) and linear (blue) normal modes, (b) constant (red) and linear (blue) tangential modes

where ξΓs
= (x− xΓs

) ·m (x ∈ Γs) represents the curvilinear abscissa along the discontinuity, N =

nx 0
0 ny

ny nx


(same as M) and δΓs

represents the Dirac distribution on the discontinuity surface.
Both real and virtual strain interpolations can be put in the general form :

ε(x, t) = Bu + Ḡrα + ¯̄GrαδΓs
; δε(x, t) = Bδu + Ḡvδα + ¯̄GvδαδΓs

(5)

where α = < αn0 , αn1 , αm0 , αm1 >
T , Ḡv and ¯̄Gv are based on Ḡr and ¯̄Gr (matrix forms of the intepolations

written in (4)) in order to fulfil the patch-test.
Considering these chosen interpolations for both real and virtual strain fields, the discretized problem may be ex-
pressed in the form of the equations obtained using the incompatible modes method ([4]) :

Nel

A
e=1

[f int,e(t)− fext,e(t)] = 0

he(t) =

∫
Ωe\Γs

ḠT
vσdΩ +

∫
Γs

¯̄Gv

T
σ|ΓsdΓ = 0, ∀e ∈ [1, Nel]

(6)

The global equilibrium equation is completed by a local equilibrium equation written for each localized element,
and corresponds to the projection on the different separation modes of the weak form of the continuity of tractions
equation along Γs.
After linearisation and static condensation at elementary level, the problem resolution is reduced to the resolution of
the standard equation :

K̂(i)∆d(i) = fext − f int(i) (7)

where K̂(i) is the modified tangent stiffness matrix that takes into account the material behavior at the localization
bands scale, in the ”macro” level.

3.1 Numerical result

A three-point centered bending numerical test was undertaken on a notched specimen. Parameters for the bulk were
calibrated for an AISI 1010 low carbon steel in a rolled state by Benallal et al. [7]. The model and the corresponding
meshes used and the results in terms of force/displacement are presented in figure 2. The influence of the activation
of the linear mode on the global response has been studied for two topologically identical meshes, but with different
element sizes.
We note that results differ slightly when we take into consideration the linear mode, and that the peak is higher when
only a constant displacement jump is considered. This may be due to the ”locking phenomenon” that occurs in the
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case of the constant jump alone. The interest in the linear mode is obvious for this test, since we observe that a stress
concentration occurs near the notch that induces a heterogeneous stress state for the neighboring elements. Thus, a
linear opening of the crack allows for a more correct representation of the traction state along the interface for these
elements than with only a simple constant crack opening.

Time=0.00E+00

Time=0.00E+00

(a)                                                                                         (b)

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Displacement (mm)

F
o
rc

e 
(N

/m
m

)mesh a

mesh b

deformed mesh a (x20)

mesh b with constant jump

mesh a with constant jump

mesh a with linear jump

mesh b with linear jump

FIGURE 2: (a) Considered meshes and deformed mesh, (b) Force/displacement curve

4 CONCLUSIONS
A ductile fracture modeling method using the strong discontinuity method for the regularization of the post-peak
phase and Lemaitre’s damage model for the pre-peak phase has been presented. Results demonstrating the interest
in the use of a linear displacement jump in the case of a three-point bending test were shown. Ductile fracture often
induces large strain states and so an adaptation of the developments in this hypothesis will be undertaken shortly, in
addition to considering the third invariant of the stress tensor in order to take into account the effect of this parameter
on the crack propagation direction. Those results should be presented at the conference.
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