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A force-based formulation for a nonlinear optimization program that performs 2 nd order analysis of plane frames is derived, under assumptions for elastic-perfectly plastic material and non-holonomic plastic hinges of zero length. The problem is solved in an incremental manner using sequential quadratic programming (SQP). Results are compared with existing literature and/or widely accepted commercial packages, proving the formulation efficient and much faster than the direct stiffness method.

INTRODUCTION

An important part of structural design and/or evaluation is to estimate the behaviour of structures beyond the elastic limit. Especially when a structure is flexible enough, resulting displacements due to external loading may severely exceed the expected ones derived by structural analysis of the 1 st order. The importance of introducing the effects the structure's deformed geometry has on the structure's stress components is therefore evident, and has been acknowledged by the engineering community for many years now. Based on the assumptions made, there are two main approaches; distributed plasticity (Hibbit et al. [START_REF] Hibbitt | A finite element formulation for problems of large strain and large displacement[END_REF], Bathe et al. [START_REF] Bathe | Elastic-plastic large deformation static and dynamic analysis[END_REF]) and concentrated plasticity (Liew & Chen [3], [START_REF] Liew | 2nd order refined plastic hinge analysis for frame design-Part II[END_REF]). For both cases, an enormous amount of bibliography has been presented in the past years. Recent work in distributed plasticity has been done by Alemdar and White [START_REF] Alemdar | Displacement, Flexibility, and Mixed Beam-Column Finite Element Formulations for Distributed Plasticity Analysis[END_REF]. Also, Wang [START_REF] Wang | Advanced Inelastic Analysis of Frame Structures Considering Shearing and Warping Deformations[END_REF] did an interesting work implementing shear and warping effects in 2 nd order analysis, and showed that shear deformations should be taken into account, especially for structures with large height to span ratios. Recent work based on concentrated plasticity was presented by Ngo-Huu et al. in [START_REF] Ngo-Huu | Second-order plastic-hinge analysis of space semi-rigid steel frames[END_REF]. Among the two approaches, the latter is preferable for practical purposes, due to the much lower computational cost required. Both approaches are based on the displacement method (e.g. Wempner [START_REF] Wempner | Discrete approximations related to nonlinear theories of solids[END_REF], Riks [START_REF] Riks | An incremental approach to the solution of snapping and buckling problems[END_REF]) and require a certain number of iterations within each step, as well as modification of the problem's parameters within subsequent steps (e.g. Crisfield [START_REF] Crisfield | An arc-length method including line searches and accelerations[END_REF]). However, in some occasions they may miss the critical point(s) and lead to convergence problems. On the other hand, Maier [START_REF] Maier | A quadratic programming approach for certain classes of nonlinear structural problems[END_REF] has proved that mathematical programming offers an ideal framework for non-holonomic plasticity. Indeed, local unstressing is a more realistic model for the real behaviour of structures, especially in the case of cyclic loading, where plastic hinges open and close subsequently, depending on the direction of the applied loads; nevertheless, local unstressing may occur even in cases of monotonic loading. Also, the force method offers a better alternative to the displacement method, mainly due to the smaller number of unknowns [START_REF] Spillers | Application of topology in structural analysis[END_REF]; yet, up to now, the displacement method has been used exclusively because it is considered as easier to automate. However, efficient and easy to program techniques have been developed for automating the force method, for both 2D [START_REF] Spiliopoulos | On the automation of the force method in the optimal plastic design of frames[END_REF] and 3D frames [START_REF] Spiliopoulos | A powerful force-based approach for the limit analysis of three-dimensional frames[END_REF]. Moreover, optimization algorithms have evolved in the past years, and are able to solve for non-linear objective functions with linear constraints [START_REF] Powell | TOLMIN: A Fortran Package for Linearly Constrained Optimization Calculation[END_REF]. Thus, the tools for the development of a new, promising, force-based approach are readily available. A brief presentation follows below. * 0, 0 pl y q
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PROBLEM FORMULATION

For the sake of simplicity and briefness, we focus on plane frames consisting of elastic-perfectly plastic material with non-holonomic plastic hinges of zero length (Figures 1a and1b). Only nodal loads are considered, and each member has two critical sections (hinges), one at every end (Figure 1b). Distributed loading may also be implemented, either by splitting each member to smaller ones and applying equivalent point loads at the intermediate connecting nodes, or by adding the elastic rotations due to distributed loading to the corresponding elastic free rotations, according to [START_REF] Smith | The Wolfe-Markowitz algorithm for nonholonomic elastoplastic analysis[END_REF]. The frames are subject to predefined patterns of static loads (Figure 2). Furthermore, we assume that complete lateral restraining holds (2D analysis).

A fully automated flexibility matrix formulation for the problem is derived through equilibrium arguments; it is based on the compatibility, the static admissibility, and the complementarity conditions. Solution is derived in an incremental manner. Equations are derived for a typical step "k" of analysis.

Figure 1a: Elastic-perfectly plastic behaviour and Figure 1b: Plastic hinges of zero length non -holonomic plasticity for a stress component "Q" vs. its corresponding strain "q"; complementarity condition. The main idea is that the structure's stress components' increments ("∆m k " for bending moments, "∆n k " for axial forces, "∆Q k " for a vector that combines the previous two) are composed out of two subsets; one due to external loading "
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where "∆γ k " is a load scaling factor, " 0 B " is a matrix that contains the stress components of a statically determinate basis due to unit valued external loads, with respect to the geometry of the structure, and "r p " is the unit vector along the direction of the vector of external loads (see Figure 2)]; and one due to static indeterminacy " ⋅ ∆ B p ", [where " B " is a matrix that contains the stress components of a set of self-equilibrating systems due to unit valued redundant stresses, with respect to the geometry of the actual structure, and " k ∆p " are the increments of the redundant stress components]. By combining the previous, we have:
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The equilibrium matrices ( B , 0 B ) are formed in an automated way [START_REF] Spiliopoulos | An Efficient Mathematical Programming Method for the Elastoplastic Analysis of Frames[END_REF], using techniques and algorithms based on graph theory; a simple example may be found in [START_REF] Spiliopoulos | A quick estimate of the strength of uniaxially tied framed structures[END_REF]. However, for analysis with "P-∆" effects, equilibrium matrices must be derived by taking into consideration the deformed state of both the statically determinate bases and the self-equilibrating systems, respectively. Thus, equations for 0 B and B are modified as follows (for simplicity, the equations below are presented for the cases of a single load, and a standalone mesh, respectively): 

Where the 2 nd order displacements "∆x" and "∆y" of each critical section are computed using the principle of virtual works: By applying a unit value virtual load (horizontal for "∆x", vertical for "∆y") at the critical section of interest "i", the virtual stress diagram of a statically determinate basis is evaluated; this basis is defined by the shortest path between the point of application of the virtual load and the boundary node of the corresponding cantilever (for 0 B ), or the end node of the corresponding mesh (for B ). The equilibrium matrices of the virtual cantilevers are computed using only the 1 st order terms in equation ( 2). Also, for the formulation of B of the 2 nd order, the horizontal (p x ) and vertical (p y ) unit value redundant stress components of every mesh must be considered to lie along the direction of the conceivable line that joins the two displaced ends of the imposed cut.

The "P-δ" effects are implemented in the problem's formulation using the useful functions derived by A. Berry, back in 1916. A way to derive A. Berry's functions may be found in [START_REF] Pippard | Analysis of Engineering Structures[END_REF]; herein, we use the first two terms of a Taylor approximation of these functions around zero:
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w, and "N c " is the total number of critical sections of the structure. The static admissibility condition, for a typical step k of analysis, may be written as follows:
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Where the incidence matrix x collects the linear coefficients (s 1j ,s 2j ) of each line j used to approximate the convex curve of the failure criterion, for all four quadrants, with respect to the plastic bearing capacities (m * ,n * ) of each member, according to: 3). Vector z * collects the plastic potentials of every critical section which are -by definition-positive quantities for both positive and negative plasticization (Figure 1a, Figure 3), and the vector { y _1 1 ⋯ 1`. For the plastic deformations of a critical section, the axiom of maximization of plastic work yields:
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Where: ^( & ) { -x y • -x y • Δ , as occurs from [START_REF] Alemdar | Displacement, Flexibility, and Mixed Beam-Column Finite Element Formulations for Distributed Plasticity Analysis[END_REF]. Furthermore, with the help of "z * " and "Δ" & ", non-holonomic plasticity may be expressed by the complementarity condition (Figure 1a): z * y • Δ" 0 , z * ≥ ‰ , Δ" ≥ ‰ (7) The compatibility condition, as was first proposed by Maxwell, is:
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) By substituting (1) into (4), then substituting (5) into [START_REF] Ngo-Huu | Second-order plastic-hinge analysis of space semi-rigid steel frames[END_REF] and combining both into (8), we have:
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, with reference to (1) ̶ (4).

Equation ( 9), together with ( 5) and [START_REF] Ngo-Huu | Second-order plastic-hinge analysis of space semi-rigid steel frames[END_REF], may be seen as the Karush-Kuhn-Tucker (KKT) conditions (which are an equivalent form of the Fritz-John conditions) of the following optimization problem:
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The way to solve the non-linear problem described by equation ( 10) is to apply a small load increment at the beginning of every analysis step, and then determine the direction on which the solution lies, using any SQP algorithm (e.g. [START_REF] Powell | TOLMIN: A Fortran Package for Linearly Constrained Optimization Calculation[END_REF]); the true load factor "Δ " that activates a new plastic hinge is then found using a wellestablished procedure which may be found in [START_REF] Spiliopoulos | Limit States of Materials and Structures[END_REF].

EXAMPLE

A 6-storey, 1-bay skeleton with storey height of 3.0m and bay width of 6.0m, made of steel S220, serves as a benchmark for the method; the structure's mechanical properties are summarized in Table 1; beams are subject to a uniform load of 9kN/m. A comparative nonlinear static analysis including P-∆ effects and large displacements was performed using SAP2000 [START_REF]User's manual[END_REF] (see Figure 4). It is worth mentioning that, using SAP2000, total time for 2 nd order analysis took a little more than 22 minutes; using the proposed method, it took no more than 60 seconds in total. Figure 4: Static pushover curves for both 1 st and 2 nd order analyses using both SAP2000 and the force method.

CONCLUSIONS

A new, direct, force-based formulation for inelastic 2 nd order analysis of planar frames was presented. Nonholonomic behaviour is contained directly inside the solution of the sequential quadratic program. Equilibrium is effectively determined until the critical point beyond which instability phenomena start to occur. It renders robust and faster than the equivalent direct stiffness method, thus, it is most appealing for practical purposes (e.g. structural evaluation). The method may be extended to the analysis of 3D structures; material hardening/softening may also be implemented; work is being done towards these directions and will be presented in the near future. 
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Table 1 :

 1 Mechanical Properties of 6-Storey Frame.

	Members Length Section	Elast. Modulus Mom. of Inertia (m 4 ) Area (m 2 )	M p (kNm)	N p (kN)
	Columns 3.0m	HEM260 2.0E+08 kPa	3.131E-04	2.200E-02 555.28	4840.0
	Beams	6.0m	HEB160 2.0E+08 kPa	2.492E-05	5.430E-03 77.88	1194.6
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