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Abstract. A stabilised low-order finite element methodology is presfor the numerical simulation of a mixed
conservation law formulation in fast solid dynamics. Theediformulation, where the unknowns are linear momen-
tum, deformation gradient and total energy, can be cast énftim of a system of first order hyperbolic equations.
The difficulty associated with locking effects commonlyantered in traditional displacement formulations is ad-
dressed by treating the deformation gradient as one of tivegoy variables. Such formulation is first discretised
in space by using a stabilised Petrov-Galerkin (PG) methaglg a generalisation of the Variational Multi-Scale
(VMS) approach. The semi-discretised system of equatienthan evolved in time by employing a Total Variation
Diminishing Runge-Kutta (TVD-RK) time integrator. Theukisg formulation achieves optimal convergence with
equal orders in velocity (or displacement) and stresseserfes of numerical examples are used to assess the per-
formance of the proposed algorithm. The new formulationrés’gn to be very efficient in nearly incompressible
and bending-dominated scenarios.
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1 INTRODUCTION

Dynamic displacement-based finite element codes, conb#tmoded underintegrated hexahedron element and
explicit time marching schemes, are commonly used for theellsition of large strain impact problems. However,
many practical applications involve geometries that areslacomplex to be meshed using this type of discretisation.
The presence of large deformations accompanied by sevesk digtortion may lead to poorly shaped elements
unless some form of adaptive remeshing is used. At predenpdssibilities of employing mesh adaptation with
hexahedral elements are very limited. On the contraryalietiral mesh generators and related mesh adaptivity
procedures are readily available.

From the spatial discretisation standpoint, the use oélifiaite element interpolation leads to second order cenver
gence for the primary variables (i.e. displacements) batarder less for derived variables (i.e. strains and sts@sse
Efforts to develop effective linear tetrahedral elementsath nearly incompressible and bending deformations have
only been partially successful suffering from spurious hagésms similar to hourglassing [1]. From the time dis-
cretisation point of view, the use of Newmark-type integratis known to be very inefficient in shock-dominated
problems.

To resolve these issues, we introduce a stabilised Petaterkin (PG) formulation in conjunction with a Total
Variation Diminishing Runge-Kutta (TVD-RK) time integmatfor the numerical analysis of fast dynamics. A mixed
methodology is presented in the form of a system of first oodeiservation laws, where the linear momentum,
the deformation gradient and the total energy are regargdieathree main conservation variables of this mixed
approach [2]. The use of linear tetrahedral elements aekisgcond order convergence in velocity and stresses, and
seems to be very effective in nearly incompressible, bendimd shock dominated scenarios.
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2 GOVERNING EQUATIONSFOR REVERSIBLE ELASTODYNAMICS

The motion of a continuum body can be described by a mapgiegtablished from an undeformed (or material)
configurationX € V C R3 to a deformed (or spatial) configuratianc v(t) C R? at timet, namelyx = ¢(X, t).
The mixed conservation law formulation for Lagrangiandalynamics is generally presented as follows [2],

0
S = Vo P =pob, (12)
%—f—vo-(v@u):o, (1b)
o Yy (PTo-Q)=s, (10)

wherep = pgv is the linear momentum per unit of undeformed volumgis the material density; is the velocity
field, b is the body force per unit mass; is the deformation gradienF is the first Piola-Kirchhoff stress tensor,
E7 is the total energy per unit of undeformed volundeis the identity (or Kronecker) tensof is the heat flux
vector, s is the heat source arid describes the material gradient operator in undeformedespehe above laws
can be combined into a system of first order conservationtemssas

ou oF;
=+ =L I=1,2,3. 2
8t+8X1 S, 4 ,2,3 (2)

To complete the coupled system (1), a closure equationrizdnted by means of an appropriate frame-indifferent
constitutive model [3] relating deformation to stress figld. P = P(F)).

3 STABILISED NUMERICAL METHOD

A stabilised Petrov-Galerkin (PG) methodology incorpm@ta suitable numerical stabilisation into the Bubnov-
Galerkin formulation is presented [4]. To establish a wealk/ériational) statement under isothermal consideration
(enabling the energy equation (1c) to be decoupled fromitieat momentum and compatibility balance principles
(1a-1b)), we multiply the expressions (1a-1b) by an apgadpstabilised conjugate virtual fiebdd’** and integrate
over the voluméd/ of the body to give

st
SW (U, V™) :/ SVER AV = 0; 5v5t:5v+rTATa‘W- R = [ Ry }; SVt = [ ov ]
14

Tox;’ RrF oPst
3
Or in complete form

, F
SW (U, 5v°t, 5P = / Svt . (87" —Vy-P-— pob) dv +/ ) <8 — Vov) dv =0. (4)

v ot v ot

N————
Ry RF

Note thativ*! is the stabilised virtual velocity.P*" is the stabilised virtual first Piola-Kirchhoff stresd, = 971

is the flux Jacobian matrix [2]r is the stabilisation parameter (an intrinsic time scale) &), and’ R ¢ are the
residuals of the linear momentum and deformation gradiefarize principles. Pairs such &v*‘, R,} and
{6P*' R} are said to be work conjugate with respect to the initial s/ in the sense that their inner product
yields work rate per unit of undeformed volume.

The stabilised virtual fieldV*' can be particularised for the set of relevant variables kmie

6p*t = 6p — 17,V - O P; SP' = 6P — 75 C : Vov; SP=C:F. (5)

Substituting equations (5a) and (5b) into equation (4)etiogr withép*t = podv*t, yields the following variational
statements

dWso (U, dv) = / (0v-Rp —7F (C: Vyov) : Rp) dV =0, (6a)
v

SWsp(U,6P) = /

(513 :Rp — 2 (V- 5P) .R,,> dv = 0. (6b)
L

Po
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Introducing the interpolation fafv given bydv = >, N,0v, and the use of Gauss divergence theorem renders [3]

/NapdV NthA+/ Napode—/ [P-l—TFCZ(VQU—F) VN, dV; t? = PN, (7)
|4 \4

Pst

wheret? is the traction vector andV being the material outward unit normal on the bound¥; Observe that
the square brackets term on the right-hand side of (7) desca stabilised first Piola-Kirchhoff streBs*. More
generally, this term can be reinterpreted as the first R{@iehhoff stress of a stabilised deformation gradient dedin
by

P =P(F"); F"=F+rp(Vo-F). (8)

Above expression (8b) can be further enhanced by addingeaititegrated stabilisation ter@ 77 (Vov — F) dt
aims at diffusing spurious curl-error mechanisms [5] gatest by compatibility conditions, resulting into a new
definition for F** as follows

F*' = F+1p (Vov— )+a(Voaz— F), 9)

wherea is a non-dimensional stabilisation parameter, typicaifween0 and0.5. Substituting equations (8) and
(9) into the square brackets term of equation (7) and noliagit = >, Nyp, to resultin

ZMabe :/ N, tB dA+/ Napode—/ P (F“) VN, dV, (10)
b av v v
whereM.;, = ([, NoN» dV) I is the consistent mass matrix contribution.
An identical discretisation procedure can now be followedsiVs » (6b) by employing a standard finite element
expansionP = )" N,0P,andF =}, N,F resulting in

. . ) ) 1 .
ZMabe:/ Na('uB®N)dA—/ vt Q@ VN, dV; vbt:p—[p—&—Tp(VmP-&-pob—p)]. (11)
5 v v 0

Both traction and velocity vectors at the boundary (t&.andv?) are computed from prescribed boundary con-
ditions. Notice that the proposed discrete approximat{@b8) and (11)) can also be identified as a general case
of Variational Multi-Scale (VMS) analysis [6], relying omé idea that unstable numerical methodology can be
stabilised by enriching the discrete solution approxioraby means of fine (or subgrid) scales.

These semi-discrete expressions (10) and (11) may thertdgrated in time by employing the explicit two-stage
Total Variation Diminishing Runge-Kutta (TVD-RK) time giping procedure due to its excellent TVD qualities [2].

4 NUMERICAL EXAMPLES

A two-dimensional example is first presented to model thehsig of a liquid in a unit squared container con-
strained with rollers at the bottom and on the left and rigimidhsides. In this problem the gravitational force is
a source term that must be added into the equations. It is ttlahthe stabilised Petrov-Galerkin (PG) formula-
tion eliminates both the volumetric locking effects and éppearance of spurious pressure instabilities in the case
of near incompressibility (see Figure 1). Another intéresexamples are three-dimensional short column with a
unit square cross section initially loaded by various typiegrescribed velocities (i.e. angular velocity and linear
variation of velocity) are also examined, illustrating thending capability of the proposed algorithm using linear
tetrahedral meshes within the context of large deformdteraviours. Figure 2 shows that the resulting formulation
performs effectively in bending-dominated scenario airdiahtes the appearance of non-physical curl-error modes
in the solution over a long-term response.

5 CONCLUSIONS

In this paper, a stabilised computational framework is psagl for the numerical analysis of fast transient phenom-
ena within the context of large deformations. The mixed eovettion law formulation, in the form of a system
of first order hyperbolic equations, performs extremelyhiveboth nearly incompressible and bending dominated
scenarios. Both velocities (or displacements) and stsadisplay the same rate of convergence, which proves ideal
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in the case of linear finite element interpolation oftenlgdisn industry. It has been shown that the proposed for-
mulation overcomes excessive artificial stiffness andquescheckerboard modes, typical of linear triangular and
tetrahedral meshes in bending-dominated problems. Thmoped numerical algorithm provides a good balance
between accuracy and speed of computation, showing vemigirg results, benchmarked against the recently
proposed Finite Volume methodology [2]. A discontinuiypturing operator with the purpose of enhancing shock

resolution in the vicinity of sharp spatial gradients is trext step of the work. Finally, the methodology opens a
door to the introduction of higher-order basis functions.
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Figure 1: Pressure distribution of deformed shapes at acpkat time using: (a) Standard FEM procedure; (b)
Stabilised Petrov-Galerkin; and (c) Mean dilatation ajppgto
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Figure 2: Sequence of pressure distribution of deformegestiga) Twisting column; and (b) Bending column.
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