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Abstract. A stabilised low-order finite element methodology is presented for the numerical simulation of a mixed
conservation law formulation in fast solid dynamics. The mixed formulation, where the unknowns are linear momen-
tum, deformation gradient and total energy, can be cast in the form of a system of first order hyperbolic equations.
The difficulty associated with locking effects commonly encountered in traditional displacement formulations is ad-
dressed by treating the deformation gradient as one of the primary variables. Such formulation is first discretised
in space by using a stabilised Petrov-Galerkin (PG) methodology, a generalisation of the Variational Multi-Scale
(VMS) approach. The semi-discretised system of equations are then evolved in time by employing a Total Variation
Diminishing Runge-Kutta (TVD-RK) time integrator. The resulting formulation achieves optimal convergence with
equal orders in velocity (or displacement) and stresses. A series of numerical examples are used to assess the per-
formance of the proposed algorithm. The new formulation is proven to be very efficient in nearly incompressible
and bending-dominated scenarios.
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1 INTRODUCTION

Dynamic displacement-based finite element codes, combining 8-noded underintegrated hexahedron element and
explicit time marching schemes, are commonly used for the simulation of large strain impact problems. However,
many practical applications involve geometries that are far too complex to be meshed using this type of discretisation.
The presence of large deformations accompanied by severe mesh distortion may lead to poorly shaped elements
unless some form of adaptive remeshing is used. At present, the possibilities of employing mesh adaptation with
hexahedral elements are very limited. On the contrary, tetrahedral mesh generators and related mesh adaptivity
procedures are readily available.

From the spatial discretisation standpoint, the use of linear finite element interpolation leads to second order conver-
gence for the primary variables (i.e. displacements) but one order less for derived variables (i.e. strains and stresses).
Efforts to develop effective linear tetrahedral elements in both nearly incompressible and bending deformations have
only been partially successful suffering from spurious mechanisms similar to hourglassing [1]. From the time dis-
cretisation point of view, the use of Newmark-type integrators is known to be very inefficient in shock-dominated
problems.

To resolve these issues, we introduce a stabilised Petrov-Galerkin (PG) formulation in conjunction with a Total
Variation Diminishing Runge-Kutta (TVD-RK) time integrator for the numerical analysis of fast dynamics. A mixed
methodology is presented in the form of a system of first orderconservation laws, where the linear momentum,
the deformation gradient and the total energy are regarded as the three main conservation variables of this mixed
approach [2]. The use of linear tetrahedral elements achieves second order convergence in velocity and stresses, and
seems to be very effective in nearly incompressible, bending and shock dominated scenarios.
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2 GOVERNING EQUATIONS FOR REVERSIBLE ELASTODYNAMICS

The motion of a continuum body can be described by a mappingφ established from an undeformed (or material)
configurationX ∈ V ⊂ R

3 to a deformed (or spatial) configurationx ∈ v(t) ⊂ R
3 at timet, namelyx = φ(X, t).

The mixed conservation law formulation for Lagrangian solid dynamics is generally presented as follows [2],

∂p

∂t
−∇0 · P = ρ0b, (1a)

∂F

∂t
−∇0 · (v ⊗ I) = 0, (1b)

∂ET

∂t
−∇0 · (P

Tv −Q) = s, (1c)

wherep = ρ0v is the linear momentum per unit of undeformed volume,ρ0 is the material density,v is the velocity
field, b is the body force per unit mass,F is the deformation gradient,P is the first Piola-Kirchhoff stress tensor,
ET is the total energy per unit of undeformed volume,I is the identity (or Kronecker) tensor,Q is the heat flux
vector,s is the heat source and∇0 describes the material gradient operator in undeformed space. The above laws
can be combined into a system of first order conservation equations as

∂U

∂t
+

∂FI

∂XI

= S, ∀ I = 1, 2, 3. (2)

To complete the coupled system (1), a closure equation is introduced by means of an appropriate frame-indifferent
constitutive model [3] relating deformation to stress field(i.e. P = P (F )).

3 STABILISED NUMERICAL METHOD

A stabilised Petrov-Galerkin (PG) methodology incorporating a suitable numerical stabilisation into the Bubnov-
Galerkin formulation is presented [4]. To establish a weak (or variational) statement under isothermal considerations
(enabling the energy equation (1c) to be decoupled from the linear momentum and compatibility balance principles
(1a-1b)), we multiply the expressions (1a-1b) by an appropriate stabilised conjugate virtual fieldδVst and integrate
over the volumeV of the body to give

δW (U , δVst) =

∫

V

δVst·R dV = 0; δVst = δV+τT
A

T

I

∂δV

∂XI

; R =

[
Rp

RF

]

; δVst =

[
δvst

δP st

]

.

(3)
Or in complete form

δW (U , δvst, δP st) =

∫

V

δvst ·

(
∂p

∂t
−∇0 · P − ρ0b

)

︸ ︷︷ ︸

Rp

dV +

∫

V

δP st :

(
∂F

∂t
−∇0v

)

︸ ︷︷ ︸

RF

dV = 0. (4)

Note thatδvst is the stabilised virtual velocity,δP st is the stabilised virtual first Piola-Kirchhoff stress,AI = ∂FI

∂U

is the flux Jacobian matrix [2],τ is the stabilisation parameter (an intrinsic time scale) and Rp andRF are the
residuals of the linear momentum and deformation gradient balance principles. Pairs such as{δvst,Rp} and
{δP st,RF } are said to be work conjugate with respect to the initial volumeV in the sense that their inner product
yields work rate per unit of undeformed volume.
The stabilised virtual fieldδVst can be particularised for the set of relevant variables as follows

δpst = δp− τp∇0 · δP ; δP st = δP − τF C : ∇0δv; δP = C : δF . (5)

Substituting equations (5a) and (5b) into equation (4), together withδpst = ρ0δv
st, yields the following variational

statements

δWδv(U , δv) =

∫

V

(δv ·Rp − τF (C : ∇0δv) : RF ) dV = 0, (6a)

δWδP (U , δP ) =

∫

V

(

δP : RF −
τp

ρ0
(∇0 · δP ) ·Rp

)

dV = 0. (6b)
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Introducing the interpolation forδv given byδv =
∑

a
Naδva and the use of Gauss divergence theorem renders [3]

∫

V

Naṗ dV =

∫

∂V

Nat
B dA+

∫

V

Naρ0b dV −

∫

V

[

P + τFC : (∇0v − Ḟ )
]

︸ ︷︷ ︸

P st

∇0Na dV ; tB = PN̂ , (7)

wheretB is the traction vector and̂N being the material outward unit normal on the boundary∂V . Observe that
the square brackets term on the right-hand side of (7) describes a stabilised first Piola-Kirchhoff stressP st. More
generally, this term can be reinterpreted as the first Piola-Kirchhoff stress of a stabilised deformation gradient defined
by

P st := P
(
F st

)
; F st := F + τF

(

∇0v − Ḟ
)

. (8)

Above expression (8b) can be further enhanced by adding a time-integrated stabilisation term
∫

t
τF (∇0v − Ḟ ) dt

aims at diffusing spurious curl-error mechanisms [5] generated by compatibility conditions, resulting into a new
definition forF st as follows

F st := F + τF

(

∇0v − Ḟ
)

+ α (∇0x− F ) , (9)

whereα is a non-dimensional stabilisation parameter, typically between0 and0.5. Substituting equations (8) and
(9) into the square brackets term of equation (7) and noting thatṗ =

∑

b
Nbṗb to result in

∑

b

Mabṗb =

∫

∂V

Nat
B dA+

∫

V

Naρ0b dV −

∫

V

P
(
F st

)
∇0Na dV, (10)

whereMab =
(∫

V
NaNb dV

)
I is the consistent mass matrix contribution.

An identical discretisation procedure can now be followed for δWδP (6b) by employing a standard finite element
expansionδP =

∑

a
NaδP a andḞ =

∑

b
NbḞ b resulting in

∑

b

MabḞ b =

∫

∂V

Na(v
B ⊗ N̂) dA−

∫

V

vst ⊗∇0Na dV ; vst =
1

ρ0
[p+ τp (∇0 · P + ρ0b− ṗ)] . (11)

Both traction and velocity vectors at the boundary (i.e.tB andvB) are computed from prescribed boundary con-
ditions. Notice that the proposed discrete approximations((10) and (11)) can also be identified as a general case
of Variational Multi-Scale (VMS) analysis [6], relying on the idea that unstable numerical methodology can be
stabilised by enriching the discrete solution approximation by means of fine (or subgrid) scales.
These semi-discrete expressions (10) and (11) may then be integrated in time by employing the explicit two-stage
Total Variation Diminishing Runge-Kutta (TVD-RK) time stepping procedure due to its excellent TVD qualities [2].

4 NUMERICAL EXAMPLES

A two-dimensional example is first presented to model the sloshing of a liquid in a unit squared container con-
strained with rollers at the bottom and on the left and right hand sides. In this problem the gravitational force is
a source term that must be added into the equations. It is clear that the stabilised Petrov-Galerkin (PG) formula-
tion eliminates both the volumetric locking effects and theappearance of spurious pressure instabilities in the case
of near incompressibility (see Figure 1). Another interesting examples are three-dimensional short column with a
unit square cross section initially loaded by various typesof prescribed velocities (i.e. angular velocity and linear
variation of velocity) are also examined, illustrating thebending capability of the proposed algorithm using linear
tetrahedral meshes within the context of large deformationbehaviours. Figure 2 shows that the resulting formulation
performs effectively in bending-dominated scenario and eliminates the appearance of non-physical curl-error modes
in the solution over a long-term response.

5 CONCLUSIONS

In this paper, a stabilised computational framework is proposed for the numerical analysis of fast transient phenom-
ena within the context of large deformations. The mixed conservation law formulation, in the form of a system
of first order hyperbolic equations, performs extremely well in both nearly incompressible and bending dominated
scenarios. Both velocities (or displacements) and stresses display the same rate of convergence, which proves ideal
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in the case of linear finite element interpolation oftenly used in industry. It has been shown that the proposed for-
mulation overcomes excessive artificial stiffness and pressure checkerboard modes, typical of linear triangular and
tetrahedral meshes in bending-dominated problems. The proposed numerical algorithm provides a good balance
between accuracy and speed of computation, showing very promising results, benchmarked against the recently
proposed Finite Volume methodology [2]. A discontinuity-capturing operator with the purpose of enhancing shock
resolution in the vicinity of sharp spatial gradients is thenext step of the work. Finally, the methodology opens a
door to the introduction of higher-order basis functions.
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Figure 1: Pressure distribution of deformed shapes at a particular time using: (a) Standard FEM procedure; (b)
Stabilised Petrov-Galerkin; and (c) Mean dilatation approach.

(a) (b)

Figure 2: Sequence of pressure distribution of deformed shapes: (a) Twisting column; and (b) Bending column.
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