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INTRODUCTION

Dynamic displacement-based finite element codes, combining 8-noded underintegrated hexahedron element and explicit time marching schemes, are commonly used for the simulation of large strain impact problems. However, many practical applications involve geometries that are far too complex to be meshed using this type of discretisation. The presence of large deformations accompanied by severe mesh distortion may lead to poorly shaped elements unless some form of adaptive remeshing is used. At present, the possibilities of employing mesh adaptation with hexahedral elements are very limited. On the contrary, tetrahedral mesh generators and related mesh adaptivity procedures are readily available.

From the spatial discretisation standpoint, the use of linear finite element interpolation leads to second order convergence for the primary variables (i.e. displacements) but one order less for derived variables (i.e. strains and stresses). Efforts to develop effective linear tetrahedral elements in both nearly incompressible and bending deformations have only been partially successful suffering from spurious mechanisms similar to hourglassing [START_REF] Bonet | A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications[END_REF]. From the time discretisation point of view, the use of Newmark-type integrators is known to be very inefficient in shock-dominated problems.

To resolve these issues, we introduce a stabilised Petrov-Galerkin (PG) formulation in conjunction with a Total Variation Diminishing Runge-Kutta (TVD-RK) time integrator for the numerical analysis of fast dynamics. A mixed methodology is presented in the form of a system of first order conservation laws, where the linear momentum, the deformation gradient and the total energy are regarded as the three main conservation variables of this mixed approach [START_REF] Lee | Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics[END_REF]. The use of linear tetrahedral elements achieves second order convergence in velocity and stresses, and seems to be very effective in nearly incompressible, bending and shock dominated scenarios.

GOVERNING EQUATIONS FOR REVERSIBLE ELASTODYNAMICS

The motion of a continuum body can be described by a mapping φ established from an undeformed (or material) configuration X ∈ V ⊂ R 3 to a deformed (or spatial) configuration x ∈ v(t) ⊂ R 3 at time t, namely x = φ(X, t). The mixed conservation law formulation for Lagrangian solid dynamics is generally presented as follows [START_REF] Lee | Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics[END_REF],

∂p ∂t -∇ 0 • P = ρ 0 b, (1a) 
∂F ∂t -∇ 0 • (v ⊗ I) = 0, (1b) 
∂E T ∂t -∇ 0 • (P T v -Q) = s, (1c) 
where p = ρ 0 v is the linear momentum per unit of undeformed volume, ρ 0 is the material density, v is the velocity field, b is the body force per unit mass, F is the deformation gradient, P is the first Piola-Kirchhoff stress tensor, E T is the total energy per unit of undeformed volume, I is the identity (or Kronecker) tensor, Q is the heat flux vector, s is the heat source and ∇ 0 describes the material gradient operator in undeformed space. The above laws can be combined into a system of first order conservation equations as

∂U ∂t + ∂F I ∂X I = S, ∀ I = 1, 2, 3. (2) 
To complete the coupled system (1), a closure equation is introduced by means of an appropriate frame-indifferent constitutive model [START_REF] Bonet | Nonlinear continuum mechanics for finite element analysis[END_REF] relating deformation to stress field (i.e. P = P (F )).

STABILISED NUMERICAL METHOD

A stabilised Petrov-Galerkin (PG) methodology incorporating a suitable numerical stabilisation into the Bubnov-Galerkin formulation is presented [START_REF] Lee | Development of a stabilised low order Petrov-Galerkin methodology for a mixed conservation law formulation in Lagrangian fast solid dynamics[END_REF]. To establish a weak (or variational) statement under isothermal considerations (enabling the energy equation (1c) to be decoupled from the linear momentum and compatibility balance principles (1a-1b)), we multiply the expressions (1a-1b) by an appropriate stabilised conjugate virtual field δV st and integrate over the volume V of the body to give

δW (U , δV st ) = V δV st •R dV = 0; δV st = δV+τ T A T I ∂δV ∂X I ; R = R p R F ; δV st = δv st δP st . (3) Or in complete form δW (U , δv st , δP st ) = V δv st • ∂p ∂t -∇ 0 • P -ρ 0 b Rp dV + V δP st : ∂F ∂t -∇ 0 v R F dV = 0. (4) 
Note that δv st is the stabilised virtual velocity, δP st is the stabilised virtual first Piola-Kirchhoff stress, A I = ∂F I ∂U is the flux Jacobian matrix [START_REF] Lee | Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics[END_REF], τ is the stabilisation parameter (an intrinsic time scale) and R p and R F are the residuals of the linear momentum and deformation gradient balance principles. Pairs such as {δv st , R p } and {δP st , R F } are said to be work conjugate with respect to the initial volume V in the sense that their inner product yields work rate per unit of undeformed volume.

The stabilised virtual field δV st can be particularised for the set of relevant variables as follows

δp st = δp -τ p ∇ 0 • δP ; δP st = δP -τ F C : ∇ 0 δv; δP = C : δF . (5) 
Substituting equations (5a) and (5b) into equation ( 4), together with δp st = ρ 0 δv st , yields the following variational statements

δW δv (U , δv) = V (δv • R p -τ F (C : ∇ 0 δv) : R F ) dV = 0, (6a) 
δW δP (U , δP ) = V δP : R F - τ p ρ 0 (∇ 0 • δP ) • R p dV = 0. (6b) 
Introducing the interpolation for δv given by δv = a N a δv a and the use of Gauss divergence theorem renders [START_REF] Bonet | Nonlinear continuum mechanics for finite element analysis[END_REF] V

N a ṗ dV = ∂V N a t B dA + V N a ρ 0 b dV - V P + τ F C : (∇ 0 v -Ḟ ) P st ∇ 0 N a dV ; t B = P N , (7)
where t B is the traction vector and N being the material outward unit normal on the boundary ∂V . Observe that the square brackets term on the right-hand side of (7) describes a stabilised first Piola-Kirchhoff stress P st . More generally, this term can be reinterpreted as the first Piola-Kirchhoff stress of a stabilised deformation gradient defined by P st := P F st ;

F st := F + τ F ∇ 0 v -Ḟ . (8) 
Above expression (8b) can be further enhanced by adding a time-integrated stabilisation term t τ F (∇ 0 v -Ḟ ) dt aims at diffusing spurious curl-error mechanisms [START_REF] Karim | A Two-Step Taylor-Galerkin formulation for fast dynamics[END_REF] generated by compatibility conditions, resulting into a new definition for F st as follows

F st := F + τ F ∇ 0 v -Ḟ + α (∇ 0 x -F ) , ( 9 
)
where α is a non-dimensional stabilisation parameter, typically between 0 and 0.5. Substituting equations ( 8) and ( 9) into the square brackets term of equation ( 7) and noting that

ṗ = b N b ṗb to result in b M ab ṗb = ∂V N a t B dA + V N a ρ 0 b dV - V P F st ∇ 0 N a dV, (10) 
where M ab = V N a N b dV I is the consistent mass matrix contribution. An identical discretisation procedure can now be followed for δW δP (6b) by employing a standard finite element expansion δP = a N a δP a and

Ḟ = b N b Ḟ b resulting in b M ab Ḟ b = ∂V N a (v B ⊗ N ) dA - V v st ⊗ ∇ 0 N a dV ; v st = 1 ρ 0 [p + τ p (∇ 0 • P + ρ 0 b -ṗ)] . (11) 
Both traction and velocity vectors at the boundary (i.e. t B and v B ) are computed from prescribed boundary conditions. Notice that the proposed discrete approximations ((10) and ( 11)) can also be identified as a general case of Variational Multi-Scale (VMS) analysis [START_REF] Scovazzi | Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach[END_REF], relying on the idea that unstable numerical methodology can be stabilised by enriching the discrete solution approximation by means of fine (or subgrid) scales. These semi-discrete expressions (10) and (11) may then be integrated in time by employing the explicit two-stage Total Variation Diminishing Runge-Kutta (TVD-RK) time stepping procedure due to its excellent TVD qualities [START_REF] Lee | Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics[END_REF].

NUMERICAL EXAMPLES

A two-dimensional example is first presented to model the sloshing of a liquid in a unit squared container constrained with rollers at the bottom and on the left and right hand sides. In this problem the gravitational force is a source term that must be added into the equations. It is clear that the stabilised Petrov-Galerkin (PG) formulation eliminates both the volumetric locking effects and the appearance of spurious pressure instabilities in the case of near incompressibility (see Figure 1). Another interesting examples are three-dimensional short column with a unit square cross section initially loaded by various types of prescribed velocities (i.e. angular velocity and linear variation of velocity) are also examined, illustrating the bending capability of the proposed algorithm using linear tetrahedral meshes within the context of large deformation behaviours. Figure 2 shows that the resulting formulation performs effectively in bending-dominated scenario and eliminates the appearance of non-physical curl-error modes in the solution over a long-term response.

CONCLUSIONS

In this paper, a stabilised computational framework is proposed for the numerical analysis of fast transient phenomena within the context of large deformations. The mixed conservation law formulation, in the form of a system of first order hyperbolic equations, performs extremely well in both nearly incompressible and bending dominated scenarios. Both velocities (or displacements) and stresses display the same rate of convergence, which proves ideal in the case of linear finite element interpolation oftenly used in industry. It has been shown that the proposed formulation overcomes excessive artificial stiffness and pressure checkerboard modes, typical of linear triangular and tetrahedral meshes in bending-dominated problems. The proposed numerical algorithm provides a good balance between accuracy and speed of computation, showing very promising results, benchmarked against the recently proposed Finite Volume methodology [START_REF] Lee | Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics[END_REF]. A discontinuity-capturing operator with the purpose of enhancing shock resolution in the vicinity of sharp spatial gradients is the next step of the work. Finally, the methodology opens a door to the introduction of higher-order basis functions. 
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 12 Figure 1: Pressure distribution of deformed shapes at a particular time using: (a) Standard FEM procedure; (b) Stabilised Petrov-Galerkin; and (c) Mean dilatation approach.