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Abstract. In this paper, we propose a simultaneous meta-modeling protocol for both input and output spaces. We
perform a reparametrization of the input space using constrained shape interpolation by introducing the concept
of anα-manifold of admissible meshed shapes. The output space is reduced using constrained Proper Orthogonal
Decomposition. By simultaneously using meta-modeling forboth spaces, we facilitate interactive design space
exploration for the purpose of design. The proposed approach is applied to several industrial problems.
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1 INTRODUCTION

When “high fidelity” computer simulations (finite elements,finite volumes, etc.) are used for calculating the objec-
tive functions and nonlinear constraints in the process of optimizing mechanical systems, the CPU time frequently
becomes disproportionately large. This brought about a need for efficient surrogate-based methods in design opti-
mization. A popular physics-based meta-modeling technique consists of carrying out the approximation on the full
vector fields using Proper Orthogonal Decomposition (POD) and Galerkin projection.
However, this still requires manipulation of the input variablesV̄ . Now for complex shapes the dimensionalityd can
be very high and can greatly exceed theintrinsic dimensionalityof the design problem. Another far more serious
implication is the generation of inadmissible/infeasiblestructural shapes, which could eventually lead to crashes of
either the mesh generator or the solver. This is due to the difficulties in expressing all the technological and common
sense constraints needed to convert a set of geometric parameters to an admissible shape. A final inconvenience is
that gradients/sensitivities need to be calculated using either finite differences or the Adjoint method. All these are
impediments to truly non-intrusive optimization using a clearly separatedoffline/onlineapproach that would allow
for interactive design using, for example, a tablet PC.
A good input-space meta-model needs to be capable of interpolating between admissible instances of the shape
representation used to detect the problem dimensionality and generate feasible solutions by design.
In this paper, we develop an approach that builds up a design space bylearningusingshape interpolationbetween
shape/mesh instances given by a sequence of parameter values. For this we introduce the concept of theα-manifold.
The output space (physics) is modeled using constrained Proper Orthogonal Decomposition giving the smallest set
of coefficientsβ1...βm needed to conservelinear objective and constraint functions. The POD coefficients for the
shapeandphysics are then analyzedtogetherto get the local parametric expression for bothα’s as well asβ’s in the
neighborhood of the evaluation point.
In addition, our approach gives an elegant, practical and straightforward method to compute the so-called “shape
derivatives” of the performance objective(s), which are increasingly popular as used in “shape calculus”.
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2 META-MODELING FOR BOTH SPACES

2.1 Output Space ROM

The POD Reduced Order Model (ROM) strategy for the output space approximates a physical field̄v ∈ Rn in the
vicinity of the current iteration point̄V ∈ Rd, wheren is typically the size of a FE/CFD mesh/grid, andd is the
design space dimensionality. The field vectorv̄(V̄ ) may then be approximated around the nominal valuev̄0 using a
basisΨ = [ψ̄1...ψ̄M ], typically obtained using a set ofa priori computer experiments̄V (1)...V̄ (M) using Design of
Experiments techniques, or others. This is followed by calculating the projection coefficients i.e.β’s.
The reduced-order model is then built either by interpolation ofΨ or by interpolation of the projection coefficients
β’s using kriging/Radial Basis Functions. Assuming that only theβ’s depend on thēV and thatΨ is constant for
the design problem, followed by truncating the basisΨ to a small number (m << M ) of highly energetic modes,
we get

v̄(V̄ ) ≈ ṽ(V̄ ) = v̄0 +
m∑

1

βi(V̄ )ψ̄i. (1)

Sinceβ̄ = β̄(V̄ ) we need to manipulate the vector of design variablesV̄ eitherafter optimization to verify the
design or during the optimization/design to verify intermediate solutions. But as mentioned in the introduction
working with V̄ can lead to issues like inadmissible geometries (infeasible V̄ ) and thus CAD failures and frequently
an elevated problem dimensionality, all of which are even more troublesome when using the meta-model in a non-
intrusive procedure.

2.2 Input space ROM

We therefore seek to meta-model theinput space, in other words thestructural shapeΩ itself in a POD-like manner
in order toimplicitly guarantee admissibility inβ-space AND limit the dimensionalitywhile performing the design.
An ideal representation ofΩ for this purpose is by using the shape indicator functionχ (written in discrete form
as a vector). Letχ ∈ S whereS represent the subspace of admissible shapes for a given design problem. We will
representS by a smooth manifold in the shape space of the design problem.
To get this shape space, we first perform POD on a sample set ofM neighboring admissible shapes (χ1..χM ),
giving us a set of projection coefficients allowing us to express anyχi in terms of the eigenvectors̄φj of Cv where
M << Nc = number of snapshots,χi = ith individual snapshot andχ0 is the mean snapshot.

χi = χ0 +

M∑

j=1

αi
j φ̄j (2)

and obtain a set ofM projection coefficientsαi
j for theith snapshot.

Instead of truncating the vector basis in the usual manner, we then analyze the relationship between these projection
coefficients giving us a manifold of admissible shapes (in point-set form). We then detect the dimensionality of this
manifold by calculating the covariance matrix of the neighborhood, and perform interpolation on this local manifold
using the Diffuse Approximation.
The α-manifold (figure 1) then represents theinter-relationshipbetween theα-coefficients by ap-dimensional
manifold inRM space wherep < M [1].

µ(α1....αM ) = 0 (3)

and implicitly represents all the technological/shape admissibility constraints on the structural shapeχ. It thus
approaches the true shape space for a given design problem and captures its intrinsic dimensionality (p ≤ d) [2].
The shape manifold has two important properties:

1. All points on the manifold correspond to admissible shapes (i.e. level set functions)

2. Any point that lies outside the manifold corresponds to a NON admissible shape for the given problem.

The dimensionalityp ≤M can easily be estimated using the Fukunaga-Olsen algorithm[5].
Finally we move along the manifold by interpolating betweensnapshots in a local neighborhood using a local
coordinate systemt1...tp, h where the manifold is given locally byh = h(t1...tp). These local co-ordinatest1...tp
are found by calculating the eigenvectors of the covariancematrix for the local neighborhood
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Figure 1: Shape manifold and local diffuse approximation

2.3 Combined input/output meta-modeling

The general approach to simultaneous reduction of both spaces of the design problem is shown in figure 2 with the
input space meta-model on the left hand side, and the output space meta-model on the right.
The final step for the simultaneous meta-modeling is to obtain the relationship between the POD coefficients for
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Figure 2: Basic idea of interactive design/optimization

shape (α’s) and those for the physical fields (β’s). This can be easily obtained using:

β̄ = β̄(ᾱ) = p̄(ᾱ)T ā (4)

and a polynomial Response Surface.

3 APPLICATION TO PROBLEMS IN MECHANICS

The approach has been successfully been applied to three different problems in computational mechanics:

1. Reduction of dimensionality in design optimization [1, 2, 6]

2. Numerical springback assessment for metal forming [3]

3. Reduced order modeling of material microstructures [4]

Here we show only the first application using an engine intakepipe as a test-case (figure 3 and figure 4). The
structural shape is very complex parameterized by using93 bounded geometric design variables in CATIA, involving
an exorbitantly high CAD failure rate of over60%:

4 CONCLUSIONS

We introduce a unified meta-modeling scheme intended for usein interactive design or design space exploration in
shape optimization. The key contribution is a meta-model for the input space based on constrained shape interpola-
tion using the manifold of admissible shapes in the shape space for a given design problem. This is combined with a
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Figure 3: (a) Full system (b) Sand model of intake pipe (c) External & internal details of engine intake
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Figure 4: (a) Dimensionalityp calculation, (b) Constrained shape interpolation usingp = 1, (c)α-manifold approx-
imation usingp = 2 (normalized)

constrained POD meta-model for the output space (physics) using a predictor-corrector algorithm. Interpolation in
shape-space (instead of geometric) yields the minimum possible system dimensionality while guaranteeing that we
remain in the feasible region (theα-manifold).
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