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Abstract.  In this work, the Reduced Navier Stokes (RNS) are numeyigatigrated, and used to calculate
nonlinear finite amplitude streaks. These structures aer@sting since they can have a stabilizing effect and delay
the transition to the turbulent regime. RNS formulation Isoaused to compute the family of nonlinear intrinsic
streaks that emerge from the leading edge in absence of dagnak perturbation. Finally, this formulation is
generalized to include the possibility of having a curvettdra wall
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1 INTRODUCTION

Streaks are three dimensional boundary layer flow strustinat take the form of spanwise thin and streamwise
elongated regions of high and low speed flow that alternateénspanwise direction. The resulting streamwise
velocity profile exhibits a strong modulation in the sparendrection, with a characteristic scale of the order of the
boundary layer width. The slow transversal (wall-normal apanwise) motion points downwards in the high speed
region and upwards in the low speed region (see Figure 1).

This work is focused on the streaks that are forced from enfid boundary layer, with no free stream perturbations,
by means of a spanwise periodic array of small cylindricatftmess elements attached to the plate near the leading
edge. (see, e.g., [1, 2, 4]), and they are interesting far guential to extend downstream the laminar regime of
the flow, moving further downstream the location of the titms point. The stability of the boundary layer with
finite amplitude streaky distortions has been analyzed ,id[J], and experimentally tested [1, 2], detecting that
the increase of the amplitude of the streaks can have atizitadpeffect in the Blasius boundary layer, delaying the
onset of turbulence. The linear inviscid stability depeadghe amplitude of the streak. In [5], it was found that
there is a maximum streak amplitude Q6% of the free stream velocity) beyond which transition is poded in

the boundary layer.

Nevertheless, some recent experimental results [6] haartexl the possibility of inducing stable, robust steady
streaks with amplitude significantly above the ’criticaledif~ 26%), without having any secondary instability
acting on them. So, the streak stability characteristiesdafinitely far from clear, and that they probably depend
not only on the magnitude of its spanwise modulation but alsdow the streaks are generated. Thus, there is a
clear motivation to compute high amplitude streaks.

2 RNS FORMULATION

High intensity streaks are nonlinear, and are typically potad using either direct numerical simulation (DNS)

or nonlinear parabolized stability equations (PSE). Theshbdl the streak computations is very CPU costly since
this is a three dimensional problem that, in order to colyaetproduce the boundary layer conditions, has to be
performed at a very high Reynolds number [3, 4]. On the otlaedhthe nonlinear PSE has strong consistency
problems that require the addition of extra stabilizatienmts, and it simply fails to converge when the amplitude of
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Figure 1. Sketch of the development of a spanwise Figure 2: Nonlinear streamwise streak amplitude
periodic array of streaks on a flat plate boundary evolution, for different initial amplitudes: RNS
layer, with the asymptotic scaling fdge > 1 in- (blue line), PSE from [7] (red dashed line), and DNS
dicated. HS (LS) stands for high (low) streamwise from [3, 4] (black line).

velocity.

the streak is not small (see [7]). So, in this work, a much nedfieient way is used to compute nonlinear streaks,
the reduced Navier-Stokes (RNS) equations.

A flat plate boundary layer at zero angle of incidence with ansyise periodic array of counter-rotating steady
streaks developing in the streamwise direction is consitiesee Figure 1. The velocities are made nondimensional
with the reference velocity the free stream flok,,, the spatial scales with a characteristic lengthand the
resulting Reynolds number is defined in the usual faRe = U, L/v, wherev is the kinematic viscosity.

The RNS are obtained from the full 3D steady incompressilali® Stokes equations in the limit of large Reynolds
number. The asymptotic structure of the streaksRer>> 1 exhibits (Figure 1) a slow spatial dependence in the
streamwise direction, and two short spatial scales, in trenal and spanwise direction. This scaling is similar to
that of the standard 3D Boundary Layer equations (BL) [11Math two short scales instead of just one.

The appropriate expansions for the flow variables are ofdhma f

jj:xv (y72) = (y,Z)/v Re7 ﬁ:u+7 (’0,11)) = ((an) +"')/VR65 ﬁ:p0+pl/Re+'--7
which, once inserted into the Navier Stokes equations yjeltfirst order,
Poy = 0 and Po, = 0.

The pressure is themy = po(x), given by the prescribed inviscid pressure at the upper efltiee boundary layer
(as in the standard BL formulation). And, at next order, tedet of RNS is obtained:

u:r+vy+wz:Oa

Uy + VUy + WU, = —Po, + Uyy + Uzz, (1)
UVz + VVy + WV, = —P1y + Vyy + V22,
UWy + VWy + WW, = —P1, + Wyy + Wy

The RNS are a truly parabolic systemarthat can be solved by marching techniques [8, 9]. In conwibtthe
standard 3D BL formulation, now the second orgeand = momentum equations are required to complete the
system, and the pressure correction tesmhas to be computed in order to solve problem.

The RNS equations are well known [9, 10]. They have been pusly used to compute higRe number micro
channel and micro tube flow [12], the nonlinear developmégdtler vortices [13], the transient growth of small
amplitude streaks [14, 15, 16], or the streak excitationdayieal structures on the free stream, both in steady and
unsteady conditions. [17, 18],

The full 3D RNS system (1) is integrated to compute the nealinspatial evolution of streaks on a flat plate
boundary layer. The appropriate boundary conditions fisrdhse are periodicity in (i.e., a spanwise periodic array
of streaks), together with no slip at the bottom wall, andhatupper edge of the boundary layer, all components of
v must vanish ay — oo except for its mean value v >, computed as part of the solution [16].

The RNS formulation allows to perform 3D streaky BL compiatas with much less CPU cost than previous DNS
computations[3], and avoid the numerical problems of thE Bigulations [7].
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3 STREAK SIMULATIONS

In Figure 2 are presented the RNS results for the simulatidumlly nonlinear streaks. The streamwise evolution of
the amplitude of the streak,

As(w) = (max(u) — min(u))/2,
is plotted for the same four streaks that were computed u3h§g in [3], and PSE in [7]. The integration is started
at the stationzy = 0.4, and the initial profile data is taken from [7]. The resultswstthat the agreement with the
DNS and PSE data is quite good: the difference between bsthtsegrows with the amplitude of the streak, but
never exceed8%. Note that the RNS results are always closer to the DNS thafP8E, and that the PSE was
simply not able to complete the computation of the largesbst (labeled E).
An interesting way to visualize the tree dimensional striak dynamics is to follow the downstream evolution
of the particle trajectories departing from a horizontaklilocated at the beginning of the computational box:
x = 04, y = 3. The resulting surfaces of particle trajectories are showhigure 3. The streaks induce a
counter-rotating motion in thez, y) plane that gives these trajectory surfaces a charactamstshroom-like shape
in the transversal section; very evident in the case of ainigimsity streak Ao = 0.4) depicted in the right plot of
Figure 3. Analyzing these particle trajectories could bipfuéto understand a strong quantitative discrepancy be-
tween the streak spanwise period measured in some expésiosng smoke visualizations [19], and that predicted
by the linear optimal theory [5, 15].

Figure 3: Surfaces of particle trajectories departing fithie linex = 0.4, y = 3, for the streaks with initial
amplitudesd,, = 0.1 (left) and A5y = 0.4 (right). Several representative particle trajectoriesaiso plotted with
blue lines.

4 INTRINSIC STREAKS

In [14] the flow near the leading edge of a flat plate boundaygrés analyzed using the linearized problem around
the Blasius solution. It is found that there is just one srgjteaky mode (periodic in the spanwise direction) that
grows downstream from the leading edge. The existence ftiowing mode indicates that there is a one param-
eter family of 3D steady streak solutions that emerge froenléiading edge of the boundary layer. The resulting
expansion of the solution for the growing mode of the velppitofile near the leading edge can be expressed then
as

u = UBlasius + axl_)\ﬁ (7]) COoSs (Z) +ee
v = Vlasius + azt/?2=V (n)cos(z)+---, (2)

w=—az™ (h(n) = VAV () + -+ ) sin (2).

where) = 0.7865 . . ., a is a free parameter, and the profileskgn), U (1), andV (n) are obtained in [14] and [16].
The near leading edge expressions (2) obtained are usea@$@iial conditions for the RNS equations in order
to extend downstream the computation this family of inidrstreaks (intrinsic because they appear in complete
absence of any free stream perturbations) using the RNSufation.

The evolution of the streamwise and spanwise velocity camepbis represented in Figure 4 for different values
of thea parameter. As it grows, nonlinear effects appear and thieigeo of the maximum moves away from the
linear theory predictions.
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Figure 4: Downstream evolution of maximum deviation frora8us profile of the streamwise velocity (left) and the
maximum of the spanwise velocity component (right). Sdhes$: computations fai = 0.125,0.25,0.5 and0.6,
arrow indicates increasing valuesafDashed line: asymptotic behavior of the solution nearitepddge.

5 CONCLUSIONS

RNS formulation has been used to describe the downstreanutievoof a spanwise periodic array of fully nonlinear
streaks in a flat plate boundary layer, and the intrinsic inear streaks that emerge from its leading edge, with
a much lower computational cost than DNS, and also more tahas nonlinear PSE. When the amplitude of
the streak increases, the nonlinear terms come into playrentlow configuration changes substantially, and the
transversal motion is important to understand the flow patte

The RNS formulation can be used in other fluid configuratiansided that, at high Reynolds number, they exhibit
two short and one long length scale. For example, the derredapof cross-flow vortices in a swept wing [20].
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