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Abstract

In this companion paper to our study of amplification of wavetrains [CGW13], we study
weakly stable semilinear hyperbolic boundary value problems with pulse data. Here weak sta-
bility means that exponentially growing modes are absent, but the so-called uniform Lopatinskii
condition fails at some boundary frequency in the hyperbolic region. As a consequence of this
degeneracy there is again an amplification phenomenon: outgoing pulses of amplitude O(ε2)
and wavelength ε give rise to reflected pulses of amplitude O(ε), so the overall solution has
amplitude O(ε). Moreover, the reflecting pulses emanate from a radiating pulse that propagates
in the boundary along a characteristic of the Lopatinskii determinant.

In the case of N×N systems considered here, a single outgoing pulse produces on reflection a
family of incoming pulses traveling at different group velocities. Unlike wavetrains, pulses do not
interact to produce resonances that affect the leading order profiles. However, pulse interactions
do affect lower order profiles and so these interactions have to be estimated carefully in the error
analysis. Whereas the error analysis in the wavetrain case dealt with small divisor problems by
approximating periodic profiles by trigonometric polynomials (which amounts to using a high
frequency cutoff), in the pulse case we approximate decaying profiles with nonzero moments
by profiles with zero moments (a low frequency cutoff). Unlike the wavetrain case, we are now
able to obtain a rate of convergence in the limit describing convergence of approximate to exact
solutions.
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1 Introduction

In this paper we study the reflection of pulses in weakly stable semilinear hyperbolic boundary
value problems. The problems are weakly stable in the sense that exponentially growing modes are
absent, but the uniform Lopatinskii condition fails at a boundary frequency β in the hyperbolic
region1 H. As a consequence of this degeneracy in the boundary conditions, there is an amplification
phenomenon: boundary data of amplitude ε in the problem (1.2) below gives rise to a response of
amplitude O(1).

On R
d+1
+ = {x = (x′, xd) = (t, y, xd) = (t, x′′) : xd ≥ 0}, consider the N × N semilinear

hyperbolic boundary problem for v = vε(x), where ε > 02:

(a) L(∂)v + f0(v) = 0

(b) φ(v) = ε2G(x′,
x′ · β
ε

) on xd = 0

(c) v = 0 and G = 0 in t < 0,

(1.1)

where L(∂) := ∂t +
∑d

j=1Bj∂j, the matrix Bd is invertible, and both f0(v) and φ(v) vanish at
v = 0. The function G(x′, θ0) is assumed to have polynomial decay in θ0, and the frequency
β ∈ R

d \ {0} is taken to be a boundary frequency at which the uniform Lopatinskii condition fails.
A consequence of this failure is that the choice of the factor ε2 in (1.1)(b) corresponds to the weakly
nonlinear regime for this problem. The leading order profile is coupled to the next order profile in
the nonlinear system (1.36) derived below.

Before proceeding we write the problem in an equivalent form that is better adapted to the
boundary. After multiplying the first equation by (Bd)

−1 we obtain

L̃(∂)v + f(v) = 0

φ(v) = ε2G(x′,
x′ · β
ε

) on xd = 0

v = 0 and G = 0 in t < 0,

1See Definition 1.3 and Assumption 1.5 for precise statements.
2We usually suppress the subscript ε.
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where we have set

L̃(∂) := ∂d +

d−1∑

j=0

Aj ∂j with Aj := B−1
d Bj for j = 0, . . . , d− 1 , ∂0 := ∂t .

Setting v = εu and writing f(v) = D(v)v, φ(v) = ψ(v)v, we get the problem for u = uε(x)

(a) L̃(∂)u+D(εu)u = 0

(b) ψ(εu)u = εG(x′,
x′ · β
ε

) on xd = 0

(c) u = 0 in t < 0.

(1.2)

For this problem we pose the two basic questions of rigorous nonlinear geometric optics:

(1) Does an exact solution uε of (1.2) exist for ε ∈ (0, 1] on a fixed time interval [0, T0] indepen-
dent of ε?

(2) Suppose the answer to the first question is yes. If we let uappε denote an approximate
solution on [0, T0] constructed by the methods of nonlinear geometric optics (that is, solving eikonal
equations for phases and suitable transport equations for profiles), how well does uappε approximate
uε for ε small? For example, is it true that

lim
ε→0

|uε − uappε |L∞ → 0 ?(1.3)

The amplification phenomenon was studied in a formal way for several different quasilinear
problems in [AM87, MA88, MR83]. In [MR83] amplification was studied in connection with Mach
stem formation in reacting shock fronts, while [AM87] explored a connection to the formation of
instabilities in compressible vortex sheets. Both papers derived equations for profiles using an ansatz
that exhibited amplification; however, neither of the two questions posed above were addressed.
The first rigorous amplification results were proved in [CG10] for linear wavetrains. That paper
provided positive answers to the above questions by making use of approximate solutions of high
order, and showed in particular that the limit (1.3) holds.

An amplification result for wavetrains in weakly stable semilinear problems was proved in
[CGW13], and in this paper we prove the analogous result for pulses. Our approximate solution
has the form

(1.4) uappε (x) = U0(x, θ0, ξd)|θ0=φ0
ε
,ξd=

xd
ε

,

where3

U0 (x, θ0, ξd) =
∑

m∈I

νkm∑

k=1

σm,k (x, θ0 + ωmξd) rm,k.(1.5)

Here each pulse profile σm,k(x, θ) is polynomially decaying in θ ∈ R, rather than periodic in θ
as in the wavetrain case. From the explicit and rather simple equations satisfied by the profiles
appearing in U0, we read off the main amplification phenomenon for solutions of (1.2): in t > 0
pulses of amplitude O(1), which emanate from a pulse in the boundary that propagates along a

3The notation in (1.4) and (1.5) is explained in sections 1.1 and 1.2.
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characteristic of the Lopatinskii determinant, radiate into the interior at distinct group velocities
determined by β.

In the case of N ×N systems considered here, a single outgoing pulse produces on reflection a
family of incoming pulses traveling at different group velocities. Unlike wavetrains, pulses do not
interact to produce resonances that affect the leading order profiles. One effect of this is that we
do not need to use Nash-Moser iteration to construct the leading pulse profiles as we did in the
wavetrain case. The construction of exact solutions is again based on the study of an associated
singular system (1.23). This system is solved by a Nash-Moser iteration argument based on a tame
estimate for the linearized singular system (3.6). The proof of that estimate and the Nash-Moser
iteration can be carried over verbatim from the corresponding argument in [CGW13] for wavetrains4.
The estimate for the linearized singular system also plays a key role in the error analysis here.

The main differences between the analysis of this paper and that of [CGW13] occur in the study
of the profile equations and in the error analysis. Although pulses do not produce resonances, pulse
interactions do affect lower order profiles and so these interactions have to be estimated carefully
in the error analysis. Unlike the wavetrain case, we are now able to obtain a rate of convergence in
the limit (1.3). Whereas the error analysis in the wavetrain case dealt with small divisor problems
by approximating periodic profiles by trigonometric polynomials (which amounts to using a high
frequency cutoff), in the pulse case we approximate decaying profiles with nonzero moments by
profiles with zero moments (using a low frequency cutoff)5. We provide a more detailed summary
of the argument after stating our main assumptions.

1.1 Assumptions

We make the following hyperbolicity assumption on the system (1.1):

Assumption 1.1. There exist an integer q ≥ 1, some real functions λ1, . . . , λq that are analytic on
R
d \ {0} and homogeneous of degree 1, and there exist some positive integers ν1, . . . , νq such that:

∀ ξ = (ξ1, . . . , ξd) ∈ R
d \ {0} , det

[
τ I +

d∑

j=1

ξj Bj

]
=

q∏

k=1

(
τ + λk(ξ)

)νk .

Moreover the eigenvalues λ1(ξ), . . . , λq(ξ) are semi-simple (their algebraic multiplicity equals their
geometric multiplicity) and satisfy λ1(ξ) < · · · < λq(ξ) for all ξ ∈ R

d \ {0}.

For simplicity, we restrict our analysis to noncharacteristic boundaries and therefore make the
following:

Assumption 1.2. The matrix Bd is invertible and the matrix B := ψ(0) has maximal rank, its
rank p being equal to the number of positive eigenvalues of Bd (counted with their multiplicity).
Moreover, the integer p satisfies 1 ≤ p ≤ N − 1.

In the normal modes analysis for (1.2), one first performs a Laplace transform in the time
variable t and a Fourier transform in the tangential space variables y. We let τ − i γ ∈ C and

4Thus, we do not repeat those (lengthy) arguments here.
5We borrow the idea of introducing low frequency cutoffs from [AR03] where single phase pulses in free space are

studied.
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η ∈ R
d−1 denote the dual variables of t and y. We introduce the symbol

A(ζ) := −iB−1
d


(τ − iγ) I +

d−1∑

j=1

ηj Bj


 , ζ := (τ − iγ, η) ∈ C× R

d−1 .

For future use, we also define the following sets of frequencies:

Ξ :=
{
(τ − iγ, η) ∈ C× R

d−1 \ (0, 0) : γ ≥ 0
}
, Σ :=

{
ζ ∈ Ξ : τ2 + γ2 + |η|2 = 1

}
,

Ξ0 :=
{
(τ, η) ∈ R× R

d−1 \ (0, 0)
}
= Ξ ∩ {γ = 0} , Σ0 := Σ ∩ Ξ0 .

Two key objects in our analysis are the hyperbolic region and the glancing set that are defined
as follows:

Definition 1.3. • The hyperbolic region H is the set of all (τ, η) ∈ Ξ0 such that the matrix
A(τ, η) is diagonalizable with purely imaginary eigenvalues.

• Let G denote the set of all (τ, ξ) ∈ R × R
d such that ξ 6= 0 and there exists an integer

k ∈ {1, . . . , q} satisfying:

τ + λk(ξ) =
∂λk
∂ξd

(ξ) = 0 .

If π(G) denotes the projection of G on the d first coordinates (in other words π(τ, ξ) =
(τ, ξ1, . . . , ξd−1) for all (τ, ξ)), the glancing set G is G := π(G) ⊂ Ξ0.

We recall the following result that is due to Kreiss [Kre70] in the strictly hyperbolic case (when all
integers νj in Assumption 1.1 equal 1) and to Métivier [Mét00] in our more general framework:

Proposition 1.4 ([Kre70, Mét00]). Let Assumptions 1.1 and 1.2 be satisfied. Then for all ζ ∈
Ξ \ Ξ0, the matrix A(ζ) has no purely imaginary eigenvalue and its stable subspace E

s(ζ) has
dimension p. Furthermore, Es defines an analytic vector bundle over Ξ \ Ξ0 that can be extended
as a continuous vector bundle over Ξ.

For all (τ, η) ∈ Ξ0, we let E
s(τ, η) denote the continuous extension of Es to the point (τ, η). The

analysis in [Mét00] shows that away from the glancing set G ⊂ Ξ0, E
s(ζ) depends analytically on

ζ, and the hyperbolic region H does not contain any glancing point.
To treat the case when the boundary operator in (1.2)(b) is independent of u, meaning ψ(εu) ≡

ψ(0) =: B, we make the following weak stability assumption on the problem (L(∂), B).

Assumption 1.5. • For all ζ ∈ Ξ \ Ξ0, KerB ∩ E
s(ζ) = {0}.

• The set Υ0 := {ζ ∈ Σ0 : KerB ∩ E
s(ζ) 6= {0}} is nonempty and included in the hyperbolic

region H.

• For all ζ ∈ Υ0, there exists a neighborhood V of ζ in Σ, a real valued C∞ function σ defined
on V, a basis E1(ζ), . . . , Ep(ζ) of E

s(ζ) that is of class C∞ with respect to ζ ∈ V, and a matrix
P (ζ) ∈ GLp(C) that is of class C∞ with respect to ζ ∈ V, such that

∀ ζ ∈ V , B
(
E1(ζ) . . . Ep(ζ)

)
= P (ζ) diag

(
γ + i σ(ζ), 1, . . . , 1

)
.

For comparison and later reference we recall the following definition.
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Definition 1.6 ([Kre70]). As before let p be the number of positive eigenvalues of Bd. The problem
(L̃(∂), B) is said to be uniformly stable or to satisfy the uniform Lopatinskii condition if

B : Es(ζ) −→ C
p

is an isomorphism for all ζ ∈ Σ.

Remark 1.7. Observe that if (L̃(∂), B) satisfies the uniform Lopatinskii condition, continuity
implies that this condition still holds for (L̃(∂), B+ψ̇), where ψ̇ is any sufficiently small perturbation
of B. Hence the uniform Lopatinskii condition is a convenient framework for nonlinear perturbation.
The analogous statement may not be true when (L̃(∂), B) is only weakly stable. Remarkably,
weak stability persists under perturbation in the so-called WR class exhibited in [BGRSZ02], and
Assumption 1.5 above is a convenient equivalent definition of the WR class (see [CG10, Appendix
B] or [BGS07, Chapter 8]). In order to handle general nonlinear boundary conditions as in (1.2)
we shall strengthen Assumption 1.5 in Assumption 1.12 below.

Boundary and interior phases. We consider a planar real phase φ0 defined on the boundary:

(1.6) φ0(t, y) := τ t+ η · y , (τ , η) ∈ Ξ0 .

As follows from earlier works, see e.g. [MA88], oscillations or pulses on the boundary associated
with the phase φ0 give rise to oscillations or pulses in the interior associated with some planar
phases φm. These phases are characteristic for the hyperbolic operator L(∂) and their trace on the
boundary {xd = 0} equals φ0. For now we make the following:

Assumption 1.8. The phase φ0 defined by (1.6) satisfies (τ , η) ∈ Υ0. In particular (τ , η) ∈ H.

Thanks to Assumption 1.8, we know that the matrix A(τ , η) is diagonalizable with purely imaginary
eigenvalues. These eigenvalues are denoted i ω1, . . . , i ωM , where the ωm’s are real and pairwise
distinct. The ωm’s are the roots (and all the roots are real) of the dispersion relation:

det
[
τ I +

d−1∑

j=1

η
j
Bj + ωBd

]
= 0 .

To each root ωm there corresponds a unique integer km ∈ {1, . . . , q} such that τ + λkm(η, ωm) = 0.
We can then define the following real6 phases and their associated group velocities:

(1.7) ∀m = 1, . . . ,M , φm(x) := φ0(t, y) + ωm xd , vm := ∇λkm(η, ωm) .

Let us observe that each group velocity vm is either incoming or outgoing with respect to the space
domain R

d
+: the last coordinate of vm is nonzero. This property holds because (τ , η) does not

belong to the glancing set G. We can therefore adopt the following classification:

Definition 1.9. The phase φm is incoming if the group velocity vm is incoming (that is, when
∂ξdλkm(η, ωm) > 0), and it is outgoing if the group velocity vm is outgoing (∂ξdλkm(η, ωm) < 0).

6If (τ, η) does not belong to the hyperbolic region H, some of the phases ϕm may be complex, see e.g. [Her12,
Wil00, Les07, Mar10]. Moreover, glancing phases introduce a new scale

√
ε as well as boundary layers.
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In all that follows, we let I denote the set of indices m ∈ {1, . . . ,M} such that φm is an incoming
phase, and O denote the set of indices m ∈ {1, . . . ,M} such that φm is an outgoing phase. If p ≥ 1,
then I is nonempty, while if p ≤ N − 1, O is nonempty (see Lemma 1.11 below). We will use the
notation:

L(τ, ξ) := τ I +

d∑

j=1

ξj Bj , L̃(β, ωm) := ωm I +

d−1∑

k=0

βk Ak,

β := (τ , η), x′ = (t, y), φ0(x
′) = β · x′.

For each phase φm, dφm denotes the differential of the function φm with respect to its argument
x = (t, y, xd). It follows from Assumption 1.1 that the eigenspace of A(β) associated with the
eigenvalue i ωm coincides with the kernel of L(dφm) and has dimension νkm . The following result
is a direct consequence of the diagonalizability of A(β), see [CG10] for the proof:

Lemma 1.10. The space C
N admits the decomposition:

(1.8) C
N = ⊕M

m=1 kerL(dφm)

and each vector space in (1.8) admits a basis of real vectors. If we let P1, . . . , PM denote the
projectors associated with the decomposition (1.8), then there holds Im L̃(dφm) = kerPm for all
m = 1, . . . ,M .

The following well-known lemma, whose proof is also recalled in [CG10], gives a useful decom-
position of Es in the hyperbolic region.

Lemma 1.11. The stable subspace E
s(β) admits the decomposition:

(1.9) E
s(β) = ⊕m∈I kerL(dφm) ,

and each vector space in the decomposition (1.9) admits a basis of real vectors.

By Assumption 1.5 we know that the vector space kerB ∩ E
s(β) is one-dimensional; moreover,

it admits a real basis because B has real coefficients and E
s(β) has a real basis. This vector space

is therefore spanned by a vector e ∈ R
N \ {0} that we can decompose in a unique way by using

Lemma 1.11:

(1.10) kerB ∩ E
s(β) = Span {e} , e =

∑

m∈I

em , Pm em = em .

Each vector em in (1.10) has real components. We also know that the vector space B E
s(β) is

(p− 1)-dimensional. We can therefore write it as the kernel of a real linear form:

(1.11) B E
s(β) =



X ∈ C

p , b ·X =

p∑

j=1

bjXj = 0



 ,

for a suitable vector b ∈ R
p \ {0}.

7



To formulate our last assumption we observe first that for every point ζ ∈ H there is a neigh-
borhood V of ζ in Σ and a C∞ conjugator Q0(ζ) defined on V such that

Q0(ζ)A(ζ)Q−1
0 (ζ) =



iω1(ζ)In1 0

. . .

0 iωJ(ζ)InJ


 =: D1(ζ),(1.12)

where the ωj are real when γ = 0 and there is a constant c > 0 such that either

Re (iωj) ≤ −c γ or Re (iωj) ≥ c γ for all ζ ∈ V.

In view of Lemma 1.11 we can choose the first p columns of Q−1
0 (ζ) to be a basis of Es(ζ), and we

write
Q−1

0 (ζ) = [Qin(ζ) Qout(ζ)].

Choose J ′ so that the first J ′ blocks of D1 lie in the first p columns, and the remaining blocks in
the remaining N − p columns. Thus, Re (iωj) ≤ −c γ for 1 ≤ j ≤ J ′.

Observing that the linearization of the boundary condition in (1.2) is

u̇ 7−→ ψ(εu)u̇ + [dψ(εu) u̇] εu ,

we define the operator

B(v1, v2) u̇ := ψ(v1)u̇+ [dψ(v1) u̇] v2 ,(1.13)

which appears in Assumption 1.12 below. For later use we also define

D(v1, v2) u̇ := D(v1)u̇+ [dD(v1) u̇] v2 ,(1.14)

as well as

B(v1) := B(v1, v1) , D(v1) := D(v1, v1) .(1.15)

We now state the weak stability assumption that we make when considering the general case
of nonlinear boundary conditions in (1.2).

Assumption 1.12. • There exists a neighborhood O of (0, 0) ∈ R
2N such that for all (v1, v2) ∈

O and all ζ ∈ Ξ \ Ξ0, ker B(v1, v2) ∩ E
s(ζ) = {0}. For each (v1, v2) ∈ O the set Υ(v1, v2) :=

{ζ ∈ Σ0 : ker B(v1, v2) ∩ E
s(ζ) 6= {0}} is nonempty and included in the hyperbolic region H.

Moreover, if we set Υ := ∪(v1,v2)∈OΥ(v1, v2), then Υ ⊂ H (closure in Σ0).

• For every ζ ∈ Υ there exists a neighborhood V of ζ in Σ and a C∞ function σ(v1, v2, ζ) on
O × V such that for all (v1, v2, ζ) ∈ O × V we have Ker B(v1, v2) ∩ E

s(ζ) 6= {0} if and only if
ζ ∈ Σ0 and σ(v1, v2, ζ) = 0.

Moreover, there exist matrices Pi(v1, v2, ζ) ∈ GLp(C), i = 1, 2, of class C∞ on O × V
such that ∀ (v1, v2, ζ) ∈ O × V

(1.16) P1(v1, v2, ζ)B(v1, v2)Qin(ζ)P2(v1, v2, ζ) = diag
(
γ + i σ(v1, v2, ζ), 1, . . . , 1

)
.
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For nonlinear boundary conditions, the phase φ0 in (1.6) is assumed to satisfy (τ , η) ∈ Υ(0, 0),
or in other words the intersection kerB∩E

s(τ , η) is not reduced to {0}. The set Υ0 in Assumption
1.5 is a short notation for Υ(0, 0). The phases φm are still defined by (1.7) and thus only depend
on L(∂) and B and not on the nonlinear perturbations f0 and ψ(ε u) − ψ(0) added in (1.2).

Remark 1.13. 1) The properties stated in Assumption 1.12 are just a convenient description of the
requirements for belonging to the WR class of [BGRSZ02]. Like the uniform Lopatinskii condition,
Assumption 1.12 can in practice be verified by hand via a “constant-coefficient” computation. More
precisely, for (v1, v2) near (0, 0) ∈ R

2N and ζ ∈ Σ, one can define (see, e.g., [BGS07, chapter 4])
a Lopatinskii determinant ∆(v1, v2, ζ) that is C

∞ in (v1, v2), analytic in ζ = (τ − iγ, η) on Σ \ G,
continuous on Σ, and satisfies

∆(v1, v2, ζ) = 0 if and only if Ker B(v1, v2) ∩ E
s(ζ) 6= {0}.

In particular, ∆(v1, v2, ·) is real-analytic on H.
It is shown in Remark 1.13 of [CGW13] that Assumption 1.12 holds provided

(1.17) ∅ 6= {ζ ∈ Σ : ∆(0, 0, ζ) = 0} ⊂ H and ∆(0, 0, ζ) = 0 ⇒ ∂τ∆(0, 0, ζ) 6= 0,

and it thus only involves a weak stability property for the linearized problem at (v1, v2) = (0, 0). In-
stead of assuming (1.17), we have stated Assumption 1.12 in a form that is more directly applicable
to the error analysis of Theorem 4.10.

2) To prove the basic estimate for the linearized singular system, Proposition 3.3, and to
construct the exact solution Uε to the singular system (1.23) below, it is enough to require that the
analogue of Assumption 1.12 holds when B(v1, v2) is replaced by B(v1) given in (1.15). However,
for the error analysis of section 4 in the case of nonlinear boundary conditions, we need Assumption
1.12 as stated.

1.2 Main results

For each m ∈ {1, . . . ,M} we let
rm,k, k = 1, . . . , νkm

denote a basis of kerL(dφm) consisting of real vectors. In section 4 we shall construct a “corrected”
approximate solution ucε of (1.2) of the form

(1.18) ucε(x) =
[
U0(x, θ0, ξd) + εU1(x, θ0, ξd) + ε2 U2

p (x, θ0, ξd)
]
|
θ0=

φ0
ε
,ξd=

xd
ε

,

where

U0 (x, θ0, ξd) =
∑

m∈I

νkm∑

k=1

σm,k (x, θ0 + ωmξd) rm,k ,

U1 (x, θ0, ξd) =
∑

m∈I

νkm∑

k=1

τm,k (x, θ0 + ωmξd) rm,k −R∞

(
L̃(∂)U0 +D(0)U0

)
,

(1.19)

and R∞ is the integral operator defined in (1.32). The σm,k’s and τm,k’s are scalar functions
decaying in θm := θ0 + ωmξd. The σm,k’s satisfy

∫

R

σm,k(x, θ) dθ = 0 , (moment zero)
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and describe the propagation of oscillations with phase φm and group velocity vm. The second
corrector ε2 U2

p (x, θ0, ξd) in (1.18) is a more complex object constructed in the error analysis of
section 4.

The following theorem, our main result, is an immediate corollary of the more precise Theorem
4.10. Here we let ΩT := {(x, θ0) = (t, y, xd, θ0) ∈ R

d+1 × R
1 : xd ≥ 0, t < T}, and bΩT :=

{(t, y, θ0) ∈ R
d × R

1 : t < T}. The spaces Es
T appearing in the theorem are

(1.20) Es
T := C(Rxd

,Hs(bΩT )) ∩ L2(Rxd
,Hs+1(bΩT )),

while the Sobolev spaces with θ-weights Γs
T and bΓs

T are defined in Definition 2.6. With [r] denoting
the smallest integer greater than r, we define

(1.21) a0 :=

[
d+ 1

2

]
, a1 :=

[
d+ 1

2

]
+M0, a := max(2a0 + 3, a1 + 1), ã := 2a− a0 ,

where M0 := 3 d+ 5 is fixed according to the regularity requirements in the singular pseudodiffer-
ential calculus (see Appendix B).

Theorem 1.14. We make Assumptions 1.1, 1.2, 1.5, and 1.8 when the boundary condition in
(1.2) is linear (ψ(εu) ≡ ψ(0)); in the general case we substitute Assumption 1.12 for Assumption
1.5. Fix T > 0, set M0 := 3 d+ 5, and let a and ã be as in (1.21).

Consider the semilinear boundary problem (1.2), where G ∈ bΓã
T . There exists ε0 > 0 such that

if 〈G〉bΓa+2
T

is small enough, there exists a unique function Uε(x, θ0) ∈ Ea−1
T satisfying the singular

system (1.23) on ΩT such that

uε(x) := Uε

(
x,
φ0
ε

)

is an exact solution of (1.2) on (−∞, T ] × R
d
+ for 0 < ε ≤ ε0. In addition there exists a profile

U0(x, θ0, ξd) as in (1.19), whose components σm,k lie in Γa+1
T , such that the approximate solution

defined by

uappε := U0

(
x,
φ0
ε
,
xd
ε

)

satisfies

lim
ε→0

|uε − uappε |L∞ = 0 on (−∞, T ]× R
d
+.

In fact we have the rate of convergence

|uε − uappε |L∞ ≤ C ε
1

2M1+3 , where M1 :=

[
d

2
+ 3

]
.

Observe that although the boundary data in the problem (1.2) is of size O(ε), the approximate
solution uappε is of size O(1), exhibiting an amplification due to the weak stability at frequency
β. The main information provided by Theorem 1.14 is that this amplification does not rule out
existence of a smooth solution on a fixed time interval, that is it does not trigger a violent instability,
at least in this weakly nonlinear regime. Although the first and second correctors U1 and U2

p do not
appear in the statement of Theorem 1.14, they are essential in the error analysis. As an application
of Theorem 1.14, an easy analysis of the equations for the leading profile U0 (see (2.11) or (5.2))
gives the qualitative information about the exact solution described below in Remark 1.15(a).
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Remark 1.15. a) In order to avoid some technicalities we have stated our main result for the
problem (1.2) where all data is 0 in t < 0. This result easily implies a similar result in which outgoing
pulses defined in t < 0 of amplitude O(ε) and wavelength ε give rise to reflected pulses of amplitude
O(1). In either formulation, inspection of the profile equations shows that the pulses of amplitude
O(1) emanate from a radiating pulse that propagates in the boundary along a characteristic of the
Lopatinskii determinant.

b) We have decided to fix T > 0 at the start and choose data small enough so that a solution
to the nonlinear problem exists up to time T . With only minor changes one can fix the data in
the problem (G in (1.2)) at the start, and then choose T small enough so that a solution to the
nonlinear problem exists up to time T .

In the remainder of this introduction, we discuss the construction of exact solutions, the con-
struction of the approximate solution U0, and the error analysis. The proofs are given in Sections 2,
3, and 4. We hope that the analysis developed in this article will be useful in justifying quasilinear
amplification phenomena such as the Mach stems or kink modes formation of [MR83, AM87].

1.3 Exact solutions and singular systems

The theory of weakly stable hyperbolic initial boundary value problems fails to provide a solution
of the system (1.2) that exists on a fixed time interval independent of ε7. In order to obtain such an
exact solution to the system (1.2) we adopt the strategy of studying an associated singular problem
first used by [JMR95] for an initial value problem in free space. We look for a solution of the form

uε(x) = Uε(x, θ0)|θ0=φ0(x
′)

ε

,(1.22)

where Uε(x, θ0) satisfies the singular system derived by substituting (1.22) into the problem (1.2).
Recalling that L̃(∂) = ∂d +

∑d−1
j=0 Aj ∂j, we obtain:

∂dUε +

d−1∑

j=0

Aj

(
∂j +

βj∂θ0
ε

)
Uε +D(εUε)Uε =:

∂dUε + A

(
∂x′ +

β∂θ0
ε

)
Uε +D(εUε)Uε = 0

ψ(εUε)Uε|xd=0 = εG(x′, θ0),

Uε = 0 in t < 0.

(1.23)

In the wavetrain case the function Uε(x, θ0) is taken to be periodic in θ0, but in the case of pulses
the variable θ0 ∈ R is treated as just another tangential variable on an equal footing with x′. The
special difficulties presented by such singular problems when there is a boundary are described in
detail in the introductions to [Wil02] and [CGW11]; these difficulties are present for both wavetrains
and pulses. In particular we mention: (a) symmetry assumptions on the matrices Bj appearing in
the problem (1.1) equivalent to (1.2) are generally of no help in obtaining an L2 estimate for (1.23)
(boundary conditions satisfying Assumption 1.5 can not be maximally dissipative, see [CG10]); (b)
one cannot control L∞ norms just by estimating tangential derivatives ∂α(x′,θ0)

Uε because (1.23) is

not a hyperbolic problem in the xd direction8; moreover, even if one has estimates of tangential

7This would be true even for problems (L̃(∂), B) that are uniformly stable in the sense of Definition 1.6.
8For initial value problems in free space, one can control L∞ norms just by estimating enough derivatives tangent

to time slices t = c.
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derivatives uniform with respect to ε, because of the factors 1/ε in (1.23) one cannot just use the
equation to control ∂dUε and thereby control L∞ norms.

In [CGW12] a class of singular pseudodifferential operators, acting on functions U(x′, θ0) and
having the form

(1.24) pDU(x′, θ0) =
1

(2π)d+1

∫

Rd×R

eix
′·ξ′+iθ0k p

(
εV (x′, θ0), ξ

′ +
kβ

ε
, γ

)
Û(ξ′, k) dξ′ dk, γ ≥ 1,

was introduced to deal with these difficulties. Observe that the differential operator A appearing
in (1.23) can be expressed in this form. Operators like (1.24), but with the integral over k replaced
by a sum over k ∈ Z, were first used in [Wil02] to prove uniform estimates for quasilinear singular
systems arising in the uniformly stable wavetrain case. The calculi of [CGW12] are inspired by the
calculus of [Wil02], but incorporate improvements needed for the study of amplification in both
the wavetrain and pulse cases.

Under the weak stability assumptions of the present paper, Assumption 1.5 or Assumption 1.12,
the basic L2 estimate for the problem (L̃(∂), B) and for its singular analogue both exhibit loss of one
tangential derivative. To derive energy estimates with a loss of derivative, one needs the remainder
in the composition of two zero-order singular operators to be a smoothing operator, and not just
bounded on L2 with small norm as in [Wil02]. The calculi constructed in [CGW12] have this
smoothing property. The improved wavetrain calculus was used in [CGW13] to study amplification
of wavetrains. As noted in that paper, the arguments used to prove the main L2 estimate for the
linearized singular problem and the higher order tame estimates carry over verbatim to the pulse
case. The Nash-Moser iteration used in [CGW13] to construct an exact solution Uε(x, θ0) of (1.23)
on ΩT also carries over verbatim to the pulse case. In section 3 we state the main estimates for
the linearized singular problem in the pulse case along with the existence theorem for the nonlinear
singular system (1.23), and refer to [CGW13] for the proofs. The tame estimate for the linearized
singular problem is given in terms of Es

T spaces (recall (1.20)), and these spaces are used as well in
the Nash-Moser iteration. The singular pulse calculus summarized in Appendix B must, of course,
be substituted for the wavetrain calculus used in [CGW13].

1.4 Derivation of the profile equations

At first we work formally, looking for a corrected approximate solution of the form

ucε(x) =
[
U0(x, θ0, ξd) + εU1(x, θ0, ξd) + ε2 U2(x, θ0, ξd)

]
|
θ0=

φ0
ε
,ξd=

xd
ε

.

Plugging into the system (1.2) and setting coefficients of successive powers of ε equal to zero, we
obtain interior profile equations

ε−1 : L̃(∂θ0 , ∂ξd)U0 = 0

ε0 : L̃(∂θ0 , ∂ξd)U1 + L̃(∂)U0 +D(0)U0 = 0

ε1 : L̃(∂θ0 , ∂ξd)U2 + L̃(∂)U1 +D(0)U1 + (dD(0)U0)U0 = 0,

(1.25)

where

L̃(∂θ0 , ∂ξd) := ∂ξd +

d−1∑

j=0

βjAj∂θ0 = ∂ξd + iA(β)∂θ0 .
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Similarly, we obtain the boundary equations on {xd = 0, ξd = 0},

ε0 : B U0 = 0

ε1 : B U1 + (dψ(0)U0)U0 = G(x′, θ0).
(1.26)

For ease of exposition we will begin by studying these equations in the 3× 3 strictly hyperbolic
case, which contains all the main difficulties. In section 5 we describe the (minor) changes needed
to treat the general case. We define the boundary phase φ0 := β · x′, eigenvalues ωj, and interior
phases φj := φ0 + ωjxd as in Section 1.1, where β ∈ H. We suppose ω1 and ω3 are incoming (or
causal) and ω2 is outgoing. The corresponding right and left eigenvectors of iA(β) are rj and lj ,
j = 1, 2, 3, normalized so that lj · rk = δjk.

A general function W (x, θ0, ξd) valued in R
3 can be written

W =W1(x, θ0, ξd)r1 +W2(x, θ0, ξd)r2 +W2(x, θ0, ξd)r3

where we refer to Wi, i = 1, 3 as the incoming components and W2 as the outgoing component of
W . With F (x, θ0, ξd) =

∑3
i=1 Fi(x, θ0, ξd)ri valued in R

3 consider now an equation of the form

L̃(∂θ0 , ∂ξd)W = F.

Using the matrix
[
r1 r2 r3

]
to diagonalize iA(β), we find that the Wi must satisfy

(∂ξd − ωi∂θ0)Wi(x, θ0, ξd) = li · F := Fi(x, θ0, ξd), i = 1, 2, 3.(1.27)

The general solution to (1.27) is

Wi(x, θ0, ξd) = τ∗i (x, θ0 + ωiξd) +

∫ ξd

0
Fi(x, θ0 + ωi(ξd − s), s) ds,(1.28)

where τ∗i is arbitrary. This can be rewritten

Wi(x, θ0, ξd) = τ∗i (x, θ0 + ωiξd) +

∫

R+

Fi(x, θ0 + ωi(ξd − s), s) ds−
∫ +∞

ξd

Fi(x, θ0 + ωj(ξd − s), s) ds

:= τi(x, θ0 + ωiξd)−
∫ +∞

ξd

Fi(x, θ0 + ωi(ξd − s), s) ds ,

(1.29)

provided the integrals in (1.29) exist.

Definition 1.16 (Functions of type F). Suppose

F (x, θ0, ξd) =

3∑

i=1

Fi(x, θ0, ξd)ri,(1.30)

where each Fi has the form

Fi(x, θ0, ξd) =
3∑

k=1

f ik(x, θ0 + ωk ξd) +
3∑

l≤m=1

gil,m(x, θ0 + ωl ξd)h
i
l,m(x, θ0 + ωm ξd),(1.31)
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where the functions f ik(x, θ), g
i
l,m(x, θ), hil,m(x, θ) are real-valued, C1, and decay along with their

first order partials at the rate O(〈θ〉−2) uniformly with respect to x. We then say that F is of type
F . For such functions F , define

EF (x, θ0, ξd) :=

3∑

j=1

(
lim
T→∞

1

T

∫ T

0
lj · F (x, θ0 + ωj (ξd − s), s) ds

)
rj .

Remark 1.17. For F as in (1.31), we have

EF =

3∑

i=1

F̃i(x, θ0, ξd) ri, where F̃i := f ii (x, θ0 + ωiξd) + gii,i(x, θ0 + ωiξd)h
i
i,i(x, θ0 + ωiξd).

Remark 1.18. The definition of E can be extended to more general functions. For example, if

F =
3∑

i=1

Fi(x, θ0 + ωiξd) ri,

where the Fi(x, θ) are arbitrary continuous functions (not necessarily decaying with respect to θ),
the limits that define EF exist and we have EF = F .

For another example, suppose F is of type F and satisfies EF = 0. Define

R∞F (x, θ0, ξd) := −
3∑

i=1

(∫ +∞

ξd

Fi(x, θ0 + ωi(ξd − s), s) ds

)
ri .(1.32)

Then the limits defining R∞F and ER∞F exist and we have ER∞F = 0.

The following two results are proved in [CW13].

Proposition 1.19 ([CW13]). Suppose F is of type F and EF = 0. Then R∞F is bounded and

L̃(∂θ0 , ∂ξd)R∞F = R∞L̃(∂θ0 , ∂ξd)F = F = (I −E)F.(1.33)

Proposition 1.20 ([CW13]). Let F (x, θ0, ξd) be a function of type F . (a) Then the equation
L̃(∂θ0 , ∂ξd)U = F has a solution bounded in (θ0, ξd) if and only if EF = 0.

(b) When EF = 0, every C1 solution bounded in (θ0, ξd) has the form

U =
3∑

i=1

τi(x, θ0 + ωiξd) ri +R∞F with τi(x, θ) ∈ C1 and bounded.

Here EU =
∑3

i=1 τi(x, θ0 + ωiξd) ri and (I −E)U = R∞F .
(c)If U is of type F then

EL̃(∂θ0 , ∂ξd)U = L̃(∂θ0 , ∂ξd)EU = 0.(1.34)

By applying the operators E and R∞ to the equations (1.25) formally (for now) using the
properties (1.33),(1.34), we obtain:

(a) EU0 = U0,

(b) E(L̃(∂)U0 +D(0)U0) = 0,

(c) BU0 = 0 on xd = 0, ξd = 0,

(d) U0 = 0 in t < 0

(1.35)
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and

(a) (I −E)U1 +R∞(L̃(∂)U0 +D(0)U0) = 0,

(b) E
(
L̃(∂)U1 +D(0)U1 + (dD(0)U0)U0

)
= 0,

(c) BEU1 = G− (dψ(0)U0)U0 −B(I −E)U1 on xd = 0, ξd = 0,

(d) U1 = 0 in t < 0.

(1.36)

To construct U1 we write U1 = EU1 + (I −E)U1 where

(I −E)U1 = −R∞(L̃(∂)U0 +D(0)U0) = R∞F
0 ,(1.37)

and EU1 satisfies

(a) E(L̃(∂) +D(0))EU1 = −E((dD(0)U0)U0)−E(L̃(∂) +D(0))R∞F
0 ,

(b) BEU1 = G− (dψ(0)U0)U0 −R∞F
0 on xd = 0, ξd = 0

(c) EU1 = 0 in t < 0.

(1.38)

1.5 Error analysis

The error analysis is done by studying the singular problem (4.17) satisfied by the difference

Wε(x, θ0) = Uε(x, θ0)− Uε(x, θ0),

where Uε is the exact solution of the semilinear singular problem (1.23) and Uε is a corrected
approximate solution of the form

Uε(x, θ0) = U0(x, θ0,
xd
ε
) + εU1(x, θ0,

xd
ε
) + ε2 U2

p (x, θ0,
xd
ε
).

Here U0 and U1 have the forms given in (1.19) and satisfy the profile equations (1.35), (1.36), and
the second corrector U2

p remains to be chosen.
Let us denote U0

ε (x, θ0) := U0(x, θ0,
xd

ε ) and similarly define U1
ε , U2

p,ε. The idea is to apply the
tame estimate of Proposition 3.6 to the linear singular problem (4.17) satisfied by Wε. To apply
this estimate we need the functions U0

ε , U1
ε , and U2

p,ε to lie in Es
T spaces for appropriate choices of

s. Thus, roughly speaking, these functions must decay in (x′, θ0) “like functions in Hs(x′, θ0)”.
The pulse profiles σm,k(x, θm) defining U0(x, θ0, ξd) have good decay in θm, so it is not hard to

see that U0
ε lies in an Es

T space (Proposition 4.3). Moreover, we show that the σm,k(x, θm) actually
have moment zero, and this can be used to show that U1

ε , whose definition involves taking integrals
as in (1.32) of an expression that is linear in U0, also lies in an Es

T space (see, for example, Lemma
2.9 and Proposition 2.10). If the σm,k(x, θm) did not have moment zero, U1

ε would fail to lie in any
Es

T space.
However, the second corrector presents greater difficulties. Considering the ε1 profile equation

in (1.25), we see that a natural first choice for the second corrector would be

U2 = −R∞(I −E)
(
L̃(∂)U1 +D(0)U1 + (dD(0)U0)U0

)
.(1.39)

Since the primitive −
∫ +∞
θ f(s)ds of a function f that decays, say, like |s|−2 as |s| → +∞, itself

decays to zero as |θ| → +∞ if and only if f has moment zero (
∫
R
f(s) ds = 0), and since neither
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U1 nor the term (dD(0)U0)U0 in (1.39) has moment zero9, we see that this choice of U2
ε generally

cannot lie in any Es
T space. A natural idea then is to replace U0 and U1 by approximations that

involve profiles having moment zero. More precisely, we take for example U0
p to be as in (1.19), but

where the profile σm,k(x, θm) is replaced by the moment-zero approximation σm,k,p(x, θm) whose
Fourier transform in θm is defined by

σ̂m,k,p(x, η) = χp(η)σ̂m,k(x, η).

Here χp(η) is a smooth cutoff function vanishing on a neighborhood of 0 of size O(|p|) and equal
to one outside a slightly larger neighborhood10. In place of (1.39) one could then try

U2
p = −R∞ (I −E)

(
L̃(∂)U1

p +D(0)U1
p + (dD(0)U0

p )U0
p

)
.(1.40)

The contributions to U2
p,ε involving U1

p now do lie in suitable Es
T spaces, but some of the contribu-

tions from the quadratic term do not lie in any Es
T space. The difficulty is caused by products of

the form σm,k,pσm,k′,p, and the resolution is to redefine U2
p as in (1.40) after replacing these terms by

(σm,k,pσm,k′,p)p, see (4.10). We note that the contributions to U2
p,ε from “transversal interactions”

like σm,k,pσm′,k′,p, where m 6= m′ do already lie in appropriate Es
T spaces, see Proposition A.1.

These moment-zero approximations introduce errors that blow up as p → 0, of course, but
taking p = εb for an appropriate b > 0, one can hope to control these errors using the factor ε2 in
ε2U2

p . This strategy works and is carried out in the proof of Theorem 4.10 in section 4.2. The proof
relies on the machinery of moment-zero approximations developed in section 4.1 and the quadratic
interaction estimates of Appendix A.

Remark 1.21. 1) We learned the idea of using moment-zero approximations to construct correctors
in pulse problems from the paper [AR03].

2) Together with [CW13], which dealt with reflecting pulses in quasilinear uniformly stable
boundary problems, this paper completes the first stage of our project to rigorously justify, when
that is possible, the formal constructions of [HMR86, AM87, MA88, MR83] in boundary problems
involving multiple interacting pulses. The operators E, R∞, and the machinery of moment-zero
approximations developed in these papers provide a set of tools for rigorously constructing leading
profiles and correctors. The estimates for weakly stable singular systems (1.23) given in [CGW13]11

and for uniformly stable quasilinear singular systems in [CW13] provide the basis for showing that
approximate solutions are close to exact solutions for ε small. The approach to error analysis
based on singular systems is especially well-suited to situations involving several pulses traveling at
distinct group velocities. In these situations “one-phase methods” that depend on constructing high
order approximate solutions, or which use estimates of conormal or striated type, seem inapplicable.
Finally, we stress that pulses do interact; the interactions do not produce resonances that affect
leading order profiles as in the wavetrain case, but the interactions, whether of transversal or self-
interaction type, do affect correctors to the leading order profiles. We have treated the analogous
problems for wavetrains in [CGW11, CGW13].

9More precisely, we refer here to the profiles like τm,k(x, θm) or products of profiles that appear in these terms.
10The cutoff renders harmless the small divisor that appears when one writes the Fourier transform of the θm-

primitive of σm,k,p in terms of σ̂m,k,p(x, η).
11Recall that the wavetrain estimate in [CGW13] applies verbatim to the pulse case, as long as one uses the singular

pulse calculus instead of the singular wavetrain calculus in the proof. Both calculi are constructed in [CGW12].
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2 Analysis of profile equations

For ease of exposition we continue as in Section 1.4 to consider the 3×3 strictly hyperbolic case.
The minor changes needed to treat the general case are described in section 5.

2.1 The key subsystem for U0

Let us write U0, the solution of the ε−1 equation in (1.25), as

U0 = σ̃1(x, θ0, ξd) r1 + σ̃2(x, θ0, ξd) r2 + σ̃3(x, θ0, ξd) r3.

As we saw in (1.28), the σ̃i’s have the form

σ̃i(x, θ0, ξd) = σi(x, θ0 + ωi ξd) for some σi(x, θi).

Recall that we assume that the phase φ2 is outgoing while the other two phases φ1, φ3 are incoming
(the case where only one phase is incoming and all other phases are outgoing is actually simpler).
Our first task is to show that σ2 ≡ 0. We will need the following version of a classical lemma by
Lax [Lax57], see [CGW11, Lemma 2.11] for the proof.

Proposition 2.1. Let W (x, θ0, ξd) =
∑3

i=1wi(x, θ0, ξd)ri be any C1 function. Then

L̃(∂)W =

3∑

i=1

(Xφi
wi) ri +

3∑

i=1

(∑

k 6=i

V i
kwk

)
ri ,

where Xφi
is the characteristic vector field

Xφi
:= ∂xd

+

d−1∑

j=0

−∂ξjωi(β)∂xj
=

1

vi · ed
(∂t + vi · ∇x) ,

and V i
k , for k 6= i, is the tangential vector field

V i
k :=

d−1∑

l=0

(liAlrk) ∂xl
.

The relation (1.35)(b) can be simplified by using Proposition 2.1. More precisely, we recall the
notation F 0 := −(L̃(∂)U0+D(0)U0), see (1.37). The next Proposition is an immediate consequence
of Proposition 2.1.

Proposition 2.2. The function F 0 reads F 0 =
∑3

i=1 Fi ri, with

Fi(x, θ0, ξd) = −Xφi
σi −

∑

k 6=i

V i
kσk +

3∑

k=1

eik σk ,

for some real constants eik and vector fields V i
k as in Proposition 2.1.
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In particular, the requirement EF 0 = 0 in (1.35)(b) reads

(2.1) Xφσi − eii σi = 0, i = 1, 2, 3.

Since the outgoing mode σ2 is zero in t < 0, this implies σ2 ≡ 0 by integrating along the character-
istics.

Using (1.26) (ε0) and σ2 = 0, we find the boundary condition

B (σ1(x
′, 0, θ0) r1 + σ3(x

′, 0, θ0) r3) = 0 ,

and we recall that the vectors r1, r3 span the stable subspace E
s(β), see Lemma 1.11. Thus, by

(1.10) we have

σ1(x
′, 0, θ0) r1 + σ3(x

′, 0, θ0) r3 = a(x′, θ0) e , for some scalar function a(x′, θ0).

Since e = e1 + e3, where ei ∈ span {ri}, we deduce

(2.2) σi(x
′, 0, θ0) ri = a(x′, θ0) ei , i = 1, 3 .

Using (2.1) and (2.2), we have derived the main subsystem governing U0:

Xφi
σi − eii σi = 0 for i = 1, 3

σi(x
′, 0, θ) ri = a(x′, θ) ei ,

σi = 0 in t < 0 ,

(2.3)

where the scalar function a(x′, θ) remains to be determined.

Boundary equation From the definition of F 0, the fact that U0 is purely incoming (σ2 ≡ 0),
and Remark 1.17, we see that the outgoing component of the right side of (1.38)(a) is zero. Writing

EU1 =

3∑

i=1

τi(x, θ0 + ωiξd) ri

and using Proposition 2.1, we find

Xφ2τ2 − e22 τ2 = 0, τ2 = 0 in t < 0 ,

and thus τ2 ≡ 0.
Since EU1 is purely incoming, it is valued in E

s(β). Therefore, by (1.11), the equation (1.38)(b)
is solvable if and only if the condition

b ·
[
G− (dψ(0)U0)U0 −B (I −E)U1

]
= 0 on xd = ξd = 0 ,(2.4)

holds. Since b ·Bri = 0, i = 1, 3, using (1.37) we see that

b ·B (I −E)U1 (x′, 0, θ0, 0) = b ·BR∞F
0

= −b ·B r2

(∫

R+

F2(x
′, 0, θ0 − ω2s, s) ds

)
.

Thus, the solvability condition (2.4) becomes

b ·
[
G− (dψ(0)U0)U0 +Br2

(∫

R+

F2(x
′, 0, θ0 − ω2s, s) ds

)]
= 0.(2.5)

We now rewrite this equation in terms of the function a(x′, θ0) appearing in (2.3). We will use
the following fundamental fact:
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Proposition 2.3 ([CG10]). There holds

(2.6) b · B
∑

m∈{1,3}

RmAjem = κ∂ηjσ(β), j = 0, . . . , d− 1, where κ ∈ R \ 0, ∂τσ(β) = 1,

the function σ is defined in Assumption 1.5, and Rm :=
∑

k 6=m
Pk

ωm−ωk
, so12

R1 =
P2

ω1 − ω2
+

P3

ω1 − ω3
, R3 =

P1

ω3 − ω1
+

P2

ω3 − ω2
.

Thus,

b ·B
∑

m∈I

RmL̃(∂)em = κ


∂τσ(β)∂t +

d−1∑

j=1

∂ηjσ(β)∂xj


 := XLop.(2.7)

Our main result in this paragraph reads as follows.

Proposition 2.4. There are real constants c and d such that taking the θ0-derivative of equation
(2.5) is equivalent to the following equation for the function a(x′, θ0) in (2.3):

XLopa+ c a+ d ∂θ0(a
2) = −b · ∂θ0G .(2.8)

Proof. 1.) Let us first observe that U0 = a(x′, θ0) e on xd = ξd = 0, so the bilinear term
(dψ(0)U0)U0 in (2.5) reads a2 (dψ(0) e)e, which gives an a2 contribution (up to a real multiplica-
tive constant). This term contributes to the ”Burgers like” term d ∂θ0(a

2) in (2.8) after taking the
θ0-derivative.

2.) Let us recall the definition F 0 = −(L̃(∂)U0 + D(0)U0), and F2 := l2 · F 0. Another easy
contribution to (2.5) is thus given when computing

∫

R+

l2 ·D(0)(σ1(x
′, 0, θ0 + (ω1 − ω2) s) r1 + σ3(x

′, 0, θ0 + (ω3 − ω2) s) r3) ds

=

∫

R+

l2 ·D(0)(a(x′, θ0 + (ω1 − ω2) s) e1 + a(x′, θ0 + (ω3 − ω2) s) e3) ds .

Taking the θ0 derivative of this integral gives a contribution of the form c a(x′, θ0) for a suitable
real constant c.

3.) It remains to examine the last integral term in (2.5), that is

I :=

∫

R+

l2 · L̃(∂)U0(x′, 0, θ0 − ω2s, s) ds

=

∫

R+

l2 · L̃(∂)(σ1(x′, 0, θ0 + (ω1 − ω2) s) r1 + σ3(x
′, 0, θ0 + (ω3 − ω2) s) r3) ds .

Since l2 ·ri = 0, i = 1, 3, the coefficient of the ∂xd
term in the latter integral vanishes and we obtain

I r2 =



d−1∑

j=0

(l2Aje1)

∫

R+

∂ja(x
′, θ0 + (ω1 − ω2)s) ds


 r2

+



d−1∑

j=0

(l2Aje3)

∫

R+

∂ja(x
′, θ0 + (ω3 − ω2)s) ds


 r2 .(2.9)

12Recall PiX = (li ·X)ri.
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Let Am(x′, θ0), m = 1, 3 be the unique antiderivative(s) of a in θ0 such that

Am(x′, (ωm − ω2)∞) = 0 .

The integrals in (2.9) can be computed and the function I r2 can be rewritten

I r2 =
d−1∑

j=0

(l2Aje1)
∂jA1(x

′, θ0)

ω1 − ω2
r2 +

d−1∑

j=0

(l2Aje3)
∂jA3(x

′, θ0)

ω3 − ω2
r2.(2.10)

Using (2.6), (2.7), and the fact that b · Bei = 0, i = 1, 3, we obtain from (2.10) that the final
contribution in taking the θ0-derivative of (2.5) reads

b ·B∂θ0(I r2) = XLopa.

Combining (2.3) with Proposition 2.4, we have the following key subsystem satisfied by (σ1, σ3):

(a) Xφ1σ1 − e11 σ1 = 0

(b) Xφ3σ3 − e33 σ3 = 0

(c) XLopa+ c a+ d ∂θ0(a
2) = −b · ∂θ0G on {xd = 0, ξd = 0}.

(2.11)

where

σi(x
′, 0, θ0)ri = a(x′, θ0)ei(2.12)

and all unknowns are zero in t < 0. Recall that the outgoing component σ2 of U0 vanishes. In
Proposition 2.8 we solve for a by Picard iteration, and then obtain σ1 and σ3 in the interior by
simply integrating along the appropriate characteristics.

Remark 2.5. In the case of wavetrains the interior equation for τ2 is coupled to σ1 and σ3 by a
nonlinear interaction integral whenever there is a resonance of the form

nφ1 + n3φ3 = n2φ2, with ni ∈ Z.

Thus, τ2, the outgoing component of EU1 is not necessarily zero, and this leads to the presence of
an extra term of the form ∂θ0τ2 in the last equation of (2.11). That extra term leads to a loss of
derivatives in the estimate for the linearized system, and forced us to use Nash-Moser iteration to
solve for (σ1, σ3, τ2) in [CGW13].

We shall work with profiles lying in a class of Sobolev spaces weighted in θ. Let

ΩT = {(x, θ) ∈ R
d+1
+ × R : t < T},

and introduce the following spaces.

Definition 2.6. For s ∈ N, define the spaces

(2.13) Γs
T := {a(x, θ) ∈ L2(ΩT ) : (θ, ∂x, ∂θ)

βa ∈ L2(ΩT ) for |β| ≤ s and a = 0 in t < 0} ,
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with norms

|a|s,T =
∑

|β|=|β1,β2,β3|≤s

|θβ1∂β2
x ∂β3

θ a|L2(ΩT ).(2.14)

The analogous norms of functions of b(x′, θ) defined on bΩT := {(x′, θ) ∈ R
d × R : t < T} are

denoted with brackets: 〈b〉s,T . We denote the corresponding spaces by bΓs
T .

We will let Hs
T denote the usual Sobolev space on ΩT with norm defined just as in (2.14) but

without the θ weights. These spaces and those below have the obvious meanings when a function is
vector-valued.

Remark 2.7. By Sobolev embedding if the functions f ik, g
i
l,m, hil,m appearing in (1.31) lie in Γs

T

for s > d+2
2 + 3, then F as in (1.30) is of type F .

Proposition 2.8. Let T > 0, m > d+1
2 + 1 and suppose G ∈ bΓm+1

T and vanishes in t < 0.
Then provided 〈G〉bΓm+1

T
is small enough, the system (2.11), (2.12) has a unique solution satisfying

a ∈ bΓm
T and σi ∈ Γm

T , i = 1, 3.

Proof. First one solves (2.11)(c) using the iteration scheme

XLopa
n+1 + 2 d an∂θ0a

n+1 = −b · ∂θ0G− c an.

The standard proof showing convergence towards a solution a ∈ Hm
T (x′, θ0) is easily adapted to

the weighted spaces bΓm
T . Details of a very similar argument are given in the proof of [CW13,

Proposition 3.6]. The conclusion for σ1 and σ3 follows easily.

2.2 The first corrector U1

To understand the properties of U1 we need:

Lemma 2.9. The functions σ1, σ3, and a all have moment zero.

Proof. Let a(x) =
∫
R
a(x′, θ0) dθ0. Taking the moment of equation (2.11)(c), we obtain the problem

for a:
XLopa+ c4a = 0, a = 0 in t < 0.

Thus a = 0 and so the equations for σi, i = 1, 3 imply their moments are zero as well.

Proposition 2.10. Let σ(x, θ) ∈ Γs
T , s >

d
2 + 3, have moment zero and let σ∗(x, θ) denote the

unique θ-primitive of σ that decays to zero as |θ| → ∞. Then σ∗ ∈ Γs−1
T .

Proof. We have σ ∈ Γs
T if and only if ∂km∂

α
x (m

p σ̂(x,m)) ∈ L2(x,m) for all k, α, p such that k +
|α|+ p ≤ s. Since σ̂(x, 0) = 0 we have

σ̂(x,m) = m

∫ 1

0
(∂mσ̂)(x, sm) ds

so

σ̂∗(x,m) =
1

im
σ̂(x,m) = −i

∫ 1

0
(∂mσ̂)(x, sm) ds,

and the result follows.
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Proposition 2.11. Suppose G ∈ bΓs+1
T , s > d

2 +4, and vanishes in t < 0. Then the first corrector
U1 in (1.36) satisfies

(2.15) (I −E)U1(x, θ0, ξd) =
3∑

i=1

Wi(x, θ0, ξd) ri ,

where Wi(x, θ0, ξd) =
∑

k 6=i

bk(x, θ0 + ωkξd) , with bk ∈ Γs−2
T .

Proof. We have (I −E)U1 = R∞F
0 = R∞(I −E)F 0, so using Proposition 1.37 we obtain

((I −E)U1)i = −
∑

k 6=i

eik

∫ +∞

ξd

σk(x, θ0 + ωiξd + s(ωk − ωi)) ds

+
∑

k 6=i

∫ +∞

ξd

V i
kσk(x, θ0 + ωiξd + s(ωk − ωi)) ds .

Now σk ∈ Γs
T has moment zero, so

∫ +∞

ξd

σk(x, θ0 + ωiξd + s(ωk − ωi)) ds = σ∗k(x, θ0 + ωkξd)/(ωk − ωi),

where σ∗k(x, θk) ∈ Γs−1
T by Proposition 2.10. The other terms are treated similarly using V i

kσk ∈
Γs−1
T .

Proposition 2.12. Suppose G ∈ bΓs+1
T , s > d

2 + 4, and vanishes in t < 0. Then there exists a
solution U1 to (1.36) that satisfies

EU1(x, θ0, ξd) = τ1(x, θ0 + ω1ξd)r1 + τ3(x, θ0 + ω3ξd)r3 with τk ∈ Γs−3
T .

Proof. We have already shown τ2 = 0. Since the σi ∈ Γs
T , i = 1, 3, have moment zero, and the

functions bk in (2.15) lie in Γs−2
T , it follows that the right side of (1.38)(a) has components given by

functions in Γs−3
T . Similarly, the right side of the boundary equation (1.38)(b) has components given

by functions in bΓs−3
T . The solvability condition (2.4) holds, so we may make a choice of boundary

data EU1(x′, 0, θ0, 0) satisfying (1.38)(b) whose components are elements of bΓs−3
T . Thus, solving

the system (1.38), we obtain a solution EU1 with components given by τk ∈ Γs−3
T , k = 1, 3.

Definition 2.13. Suppose W (x, θ0, ξd) = EW + (I −E)W and

EW (x, θ0, ξd) =

3∑

i=1

ai(x, θ0 + ωiξd)ri, with ai(x, θi) ∈ Γs
T ;

(I −E)W (x, θ0, ξd) =

3∑

i=1

wiri, where wi(x, θ0, ξd) =
∑

k 6=i

bk(x, θ0 + ωkξd) with bk(x, θk) ∈ Γs
T .

Then we write W ∈ Γ̃s
T .

We may summarize our construction of U0 and U1 as follows.

Theorem 2.14. Suppose G ∈ bΓs+1
T , s > d

2 + 4, and vanishes in t < 0. Then provided 〈G〉bΓs+1
T

is small enough, there exist solutions U0 ∈ Γ̃s
T , U1 ∈ Γ̃s−3

T , satisfying the profile equations (1.35),
(1.36). Moreover, U0 and EU1 are purely incoming.
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3 The exact solution of the singular system

In this section we state the main estimates for the linearized singular system and also the
existence theorem for the nonlinear singular system (1.23). We begin by gathering the notation for
spaces and norms that is needed below.

Notations 3.1. Here we take s ∈ N = {0, 1, 2, . . . }.
(a) Let Ω := R

d+1
+ ×R, ΩT := Ω∩ {−∞ < t < T}, bΩ := R

d ×R, bΩT := bΩ∩ {−∞ < t < T},
and set ωT := R

d+1
+ ∩ {−∞ < t < T}.

(b) Let Hs ≡ Hs(bΩ), the standard Sobolev space with norm 〈V (x′, θ0)〉s. For γ ≥ 1 we set
Hs

γ := eγtHs and 〈V 〉s,γ := 〈e−γt V 〉s.
(c) L2Hs ≡ L2(R+,H

s(bΩ)) with norm |U(x, θ0)|L2Hs ≡ |U |0,s given by

|U |20,s =
∫ ∞

0
|U(x′, xd, θ0)|2Hs(bΩ)dxd.

The corresponding norm on L2Hs
γ is denoted |V |0,s,γ.

(d) CHs ≡ C(R+,H
s(bΩ)) denotes the space of continuous bounded functions of xd with values

in Hs(bΩ), with norm |U(x, θ0)|CHs = |U |∞,s := supxd≥0 |U(., xd, .)|Hs(bΩT ).The corresponding
norm on CHs

γ is denoted |V |∞,s,γ.

(e) Let M0 := 3d+5 and define C0,M0 := C(R+, C
M0(bΩ)) as the space of continuous bounded

functions of xd with values in CM0(bΩ), with norm |U(x, θ0)|C0,M0 := |U |L∞WM0,∞. Here L∞WM0,∞

denotes the space L∞(R+;W
M0,∞(bΩ))13.

(f) The corresponding spaces on ΩT are denoted L2Hs
T , L

2Hs
γ,T , CH

s
T , CH

s
γ,T and C0,M0

T with
norms |U |0,s,T , |U |0,s,γ,T , |U |∞,s,T , |U |∞,s,γ,T , and |U |

C
0,M0
T

respectively. On bΩT we use the spaces

Hs
T and Hs

γ,T with norms 〈U〉s,T and 〈U〉s,γ,T .
(g) All constants appearing in the estimates below are independent of ε, γ, and T unless such

dependence is explicitly noted.

The following spaces appear in the statement of the main existence theorem and are used in its
proof.

Definition 3.2. For s ∈ {0, 1, 2, . . . }, let

Es
T := CHs

T ∩ L2Hs+1
T , with the norm |U(x, θ0)|Es

T
:= |U |∞,s,T + |U |0,s+1,T ,

Es
γ,T := CHs

γ,T ∩ L2Hs+1
γ,T , with the norm |U(x, θ0)|Es

γ,T
:= |U |∞,s,γ,T + |U |0,s+1,γ,T .

The linearization of the singular problem (1.23) at U(x, θ0) has the form

(a) ∂dU̇ε + A

(
∂x′ +

β∂θ0
ε

)
U̇ε +D(εU) U̇ε = f(x, θ0) on Ω ,

(b)B(εU) U̇ε|xd=0 = g(x′, θ0) ,

(c) U̇ε = 0 in t < 0,

(3.1)

13The size of M0 is determined by the requirements of the singular calculus described in Appendix B.
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where the matrices B(εU), D(εU) are defined in (1.15)14. Instead of (3.1), consider the equivalent
problem satisfied by U̇γ := e−γtU̇ :

∂dU̇
γ +A

(
(∂t + γ, ∂x′′) +

β ∂θ0
ε

)
U̇γ +D(εU) U̇γ = fγ(x, θ0) ,

B(εU) U̇γ |xd=0 = gγ(x′, θ0) ,

U̇γ = 0 in t < 0 .

(3.2)

Below we let ΛD denote the singular Fourier multiplier (see (B.2)) associated with the symbol

Λ(X, γ) :=

(
γ2 +

∣∣∣∣ξ′ +
k β

ε

∣∣∣∣
2
)1/2

, X := ξ′ +
k β

ε
.

The basic estimate for the linearized singular problem (3.2) is given in the next Proposition. Observe
that the estimate (3.3) exhibits a loss of one “singular derivative” ΛD. This is quite a high price to
pay, which counts as a factor 1/ε. In view of [CG10, Theorem 4.1], there is strong evidence that
the loss below is optimal.

Proposition 3.3 (Main L2 linear estimate). We make the structural assumptions of Theorem 1.14,
let s0 :=

[
d+1
2

]
+ 1, and recall M0 = 3d + 5. Fix K > 0 and suppose |ε ∂dU |C0,M0−1 + |U |C0,M0 +

|U |CHs0 ≤ K for ε ∈ (0, 1]. There exist positive constants ε0(K) > 0, C(K) > 0 and γ0(K) ≥ 1
such that sufficiently smooth solutions U̇ of the linearized singular problem (3.1) satisfy15:

|U̇γ |0,0 +
〈U̇γ〉0√

γ
≤ C(K)

( |ΛDf
γ|0,0 + |fγ/ε|0,0

γ2
+

〈ΛDg
γ〉0 + 〈gγ/ε〉0
γ3/2

)
(3.3)

for γ ≥ γ0(K), 0 < ε ≤ ε0(K).
The same estimate holds if B(εU) in (3.1) is replaced by B(εU, εU) and D(εU) is replaced by

D(εU, εU) as long as |ε∂d(U,U)|C0,M0−1 + |U,U|C0,M0 + |U,U|CHs0 ≤ K for ε ∈ (0, 1].

The proof is identical to the proof of Proposition 2.2 in [CGW13]. Here our hypothesis on
|U |CHs0 is needed to allow the pulse calculus summarized in Appendix B to be used in exactly
the same way that the wavetrain calculus was used in [CGW13]. The corollary below follows
from Proposition 3.3 by the same argument used to derive Corollary 2.3 from Proposition 2.2 in
[CGW13].

Corollary 3.4 (Main H1
tan linear estimate). Under the same assumptions as in Proposition 3.3,

smooth enough solutions U̇ of the linearized singular problem (3.1) satisfy:

|U̇γ |∞,0 + |U̇γ |0,1 +
〈U̇γ〉1√

γ
≤ C(K)

( |ΛDf
γ |0,1 + |fγ/ε|0,1

γ2
+

〈ΛDg
γ〉1 + 〈gγ/ε〉1
γ3/2

)
(3.4)

for γ ≥ γ0(K), 0 < ε ≤ ε0(K).

The next proposition localizes the estimate (3.4) to ΩT . By considering data εf , εg instead of
f, g we can recast (3.4) in a form where the loss of a singular derivative is replaced by loss of an
ordinary derivative. The proof is identical to that of [CGW13, Proposition 2.8]. Let us write the
linearized operators on the left sides of (3.1)(a) and (b) as L′(εU)U̇ and B

′(εU)U̇ respectively.

14Here and below we often suppress the subscript ε on U̇ .
15Note that the norms |u|0,1 and |ΛDu|0,0 are not equivalent.
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Proposition 3.5. Let s0 =
[
d+1
2

]
+1, fix K > 0, and suppose |ε∂dU |

C
0,M0−1
T

+ |U |
C

0,M0
T

+ |U |CH
s0
T

≤
K for ε ∈ (0, 1]. There exist positive constants ε0(K), γ0(K) such that solutions of the singular
problem

L
′
ε(U)U̇ = εf in ΩT ,

B
′
ε(U)U̇ = εg on bΩT ,

U̇ = 0 in t < 0,

satisfy

|U̇ |∞,0,γ,T + |U̇ |0,1,γ,T +
〈U̇ |xd=0〉1,γ,T√

γ
≤ C(K)

( |f |0,2,γ,T
γ2

+
〈g〉2,γ,T
γ3/2

)

for 0 < ε ≤ ε0(K), γ ≥ γ0(K), and the constant C(K) only depends on K.
The same estimate holds if B(εU) in (3.1) is replaced by B(εU, εU) given in (1.13), and D(εU)

is replaced by D(εU, εU) given in (1.14), as long as there holds |ε∂d(U,U)|C0,M0−1
T

+ |U,U|
C

0,M0
T

+

|U,U|CH
s0
T

≤ K for ε ∈ (0, 1].

We need the following higher derivative estimate in the error analysis. This estimate is also
needed in the Nash-Moser iteration used to prove the nonlinear existence Theorem (3.7). We recall
the definitions (1.21) for the indices a0, a1, a, ã.

Proposition 3.6 (Tame estimate for the linearized system). Fix K > 0 and suppose

|ε ∂dU |
C

0,M0−1
T

+ |U |
C

0,M0
T

+ |U |CH
s0
T

≤ K for ε ∈ (0, 1].(3.5)

Let µ0 := a0+2 and s ∈ [0, ã], where ã is defined in (1.21). There exist positive constants γ = γ(K),
κ0(γ, T ), ε0, and C such that if

|U |0,µ0,γ,T + 〈U |xd=0〉µ0,γ,T ≤ κ0,

then solutions U̇ of the linearized system (3.1) satisfy for 0 < ε ≤ ε0:

|U̇ |Es
γ,T

+ 〈U̇ |xd=0〉s+1,γ,T

≤ C
[
|f |0,s+2,γ,T + 〈g〉s+2,γ,T + (|f |0,µ0γ,T + 〈g〉µ0 ,γ,T ) (|U |0,s+2,γ,T + 〈U |xd=0〉s+2,γ,T )

]
.

The same estimate holds for 0 < ε ≤ ε0 if B(εU) in (3.1) is replaced by B(εU, εU) and D(εU) is
replaced by D(εU, εU) as long as |ε∂d(U,U)|C0,M0−1

T

+ |U,U|
C

0,M0
T

+ |U,U|CH
s0
T

≤ K for ε ∈ (0, 1]

and
|U,U|0,µ0,γ,T + 〈U |xd=0,U|xd=0〉µ0,γ,T ≤ κ0.

The proof is exactly the same as the proof of Proposition 2.15 in [CGW13]. Finally, we state
the existence theorem for solutions of the singular system (1.23).

Theorem 3.7. Fix T > 0, define a, a0, and ã as in (1.21), and suppose G ∈ H ã(bΩT ). There
exists ε0 > 0 such that if 〈G〉a+2 is small enough, there exists a solution Uε of the system (1.23) on
ΩT for 0 < ε ≤ ε0 with Uε ∈ Ea−1, Uε|xd=0 ∈ Ha. This statement remains true if a is increased
and if ã ≥ 2a− a0.
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Proof. The proof is an exact repetition of the Nash-Moser argument used to prove Theorem 5.13 in
[CGW13]. One fixes T > 0, K > 0 and γ = γ(K) as in Proposition 3.6, and uses the scale of spaces
Es

γ,T (Definition 3.2) with γ T = 1. The smoothing operators Sθ are defined just as in Lemma 5.12
of [CGW13], taking account in the obvious way for the fact that now functions u(x, θ0) ∈ Es

γ,T

are defined for θ0 ∈ R instead of θ0 ∈ T. The verification of the condition (3.5) needed to apply
the tame estimate of Proposition 3.6 in the induction argument is done just as in Lemma 5.20 of
[CGW13].

4 Error analysis

4.1 Moment-zero approximations

When constructing a corrector to the leading part of the approximate solution we must take
primitives in θ of functions f(x, θ) that decay to zero as |θ| → ∞. A difficulty is that such
primitives do not necessarily decay to zero as |θ| → ∞, and this prevents us from using those
primitives directly in the error analysis. The failure of the primitive to decay manifests itself on the
Fourier transform side as a small divisor problem. To get around this difficulty we work with the
primitive of a moment-zero approximation, because such a primitive does have the desired decay.

We will use the following spaces:

Definition 4.1. 1.) For s ≥ 0, let Es
T be given in Definition 3.2.

2.) Let Es
T := {U(x, θ0, ξd) : |U|Es

T
:= supξd≥0|U(·, ·, ξd)|Es

T
<∞}.

Proposition 4.2. For s > (d+ 1)/2, the spaces Es
T and Es

T are Banach algebras.

Proof. This is a consequence of Sobolev embedding and the fact that L∞(bΩT ) ∩ Hs(bΩT ) is a
Banach algebra for s ≥ 0.

The proofs of the following two propositions follow directly from the definitions.

Proposition 4.3. (a) For s ≥ 0, let σ(x, θ) ∈ Hs+1
T and set σ̃(x, θ0, ξd) := σ(x, θ0 + ωξd), ω ∈ R.

Then there holds

|σ̃|Es
T
≤ C|σ|Hs+1

T
.

(b) Set σ̃ε(x, θ0) := σ̃(x, θ0,
xd

ε ). Then

|σ̃ε|Es
T
≤ |σ̃|Es

T
.

Definition 4.4 (Moment-zero approximations). Let 0 < p ≤ 1, and let φ ∈ C∞(R) have supp φ ⊂
{m : |m| ≤ 2}, with φ = 1 on |m| ≤ 1. Set φp(m) = φ(mp ) and χp = 1 − φp. For σ(x, θ) ∈ L2,
define the moment zero approximation to σ, σp(x, θ) by

σ̂p(x,m) := χp(m) σ̂(x,m),(4.1)

where the hat denotes the Fourier transform in θ.

Proposition 4.5. For s ≥ 1 suppose σ(x, θ) ∈ Γs+2 and σ̃(x, θ0, ξd) := σ(x, θ0 + ωξd). Then

(a) |σ̃ − σ̃p|Es
T
≤ C |σ|Γs+2

T

√
p,

(b) |∂xd
σ̃ − ∂xd

σ̃p|Es−1
T

≤ C |σ|Γs+2
T

√
p.
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Proof. 1.) Recall that σ ∈ Γs
T ⇔ θβ1∂β2

x ∂β3

θ σ(x, θ) ∈ L2(x, θ) for |β| ≤ s ⇔ ∂β1
m ∂β2

x mβ3σ̂(x,m) ∈
L2(x,m) for |β| ≤ s. It follows that

σ ∈ Γs+2
T ⇒ σ̂(x,m) ∈ Hs+2

T (x,m) ⊂ H1(m,Hs+1(x)) ⊂ L∞(m,Hs+1(x)).(4.2)

2.) We have

|σ − σp|2Hs+1
T

∼
∑

|α|+k≤s+1

∣∣∣∂αxmkσ̂(x,m)(1 − χp(m))
∣∣∣
2

L2(x,m)

=
∑

|α|+k≤s+1

∫

|m|≤2p

∫
|∂αxmkσ̂(x,m)(1 − χp(m))|2 dxdm

≤ C

∫

|m|≤2p
|σ̂(x,m)|2Hs+1(x) dm ≤ C |σ|2

Γs+2
T

(2p),

where the last inequality uses (4.2). The conclusion now follows from Propostion 4.3.
3.) The proof of part (b) is essentially the same.

Proposition 4.6. Let σ(x, θ) ∈ Hs
T , s ≥ 0, and let σp be a moment-zero approximation to σ. We

have

(a) |σp|Hs
T
≤ C |σ|Hs

T
,

(b) If σ ∈ Γs
T , then |σp|Γs

T
≤ C

ps
|σ|Γs

T
.

Proof. Part (b) follows from (4.1). Indeed, for |β| ≤ s, there holds

|∂β1
m ∂β2

x mβ3σ̂p(x,m)|L2
T
≤ C

pβ1
|σ|Γs

T
,

since |∂β1
m χp| ≤ C/pβ1 . Taking β1 = 0 we similarly obtain part (a).

Next we consider primitives of moment-zero approximations.

Proposition 4.7. Let σ(x, θ) ∈ Γs
T , s >

d
2 +3. Let σ∗p(x, θ) be the unique primitive of σp in θ that

decays to zero as |θ| → ∞. Then σ∗p ∈ Γs
T with moment zero, and

(a) |σ∗p|Hs
T
≤ C

|σp|Hs
T

p

(b) |σ∗p|Γs
T
≤ C

|σp|Γs
T

ps+1
.

(4.3)

Proof. 1.) Since σp(x, θ) ∈ Γs
T , s >

d
2 + 3, we have |σp(x, θ)| ≤ C 〈θ〉−2 for all (x, θ). The unique

θ-primitive of σp decaying to zero as |θ| → ∞ is thus

σ∗p(x, θ) = −
∫ +∞

θ
σp(x, s) ds =

∫ θ

−∞
σp(x, s) ds.

Moreover, we have

∂θσ
∗
p = σp ⇔ im σ̂∗p = σ̂p = χp σ̂, so σ̂∗p =

χp σ̂

im
.(4.4)
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Since |m| ≥ p on the support of χp, this gives

|σ̂∗p(x,m)| ≤ C
|σ̂(x,m)|

p

and (4.3)(a) follows directly from this. From (4.4) we also obtain σ̂∗p(x, 0) = 0.
2.) The proof of (4.3)(b) is almost the same, except that now one uses

∣∣∣∂sm
(χp

m

)∣∣∣ ≤ C

ps+1
.

Proposition 4.8. Let σ(x, θ) and τ(x, θ) belong to Hs
T , s >

d+2
2 . Then

|σ τ − (σ τ)p|Hs
T
≤ C |σ|Hs

T
|τ |Hs

T

√
p.(4.5)

Proof. With ∗ denoting convolution in m we have

|σ τ − (σ τ)p|2Hs
T
∼

∑

|α|+k≤s+1

|∂αx mk (σ̂ ∗ τ̂)(x,m) (1 − χp(m))|2L2(x,m)

≤ C

∫

|m|≤2p
|(σ̂ ∗ τ̂)(x,m)|2Hs(x) dm

≤ C

∫

|m|≤2p

(∫
|σ̂(x,m−m1)|Hs(x) |τ̂(x,m1)|Hs(x) dm1

)2

dm

≤ C p |σ̂(x,m)|2L2(m,Hs(x)) |τ̂(x,m)|2L2(m,Hs(x)) ≤ C p |σ|2Hs
T
|τ |2Hs

T
.

Proposition 4.9. Let σ(x, θ) and τ(x, θ) belong to Γs
T , s >

d
2 + 3 and let (στ)∗p denote the unique

primitive of (στ)p that decays to zero as |θ| → ∞. Then

|(σ τ)∗p|Hs
T
≤ C

|σ|Hs
T
|τ |Hs

T

p
.

Proof. Since Γs
T is a Banach algebra, Proposition 4.7 implies (στ)∗p ∈ Γs

T with moment zero and

|(σ τ)∗p|Hs
T
≤ C

|(σ τ)p|Hs
T

p
.

Since Hs
T is a Banach algebra, the result now follows from Proposition 4.6(a).

4.2 Proof of Theorem 1.14

Choice of a and ã. The conditions on the boundary datum G(x′, θ0) are different in Theorems
3.7 and 2.14 We need to choose a, ã, and G(x′, θ0) so that both Theorems apply simultaneously.
We also need a large enough so that we can apply Proposition 3.6 in the step (4.18) of the error
analysis below. These conditions are met if we take a and ã as in (1.21), and choose G ∈ bΓã

T such
that 〈G〉bΓa+2

T
is small enough. Applying Theorems 3.7 and 2.14, we now have for 0 < ε ≤ ε0 an

exact solution Uε(x, θ0) ∈ Ea−1
T to the singular system (1.23) and profiles U0 ∈ Γ̃a+1

T , U1 ∈ Γ̃a−2
T

satisfying the profile equations (1.35) and (1.36).
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Approximation. Fix 0 < p ≤ 1, we use Proposition 4.5 to choose moment zero approximations
U0
p and U1

p such that

|U0 − U0
p |Ea−1

T
≤ C

√
p, |∂xd

U0 − ∂xd
U0
p |Ea−2

T
≤ C

√
p,

|U1 − U1
p |Ea−4

T
≤ C

√
p, |∂xd

U1 − ∂xd
U1
p |Ea−5

T
≤ C

√
p.

(4.6)

Having made these choices, we can now state the main result of this section, which yields the final
convergence result of Theorem 1.14 as an immediate corollary.

Theorem 4.10. We make the same Assumptions as in Theorem 1.14 and let a and ã be chosen as
in (1.21). Consider the leading order approximate solution to the singular semilinear system (1.23)
given by

U0
ε (x, θ0) := U0

(
x, θ0,

xd
ε

)
,

and let Uε(x, θ0) ∈ Ea−1
T be the exact solution to (1.23) just obtained. Then

|Uε(x, θ0)− U0
ε (x, θ0)|Ea−6

T
≤ C ε

1
2M1+3 , where M1 =

[
d

2
+ 3

]
.

Proof. We shall fill in the sketch provided in section 1.5. The approximate solution to the singular
system defined by (U0 + εU1)(x, θ0,

xd

ε ) is too crude for the error analysis, so we must construct an
additional corrector.

1.) As a first try we could use Proposition 1.19 to construct Ũ2
p (x, θ0, ξd) satisfying

L̃(∂θ0 , ∂ξd)Ũ2
p = −(I −E)

(
L̃(∂)U1

p +D(0)U1
p + (dD(0)U0

p )U0
p

)
:= −(I −E)G.(4.7)

This choice of Ũ2
p (x, θ0,

xd

ε ) turns out not to lie in any Er
T space, and is thus too large to be useful

in the error analysis. Observe however that G is of type F .
To remedy this problem we replace (I−E)G by a modification [(I−E)G]mod defined as follows.

First, using the earlier formulas for EU1 and (I −E)U1 and Remark 1.17, we have

−(I −E)G =
3∑

i=1


−

∑

k 6=i

V i
kτk,p −

∑

k 6=i

Xφi
bk,p −

∑

k 6=i,l 6=k,l 6=i

V i
kbl,p +

∑

k 6=i

eikτk,p


 ri

+

3∑

i=1


∑

k 6=i

cikσ
2
k,p +

∑

l 6=m

dil,mσl,pσm,p


 ri =: A+B,

(4.8)

where B is the second sum over i in (4.8), σq,p = σq,p(x, θ0 + ωqξd), and τr,p = τr,p(x, θ0 + ωrξd).
The problem is caused by the self-interaction terms given by the sum over k 6= i in B, so we define

−[(I −E)G]mod = A+
3∑

i=1


∑

k 6=i

cik(σ
2
k,p)p +

∑

l 6=m

dil,mσl,pσm,p


 ri ,(4.9)

and we set

U2
p := −R∞[(I −E)G]mod.(4.10)

29



Instead of (4.7) we have

L̃(∂θ0 , ∂ξd)U2
p = −[(I −E)G]mod.(4.11)

For later use we set

D(x, θ0, ξd) := (I −E)G − [(I −E)G]mod

and estimate

|D(x, θ0,
xd
ε
)|Ea

T
≤ C

√
p.

Indeed, using Propositions 4.8 and 4.6(a) we have
∣∣∣
(
σ2k,p − (σ2k,p)p

)
(x, θ0 + ωk

xd
ε
)
∣∣∣
Ea

T

≤ |
(
σ2k,p − (σ2k,p)p

)
|Ha+1

T
≤ |σk|2Ha+1

T

√
p.

We then define the corrected approximate solution

Uε(x, θ0) := U0(x, θ0,
xd
ε
) + εU1(x, θ0,

xd
ε
) + ε2 U2

p (x, θ0,
xd
ε
).

Since U1 ∈ Γ̃a−2
T , Proposition 4.3 implies U1

ε ∈ Ea−3
T .

2.) Estimate of |U2
p,ε|Ea−4

T
. For A as in (4.8) let us write A =

∑3
i=1 ai(x, θ0, ξd)ri. By (4.10),

(4.9) and the formula (1.32) for R∞, for i = 1, 2, 3 we must estimate |bi(x, θ0, xd

ε )|Es−2
T

, where

bi(x, θ0, ξd) reads as follows:

∑

k 6=i

cik

∫ +∞

ξd

(
σ2k,p

)
p
(x, θ0 + ωiξd + s(ωk − ωi)) ds

+
∑

m6=i

dii,m

∫ +∞

ξd

σi,p(x, θ0 + ωiξd)σm,p(x, θ0 + ωiξd + s(ωm − ωi)) ds

+
∑

l 6=i

dil,i

∫ +∞

ξd

σl,p(x, θ0 + ωiξd + s(ωl − ωi))σi,p(x, θ0 + ωiξd) ds(4.12)

+
∑

l 6=m,l 6=i,m6=i

dil,m

∫ +∞

ξd

σl,p(x, θ0 + ωiξd + s(ωl − ωi))σm,p(x, θ0 + ωiξd + s(ωm − ωi)) ds

+

∫ +∞

ξd

ai(x, θ0 + ωi(ξd − s), s) ds =
5∑

r=1

bi,r(x, θ0, ξd),

where bi,r, r = 1, . . . , 5 are defined by the respective lines of (4.12). Since U0 ∈ Γ̃a+1
T , using

Corollary A.3 we find

∣∣∣bi,1
(
x, θ0,

xd
ε

)∣∣∣
Ea

T

≤ C
∑

k 6=i

|σk|2Ha+1
T

p
≤ C/p.

Similarly, from Proposition A.4 we get
∣∣∣bi,2

(
x, θ0,

xd
ε

)∣∣∣
Ea

T

≤ C/p;
∣∣∣bi,3

(
x, θ0,

xd
ε

)∣∣∣
Ea

T

≤ C/p.
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Proposition A.1 on transversal interactions implies

∣∣∣bi,4
(
x, θ0,

xd
ε

)∣∣∣
Ea

T

≤ C

pM1
,

where we have used Proposition 4.6(b) to estimate |σm,p|ΓM1
T

≤ C
pM1

|σm|
Γ
M1
T

.

Since A ∈ Γ̃a−3
T , Proposition A.5 implies |bi,5(x, θ0, xd

ε )|Ea−4
T

≤ C/p, so adding up we obtain

∣∣U2
p,ε

∣∣
Ea−4

T

≤ C

pt
.

To estimate (∂xd
U2
p )ε we differentiate (4.12) and estimate as above to find

∣∣(∂xd
U2
p )ε
∣∣
Ea−5

T

≤ C

pt+1
.

3.) Next we study the error upon substituting the corrected approximate solution Uε into
the singular system (1.23). Letting Lε denote the operator defined by the left side of (1.23), we
compute

(4.13) Lε(Uε) = ε
[
(L̃(∂θ0 , ∂ξd)U2

p )|ξd=xd
ε
+
(
L̃(∂)U1 +D(0)U1 + (dD(0)U0)U0

)
|ξd=xd

ε

]
+O(ε2).

Here the profile equations (1.25) imply that the terms of order ε−1 and ε0 vanish. Using (4.11) we
can rewrite the coefficient of ε in (4.13) as

[
L̃(∂)(U1 − U1

p ) +D(0)(U1 − U1
p ) + (dD(0)U0)U0 − (dD(0)U0

p )U0
p

]
|ξd=xd

ε

+
[
E
(
L̃(∂)U1

p +D(0)U1
p + (dD(0)U0

p )U0
p

)]
|ξd=xd

ε
+D(x, θ0,

xd
ε
) := A+B +D(x, θ0,

xd
ε
) .

Using (4.6), Proposition 4.3, and the fact that Es
T is a Banach algebra for s ≥ [(d + 1)/2], we see

that

|A|Ea−5(ΩT ) < C
√
p.

To estimate B, let

F = L̃(∂)U1 +D(0)U1 + (dD(0)U0)U0 and Fp = L̃(∂)U1
p +D(0)U1

p + (dD(0)U0
p )U0

p .

The profile equation (1.36)(b) implies EF = 0. Since F and Fp are of type F , we can use the
explicit formula for the action of E in Remark 1.17 and (4.6) to obtain

|B|Ea−5
T

=
∣∣∣(EFp)|ξd=xd

ε

∣∣∣
Ea−5

T

=
∣∣∣(E(F − Fp))|ξd=xd

ε

∣∣∣
Ea−5

T

≤ C
√
p.

4.) The O(ε2) terms in (4.13) consist of

∣∣∣ε2
(
L(∂)U2

p (x, θ0, ξd)
)
|ξd=xd

ε

∣∣∣
Ea−5

T

≤ C
ε2

pt+1
,(4.14)
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as well as terms coming from the Taylor expansion of D(εUε)Uε like ε2 (dD(0)U0)U1|ξd=xd
ε
, all of

which satisfy better estimates than (4.14).
Setting Rε(x, θ0) := Lε(Uε), we have shown

|Rε|Ea−5
T

≤ C ε

(√
p+

ε

pt+1

)
.(4.15)

5.) The boundary profile equations (1.26), and the fact that the traces of U0
ε and U1

ε lie in
Ha(bΩT ) and H

a−3(bΩT ), respectively, imply

〈
rε(x

′, θ0)
〉
Ha−4(bΩT )

≤ C
ε2

pt
, where rε := ψ(εUε)Uε − εG(x′, θ0).(4.16)

Indeed, these O(ε2) terms include

〈
ε2B U2

p,ε(x
′, 0, θ0)

〉
Ha−4(bΩT )

≤ C
ε2

pt
,

and other terms satisfying the same estimate coming from the Taylor expansion of ψ(εUε)Uε.
6.) Next we consider the singular problem satisfied by the difference Wε := Uε − Uε:

∂dWε + A

(
∂x′ +

β∂θ0
ε

)
Wε +D2(εUε, εUε)Wε = −Rε

ψ2(εUε, εUε)Wε = −rε on xd = 0

Wε = 0 in t < 0,

(4.17)

where

D2(εUε, εUε)Wε := D(εUε)Uε −D(εUε)Uε

= D(εUε)Wε +

(∫ 1

0
dD(εUε + sε(Uε − Uε))Wε ds

)
(εUε) ,

and ψ2(εUε, εUε)Wε is defined similarly. Since Uε ∈ Ea−1
T and Uε ∈ Ea−4

T , a short computation
shows

ψ2(εUε, εUε)Wε = ψ(εUε)Wε + (dψ(εU)Wε)εUε +O

(
ε2

pM1

)
= B(εU, εU)Wε +O

(
ε2

pM1

)
,

where the error term is measured in Ha−4(bΩT ) and B is defined in (1.13). Similarly,

D2(εUε, εUε)Wε = D(εU, εU)Wε +O

(
ε2

pM1

)
in Ea−4

T .

Thus, using (4.15) and (4.16) we find

∂dWε + A

(
∂x′ +

β∂θ0
ε

)
Wε +D(εUε, εUε)Wε = εO

(√
p+

ε

pM1+1

)
in Ea−5

T

B(εUε, εUε)Wε|xd=0 = O

(
ε2

pM1

)
in Ha−4(bΩT )

Wε = 0 in t < 0.
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Provided 〈G〉bΓα+2
T

is small enough, we can apply the estimate of Proposition 3.6 to obtain

|Wε|Ea−6
T

≤ C

(√
p+

ε

pM1+1

)
.(4.18)

Setting p = εb and
√
p = ε/pM1+1, we find b = 2

2M1+3 . Thus, |Wε|Ea−6
T

≤ C ε
1

2M1+3 , so (4.18)

implies

|Uε − U0
ε |Ea−6

T
≤ C ε

1
2M1+3 .

5 Extension to the general N ×N system

It is only the discussion of profiles and the error analysis that needs to be extended to the general
case. For each m ∈ {1, . . . ,M} we let

ℓm,k, k = 1, . . . , νkm

denote a basis of real vectors for the left eigenspace of the real matrix iA(β) associated to the real
eigenvalue −ωm and chosen to satisfy

ℓm,k · rm′,k′ =

{
1, if m = m′ and k = k′,

0, otherwise.

For v ∈ C
N we set

Pm,kv := (ℓm,k · v) rm,k , (no complex conjugation here).

Functions of type F (see Definition 1.16) have the form

F (x, θ0, ξd) =
M∑

m=1

νkm∑

k=1

Fm,k(x, θ0, ξd) rm,k ,

where

Fm,k =
∑

m′

fm,k
m′ (x, θ0 + ωm′ ξd)

+
∑

m′,k′,m′′,k′′

gm,k
m′,k′,m′′,k′′(x, θ0 + ωm′ ξd)h

m,k
m′,k′,m′′,k′′(x, θ0 + ωm′′ ξd) .

The operator E is given by

EF :=
∑

m,k

(
lim
T→∞

1

T

∫ T

0
Fm,k(x, θ0 + ωm(ξd − s), s) ds

)
rm,k ,

33



and we leave it to the reader to formulate the analogue of Remark 1.17. On functions of type F
such that EF = 0 the action of the operator R∞ is given by

R∞F := −
∑

m,k

(∫ +∞

ξd

Fm,k(x, θ0 + ωm(ξd − s), s) ds

)
rm,k .

The general form of the profile equations (1.35), (1.36) still applies. With

W (x, θ0, ξd) =
∑

m,k

wm,k(x, θ0, ξd) rm,k,

the decomposition of Proposition 2.1 now has the form

L̃(∂)W =
∑

m,k

(Xφm
wm,k) rm,k +

∑

m,k


 ∑

m′ 6=m,k′

V m,k
m′,k′ wm′,k′


 rm,k,(5.1)

where V m,k
m′,k′ is the tangential vector field

V m,k
m′,k′ =

d−1∑

j=0

(ℓm,kAjrm′,k′)∂xj
.

Recalling that {1, . . . ,M} = O∪I, whereO and I contain the indices corresponding to outgoing
and incoming phases, we have the expressions in (1.19) for U0 and U1 in the general case. As in
(1.10) we have

kerB ∩ E
s(β) = Span{e} =

∑

m∈I

em =
∑

m∈I

νkm∑

k=1

em,k ,

where em,k := Pm,ke. Using (5.1) and arguing as in Propositions 2.2 and 2.3, we find that the key
subsystem (2.11) now takes the form

Xφm
σm,k + em,k σm,k = 0, m ∈ I, k = 1, . . . , νkm ,

XLopa+ c a+ d ∂θ0(a
2) = −b · ∂θ0G on {xd = 0, ξd = 0} ,

(5.2)

where
σm,k(x

′, 0, θ0) rm,k = a(x′, θ0) em,k ,

and all unknowns are zero in t < 0. The key subsystem and then the full profile system are solved
as before (using a Picard iteration for a and integration along the characteristics for the σm,k’s),
and Theorem 2.14 on the existence and regularity of U0 and U1 still holds as stated.

The error analysis in the proof of Theorem 4.10 goes through with the obvious minor changes.
For example, the troublesome self-interaction terms cikσ

2
k,p in the sum that is part of B in (4.8) are

now replaced by terms of the form cim,k,k′σm,k,pσm,k′,p, m 6= i, where the index p as before denotes a
moment-zero approximation. These terms are handled just as before by introducing −[(I−E)G]mod,
see (4.9), in which they are replaced by cim,k,k′(σm,k,pσm,k′,p)p. The contribution of these terms to

U2
p is estimated as before using Corollary A.3. The statement of Theorem 4.10 applies unchanged

in the general case.
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A Estimates of interaction integrals

Pulses do not interact to produce resonances that affect the leading order profiles as in the
wavetrain case. However, interaction integrals must be estimated carefully in the error analysis of
Section 4. All results below are proved in our earlier paper [CW13] so we shall not reproduce the
proofs here.

The following propositions are used in the error analysis for estimating integrals appearing
in the definition of U2

p,ε (step 2 of Theorem 4.10). In particular, we must estimate primitives of
products of pulses. In some of the estimates below we must introduce moment-zero approximations
to avoid errors that would fail to lie in any Er

T space, which are thus too large to be useful in the
error analysis. We begin with an estimate of “transversal interactions”, see Proposition 4.10 in
[CW13].

Proposition A.1. Let t be the smallest integer greater than d
2 + 3, and let s ≥ 0. Let σ1(x, θ),

σ2(x, θ) belong to Γt
T ∩Hs+1

T , and define

u(x, θ0, ξd) := −
∫ +∞

ξd

σ1(x, θ0 + ωξd + αs)σ2(x, θ0 + ωξd + s) ds,

where ω, α are real and α /∈ {0, 1}. With uε(x, θ0) := u(x, θ0,
xd

ε ), we have

|uε|Es
T
≤ C

(
|σ1|Hs+1

T
|σ2|Γt

T
+ |σ2|Hs+1

T
|σ1|Γt

T

)
,

uniformly for ε ∈ (0, 1].

The previous estimate of transversal interactions did not require the use of moment-zero ap-
proximations. However, nontransversal interactions of pulses can produce errors that do not lie in
any Er

T space, and are thus too big to be helpful in the error analysis. Thus, we are forced to use
a moment-zero approximation in the next two propositions (see corresponding Proposition 4.11,
Corollary 4.12 and Proposition 4.14 in [CW13]).

Proposition A.2. Let σ(x, θ) and τ(x, θ) belong to Γs
T , s >

d
2 + 3. For α, ω ∈ R, α 6= 0 set

f(x, θ0, ξd) := −
∫ +∞

ξd

(σ τ)p(x, θ0 + ω ξd + α s) ds.

Then ∣∣∣f
(
x, θ0,

xd
ε

)∣∣∣
Es−1

T

≤ C
|σ|Hs

T
|τ |Hs

T

p
.

Corollary A.3. Let σ(x, θ), τ(x, θ), and ω,α be as in Proposition A.2 and set

g(x, θ0, ξd) := −
∫ +∞

ξd

(σp τp)p(x, θ0 + ω ξd + α s) ds.

Then ∣∣∣g
(
x, θ0,

xd
ε

)∣∣∣
Es−1

T

≤ C
|σ|Hs

T
|τ |Hs

T

p
.
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Proposition A.4. For s > d
2 + 3 let σ(x, θ) ∈ Hs

T , τ(x, θ) ∈ Γs
T . With ω,α ∈ R, α 6= 0 set

j(x, θ0, ξd) := −σ(x, θ0 + ω ξd)

∫ +∞

ξd

τp(x, θ0 + ω ξd + α s) ds.

Then ∣∣∣j(x, θ0,
xd
ε
)
∣∣∣
Es−2

T

≤ C
|σ|Hs

T
|τ |Hs−1

T

p
.

The next Proposition requires moment zero approximations because forcing by a noninteracting
pulse can also produce errors that fail to lie in any Er

T space, see Proposition 4.15 in [CW13].

Proposition A.5. For s > d
2 + 3 and ω,α ∈ R, α 6= 0, let σ ∈ Γs

T and set

k(x, θ0, ξd) = −
∫ +∞

ξd

σp(x, θ0 + ωξd + αs) ds.

Then ∣∣∣k(x, θ0,
xd
ε
)
∣∣∣
Es−1

T

≤ C
|σ|Hs

T

p
.

B Singular pseudodifferential calculus for pulses

Here we summarize the parts of the singular pulse calculus constructed in [CGW12] that are
needed in this article. First we define the singular Sobolev spaces used to describe mapping prop-
erties.

The variable in R
d+1 is denoted (x, θ), x ∈ R

d, θ ∈ R, and the associated frequency is denoted
(ξ, k). In this new context, the singular Sobolev spaces are defined as follows. We consider a fixed
vector β ∈ R

d \ {0}. Then for s ∈ R and ε ∈ ]0, 1], the anisotropic Sobolev space Hs,ε(Rd+1) is
defined by

Hs,ε(Rd+1) :=
{
u ∈ S ′(Rd+1) / û ∈ L2

loc(R
d+1)

and

∫

Rd+1

(
1 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣
2
)s ∣∣û(ξ, k)

∣∣2 dξ dk < +∞
}
.

Here û denotes the Fourier transform of u on R
d+1. The space Hs,ε(Rd+1) is equipped with the

family of norms

∀ γ ≥ 1 , ∀u ∈ Hs,ε(Rd+1) , ‖u‖2Hs,ε,γ :=
1

(2π)d+1

∫

Rd+1

(
γ2 +

∣∣∣∣ξ +
k β

ε

∣∣∣∣
2
)s ∣∣û(ξ, k)

∣∣2 dξ dk .

When m is an integer, the space Hm,ε(Rd+1) coincides with the space of functions u ∈ L2(Rd+1)
such that the derivatives, in the sense of distributions,

(
∂x1 +

β1
ε
∂θ

)α1

. . .

(
∂xd

+
βd
ε
∂θ

)αd

u , α1 + · · · + αd ≤ m,

belong to L2(Rd+1). In the definition of the norm ‖ · ‖Hm,ε,γ , one power of γ counts as much as one
derivative.
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B.1 Symbols

Our singular symbols are built from the following sets of classical symbols.

Definition B.1. Let O ⊂ R
N be an open subset that contains the origin. For m ∈ R we let Sm(O)

denote the class of all functions σ : O×R
d× [1,∞) → C

N×N , N ≥ 1, such that σ is C∞ on O×R
d

and for all compact sets K ⊂ O:

sup
v∈K

sup
ξ′∈Rd

sup
γ≥1

(γ2 + |ξ|2)−(m−|ν|)/2 |∂αv ∂νξ′σ(v, ξ, γ)| ≤ Cα,ν,K.

Let Ck
b (R

d+1), k ∈ N, denote the space of continuous and bounded functions on R
d+1, whose

derivatives up to order k are continuous and bounded. Let us first define the singular symbols.

Definition B.2 (Singular symbols). Fix β ∈ R
d \ 0, let m ∈ R, and let n ∈ N. Then we let Sm

n

denote the set of families of functions (aε,γ)ε∈]0,1],γ≥1 that are constructed as follows:

(B.1) ∀ (x, θ, ξ, k) ∈ R
d+1 × R

d+1 , aε,γ(x, θ, ξ, k) = σ

(
ε V (x, θ), ξ +

k β

ε
, γ

)
,

where σ ∈ Sm(O), V belongs to the space Cn
b (R

d+1) and where furthermore V takes its values in a
convex compact subset K of O that contains the origin (for instance K can be a closed ball centered
round the origin).

All results below extend to the case where in place of a function V that is independent of ε,
the representation (B.1) is considered with a function Vε that is indexed by ε, provided that we
assume that all functions ε Vε take values in a fixed convex compact subset K of O that contains
the origin, and (Vε)ε∈(0,1] is a bounded family of Cn

b (R
d+1). Such singular symbols with a function

Vε are exactly the kind of symbols that we manipulated in the construction of exact solutions to
the singular system (1.23).

B.2 Definition of operators and action on Sobolev spaces

To each symbol a = (aε,γ)ε∈]0,1],γ≥1 ∈ Sm
n given by the formula (B.1), we associate a singular

pseudodifferential operator Opε,γ(a), with ε ∈ ]0, 1] and γ ≥ 1, whose action on a function u ∈
S(Rd+1;CN ) is defined by

(B.2) Opε,γ(a)u (x, θ) :=
1

(2π)d+1

∫

Rd+1

ei (ξ·x+k θ) σ

(
ε V (x, θ), ξ +

k β

ε
, γ

)
û(ξ, k) dξ dk .

Let us briefly note that for the Fourier multiplier σ(v, ξ, γ) = i ξ1, the corresponding singular
operator is ∂x1 + (β1/ε) ∂θ . We now describe the action of singular pseudodifferential operators on
Sobolev spaces.

Proposition B.3. Let n ≥ d + 1, and let a ∈ Sm
n with m ≤ 0. Then Opε,γ(a) in (B.2) defines a

bounded operator on L2(Rd+1): there exists a constant C > 0, that only depends on σ and V in the
representation (B.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)u‖0 ≤
C

γ|m|
‖u‖0 .
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The constant C in Proposition B.3 depends uniformly on the compact set in which V takes its
values and on the norm of V in Cd+1

b . For operators defined by symbols of order m > 0 we have:

Proposition B.4. Let n ≥ d + 1, and let a ∈ Sm
n with m > 0. Then Opε,γ(a) in (B.2) defines a

bounded operator from Hm,ε(Rd+1) to L2(Rd+1): there exists a constant C > 0, that only depends
on σ and V in the representation (B.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)u‖0 ≤ C ‖u‖Hm,ε,γ .

The next proposition describes the smoothing effect of operators of order −1.

Proposition B.5. Let n ≥ d + 2, and let a ∈ S−1
n . Then Opε,γ(a) in (B.2) defines a bounded

operator from L2(Rd+1) to H1,ε(Rd+1): there exists a constant C > 0, that only depends on σ and
V in the representation (B.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)u‖H1,ε,γ ≤ C ‖u‖0 .

Remark B.6. In applications of the pulse calculus, we verify the hypothesis that for V as in (B.1),
V ∈ Cn

b (R
d+1), by showing V ∈ Hs(Rd+1) for some s > d+1

2 + n.

B.3 Adjoints and products

For proofs of the following results we refer to [CGW12]. The two first results deal with adjoints of
singular pseudodifferential operators while the last two deal with products.

Proposition B.7. Let a = σ(εV, ξ + k β
ε , γ) ∈ S0

n, n ≥ 2 (d + 1), where V ∈ Hs0(Rd+1) for some

s0 > d+1
2 + 1, and let a∗ denote the conjugate transpose of the symbol a. Then Opε,γ(a) and

Opε,γ(a∗) act boundedly on L2 and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for
all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)∗ u−Opε,γ(a∗)u‖H1,ε,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.

Proposition B.8. Let a = σ(εV, ξ + k β
ε , γ) ∈ S1

n, n ≥ 3 d + 4, where V ∈ Hs0(Rd+1) for some

s0 > d+1
2 + 1, and let a∗ denote the conjugate transpose of the symbol a. Then Opε,γ(a) and

Opε,γ(a∗) map H1,ε into L2 and there exists a family of operators Rε,γ that satisfies

• there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Rε,γ u‖0 ≤ C ‖u‖0 ,

• the following duality property holds

∀u, v ∈ S(Rd+1) , 〈Opε,γ(a)u, v〉L2 − 〈u,Opε,γ(a∗) v〉L2 = 〈Rε,γ u, v〉L2 .

In particular, the adjoint Opε,γ(a)∗ for the L2 scalar product maps H1,ε into L2.
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Proposition B.9. (a) Let a, b ∈ S0
n, n ≥ 2 (d + 1), and suppose b = σ(εV, ξ + k β

ε , γ) where

V ∈ Hs0(Rd+1) for some s0 >
d+1
2 + 1. Then there exists a constant C ≥ 0 such that for all

ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤
C

γ
‖u‖0 .

If n ≥ 3 d+ 3, then for another constant C, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0 ,

uniformly in ε and γ.
(b) Let a ∈ S1

n, b ∈ S0
n or a ∈ S0

n, b ∈ S1
n, n ≥ 3 d + 4, and in each case suppose b =

σ(εV, ξ + k β
ε , γ) where V ∈ Hs0(Rd+1) for some s0 >

d+1
2 + 1. Then there exists a constant C ≥ 0

such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖0 ≤ C ‖u‖0 .

Proposition B.10. Let a ∈ S−1
n , b ∈ S1

n, n ≥ 3 d + 4, and suppose b = σ(εV, ξ + k β
ε , γ) where

V ∈ Hs0(Rd+1) for some s0 >
d+1
2 +1. Then Opε,γ(a)Opε,γ(b) defines a bounded operator on H1,ε

and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

∀u ∈ S(Rd+1) , ‖Opε,γ(a)Opε,γ(b)u−Opε,γ(a b)u‖H1,ε,γ ≤ C ‖u‖0 .

Our final result is G̊arding’s inequality.

Theorem B.11. Let σ ∈ S0 satisfy Reσ(v, ξ, γ) ≥ CK > 0 for all v in a compact subset K of O.
Let now a ∈ Sn

0 , n ≥ 2 d+2 be given by (B.1), where V ∈ Hs0(Rd+1) for some s0 >
d+1
2 +1 and is

valued in a convex compact subset K. Then for all δ > 0, there exists γ0 which depends uniformly
on V , the constant CK and δ, such that for all γ ≥ γ0 and all u ∈ S(Rd+1), there holds

Re 〈Opε,γ(a)u;u〉L2 ≥ (CK − δ) ‖u‖20 .

B.4 Extended calculus

In the proof of Corollary 3.4 we use a slight extension of the singular calculus. For given
parameters 0 < δ1 < δ2 < 1, we choose a cutoff χe(ξ′, k β

ε , γ) such that

0 ≤ χe ≤ 1 ,

χe

(
ξ′,
k β

ε
, γ

)
= 1 on

{
(γ2 + |ξ′|2)1/2 ≤ δ1

∣∣∣∣
k β

ε

∣∣∣∣
}
,

suppχe ⊂
{
(γ2 + |ξ′|2)1/2 ≤ δ2

∣∣∣∣
k β

ε

∣∣∣∣
}
,

and define a corresponding Fourier multiplier χD in the extended calculus by the formula (B.2)
with χe(ξ′, k β

ε , γ) in place of σ(εV,X, γ). Composition laws involving such operators are proved in
[CGW12], but here we need only the fact that part (a) of Proposition B.9 holds when either a or
b is replaced by an extended cutoff χe.
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