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Amplification of pulses in nonlinear geometric optics

In this companion paper to our study of amplification of wavetrains [CGW13], we study weakly stable semilinear hyperbolic boundary value problems with pulse data. Here weak stability means that exponentially growing modes are absent, but the so-called uniform Lopatinskii condition fails at some boundary frequency in the hyperbolic region. As a consequence of this degeneracy there is again an amplification phenomenon: outgoing pulses of amplitude O(ε 2 ) and wavelength ε give rise to reflected pulses of amplitude O(ε), so the overall solution has amplitude O(ε). Moreover, the reflecting pulses emanate from a radiating pulse that propagates in the boundary along a characteristic of the Lopatinskii determinant.

In the case of N ×N systems considered here, a single outgoing pulse produces on reflection a family of incoming pulses traveling at different group velocities. Unlike wavetrains, pulses do not interact to produce resonances that affect the leading order profiles. However, pulse interactions do affect lower order profiles and so these interactions have to be estimated carefully in the error analysis. Whereas the error analysis in the wavetrain case dealt with small divisor problems by approximating periodic profiles by trigonometric polynomials (which amounts to using a high frequency cutoff), in the pulse case we approximate decaying profiles with nonzero moments by profiles with zero moments (a low frequency cutoff). Unlike the wavetrain case, we are now able to obtain a rate of convergence in the limit describing convergence of approximate to exact solutions.

Introduction

In this paper we study the reflection of pulses in weakly stable semilinear hyperbolic boundary value problems. The problems are weakly stable in the sense that exponentially growing modes are absent, but the uniform Lopatinskii condition fails at a boundary frequency β in the hyperbolic region 1 H. As a consequence of this degeneracy in the boundary conditions, there is an amplification phenomenon: boundary data of amplitude ε in the problem (1.2) below gives rise to a response of amplitude O(1).

On R where L(∂) := ∂ t + d j=1 B j ∂ j , the matrix B d is invertible, and both f 0 (v) and φ(v) vanish at v = 0. The function G(x ′ , θ 0 ) is assumed to have polynomial decay in θ 0 , and the frequency β ∈ R d \ {0} is taken to be a boundary frequency at which the uniform Lopatinskii condition fails. A consequence of this failure is that the choice of the factor ε 2 in (1.1)(b) corresponds to the weakly nonlinear regime for this problem. The leading order profile is coupled to the next order profile in the nonlinear system (1.36) derived below.

Before proceeding we write the problem in an equivalent form that is better adapted to the boundary. After multiplying the first equation by (B d ) -1 we obtain

L(∂)v + f (v) = 0 φ(v) = ε 2 G(x ′ , x ′ • β ε ) on x d = 0 v = 0 and G = 0 in t < 0,
1 See Definition 1.3 and Assumption 1.5 for precise statements. 2 We usually suppress the subscript ε. (1.2)

For this problem we pose the two basic questions of rigorous nonlinear geometric optics:

(1) Does an exact solution u ε of (1.2) exist for ε ∈ (0, 1] on a fixed time interval [0, T 0 ] independent of ε?

(2) Suppose the answer to the first question is yes. If we let u app ε denote an approximate solution on [0, T 0 ] constructed by the methods of nonlinear geometric optics (that is, solving eikonal equations for phases and suitable transport equations for profiles), how well does u app ε approximate u ε for ε small? For example, is it true that lim

ε→0 |u ε -u app ε | L ∞ → 0 ? (1.3)
The amplification phenomenon was studied in a formal way for several different quasilinear problems in [AM87, [START_REF] Majda | Nonlinear geometric optics for hyperbolic mixed problems[END_REF][START_REF] Majda | A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis[END_REF]. In [START_REF] Majda | A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis[END_REF] amplification was studied in connection with Mach stem formation in reacting shock fronts, while [START_REF] Artola | Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes[END_REF] explored a connection to the formation of instabilities in compressible vortex sheets. Both papers derived equations for profiles using an ansatz that exhibited amplification; however, neither of the two questions posed above were addressed. The first rigorous amplification results were proved in [START_REF] Coulombel | Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems[END_REF] for linear wavetrains. That paper provided positive answers to the above questions by making use of approximate solutions of high order, and showed in particular that the limit (1.3) holds.

An amplification result for wavetrains in weakly stable semilinear problems was proved in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF], and in this paper we prove the analogous result for pulses. Our approximate solution has the form (1.4)

u app ε (x) = U 0 (x, θ 0 , ξ d )| θ 0 = φ 0 ε ,ξ d = x d ε
,

where 3 U 0 (x, θ 0 , ξ d ) = m∈I ν km k=1 σ m,k (x, θ 0 + ω m ξ d ) r m,k . (1.5)
Here each pulse profile σ m,k (x, θ) is polynomially decaying in θ ∈ R, rather than periodic in θ as in the wavetrain case. From the explicit and rather simple equations satisfied by the profiles appearing in U 0 , we read off the main amplification phenomenon for solutions of (1.2): in t > 0 pulses of amplitude O(1), which emanate from a pulse in the boundary that propagates along a characteristic of the Lopatinskii determinant, radiate into the interior at distinct group velocities determined by β.

In the case of N × N systems considered here, a single outgoing pulse produces on reflection a family of incoming pulses traveling at different group velocities. Unlike wavetrains, pulses do not interact to produce resonances that affect the leading order profiles. One effect of this is that we do not need to use Nash-Moser iteration to construct the leading pulse profiles as we did in the wavetrain case. The construction of exact solutions is again based on the study of an associated singular system (1.23). This system is solved by a Nash-Moser iteration argument based on a tame estimate for the linearized singular system (3.6). The proof of that estimate and the Nash-Moser iteration can be carried over verbatim from the corresponding argument in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] for wavetrains 4 . The estimate for the linearized singular system also plays a key role in the error analysis here.

The main differences between the analysis of this paper and that of [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] occur in the study of the profile equations and in the error analysis. Although pulses do not produce resonances, pulse interactions do affect lower order profiles and so these interactions have to be estimated carefully in the error analysis. Unlike the wavetrain case, we are now able to obtain a rate of convergence in the limit (1.3). Whereas the error analysis in the wavetrain case dealt with small divisor problems by approximating periodic profiles by trigonometric polynomials (which amounts to using a high frequency cutoff), in the pulse case we approximate decaying profiles with nonzero moments by profiles with zero moments (using a low frequency cutoff) 5 . We provide a more detailed summary of the argument after stating our main assumptions.

Assumptions

We make the following hyperbolicity assumption on the system (1.1): Assumption 1.1. There exist an integer q ≥ 1, some real functions λ 1 , . . . , λ q that are analytic on R d \ {0} and homogeneous of degree 1, and there exist some positive integers ν 1 , . . . , ν q such that:

∀ ξ = (ξ 1 , . . . , ξ d ) ∈ R d \ {0} , det τ I + d j=1 ξ j B j = q k=1 τ + λ k (ξ) ν k .
Moreover the eigenvalues λ 1 (ξ), . . . , λ q (ξ) are semi-simple (their algebraic multiplicity equals their geometric multiplicity) and satisfy

λ 1 (ξ) < • • • < λ q (ξ) for all ξ ∈ R d \ {0}.
For simplicity, we restrict our analysis to noncharacteristic boundaries and therefore make the following:

Assumption 1.2. The matrix B d is invertible and the matrix B := ψ(0) has maximal rank, its rank p being equal to the number of positive eigenvalues of B d (counted with their multiplicity). Moreover, the integer p satisfies 1 ≤ p ≤ N -1.

In the normal modes analysis for (1.2), one first performs a Laplace transform in the time variable t and a Fourier transform in the tangential space variables y. We let τi γ ∈ C and η ∈ R d-1 denote the dual variables of t and y. We introduce the symbol

A(ζ) := -i B -1 d   (τ -iγ) I + d-1 j=1 η j B j   , ζ := (τ -iγ, η) ∈ C × R d-1 .
For future use, we also define the following sets of frequencies:

Ξ := (τ -iγ, η) ∈ C × R d-1 \ (0, 0) : γ ≥ 0 , Σ := ζ ∈ Ξ : τ 2 + γ 2 + |η| 2 = 1 , Ξ 0 := (τ, η) ∈ R × R d-1 \ (0, 0) = Ξ ∩ {γ = 0} , Σ 0 := Σ ∩ Ξ 0 .
Two key objects in our analysis are the hyperbolic region and the glancing set that are defined as follows:

Definition 1.3.

• The hyperbolic region H is the set of all (τ, η) ∈ Ξ 0 such that the matrix A(τ, η) is diagonalizable with purely imaginary eigenvalues.

• Let G denote the set of all (τ, ξ) ∈ R × R d such that ξ = 0 and there exists an integer k ∈ {1, . . . , q} satisfying:

τ + λ k (ξ) = ∂λ k ∂ξ d (ξ) = 0 . If π(G) denotes the projection of G on the d first coordinates (in other words π(τ, ξ) = (τ, ξ 1 , . . . , ξ d-1 ) for all (τ, ξ)), the glancing set G is G := π(G) ⊂ Ξ 0 .
We recall the following result that is due to Kreiss [Kre70] in the strictly hyperbolic case (when all integers ν j in Assumption 1.1 equal 1) and to Métivier [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF] in our more general framework: [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF][START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF]). Let Assumptions 1.1 and 1.2 be satisfied. Then for all ζ ∈ Ξ \ Ξ 0 , the matrix A(ζ) has no purely imaginary eigenvalue and its stable subspace E s (ζ) has dimension p. Furthermore, E s defines an analytic vector bundle over Ξ \ Ξ 0 that can be extended as a continuous vector bundle over Ξ.

Proposition 1.4 ([
For all (τ, η) ∈ Ξ 0 , we let E s (τ, η) denote the continuous extension of E s to the point (τ, η). The analysis in [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF] shows that away from the glancing set G ⊂ Ξ 0 , E s (ζ) depends analytically on ζ, and the hyperbolic region H does not contain any glancing point.

To treat the case when the boundary operator in (1.2)(b) is independent of u, meaning ψ(εu) ≡ ψ(0) =: B, we make the following weak stability assumption on the problem (L(∂), B).

Assumption 1.5. • For all ζ ∈ Ξ \ Ξ 0 , KerB ∩ E s (ζ) = {0}. • The set Υ 0 := {ζ ∈ Σ 0 : KerB ∩ E s (ζ) = {0}} is nonempty and included in the hyperbolic region H. • For all ζ ∈ Υ 0 , there exists a neighborhood V of ζ in Σ, a real valued C ∞ function σ defined on V, a basis E 1 (ζ), . . . , E p (ζ) of E s (ζ) that is of class C ∞ with respect to ζ ∈ V, and a matrix P (ζ) ∈ GL p (C) that is of class C ∞ with respect to ζ ∈ V, such that ∀ ζ ∈ V , B E 1 (ζ) . . . E p (ζ) = P (ζ) diag γ + i σ(ζ), 1, . . . , 1 .
For comparison and later reference we recall the following definition. Boundary and interior phases. We consider a planar real phase φ 0 defined on the boundary:

(1.6) φ 0 (t, y) := τ t + η • y , (τ , η) ∈ Ξ 0 .
As follows from earlier works, see e.g. [START_REF] Majda | Nonlinear geometric optics for hyperbolic mixed problems[END_REF], oscillations or pulses on the boundary associated with the phase φ 0 give rise to oscillations or pulses in the interior associated with some planar phases φ m . These phases are characteristic for the hyperbolic operator L(∂) and their trace on the boundary {x d = 0} equals φ 0 . For now we make the following:

Assumption 1.8. The phase φ 0 defined by (1.6) satisfies (τ , η) ∈ Υ 0 . In particular (τ , η) ∈ H.

Thanks to Assumption 1.8, we know that the matrix A(τ , η) is diagonalizable with purely imaginary eigenvalues. These eigenvalues are denoted i ω 1 , . . . , i ω M , where the ω m 's are real and pairwise distinct. The ω m 's are the roots (and all the roots are real) of the dispersion relation:

det τ I + d-1 j=1 η j B j + ω B d = 0 .
To each root ω m there corresponds a unique integer k m ∈ {1, . . . , q} such that τ + λ km (η, ω m ) = 0. We can then define the following real6 phases and their associated group velocities:

(1.7) ∀ m = 1, . . . , M , φ m (x) := φ 0 (t, y) + ω m x d , v m := ∇λ km (η, ω m ) .
Let us observe that each group velocity v m is either incoming or outgoing with respect to the space domain R d + : the last coordinate of v m is nonzero. This property holds because (τ , η) does not belong to the glancing set G. We can therefore adopt the following classification: Definition 1.9. The phase φ m is incoming if the group velocity v m is incoming (that is, when

∂ ξ d λ km (η, ω m ) > 0), and it is outgoing if the group velocity v m is outgoing (∂ ξ d λ km (η, ω m ) < 0).
In all that follows, we let I denote the set of indices m ∈ {1, . . . , M } such that φ m is an incoming phase, and O denote the set of indices m ∈ {1, . . . , M } such that φ m is an outgoing phase. If p ≥ 1, then I is nonempty, while if p ≤ N -1, O is nonempty (see Lemma 1.11 below). We will use the notation:

L(τ, ξ) := τ I + d j=1 ξ j B j , L(β, ω m ) := ω m I + d-1 k=0 β k A k , β := (τ , η), x ′ = (t, y), φ 0 (x ′ ) = β • x ′ .
For each phase φ m , dφ m denotes the differential of the function φ m with respect to its argument x = (t, y, x d ). It follows from Assumption 1.1 that the eigenspace of A(β) associated with the eigenvalue i ω m coincides with the kernel of L(dφ m ) and has dimension ν km . The following result is a direct consequence of the diagonalizability of A(β), see [START_REF] Coulombel | Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems[END_REF] for the proof:

Lemma 1.10. The space C N admits the decomposition:

(1.8) C N = ⊕ M m=1 ker L(dφ m )
and each vector space in (1.8) admits a basis of real vectors. If we let P 1 , . . . , P M denote the projectors associated with the decomposition (1.8), then there holds Im L(dφ m ) = ker P m for all m = 1, . . . , M .

The following well-known lemma, whose proof is also recalled in [START_REF] Coulombel | Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems[END_REF], gives a useful decomposition of E s in the hyperbolic region.

Lemma 1.11. The stable subspace E s (β) admits the decomposition:

(1.9) E s (β) = ⊕ m∈I ker L(dφ m ) ,

and each vector space in the decomposition (1.9) admits a basis of real vectors.

By Assumption 1.5 we know that the vector space ker B ∩ E s (β) is one-dimensional; moreover, it admits a real basis because B has real coefficients and E s (β) has a real basis. This vector space is therefore spanned by a vector e ∈ R N \ {0} that we can decompose in a unique way by using Lemma 1.11: Each vector e m in (1.10) has real components. We also know that the vector space B E s (β) is (p -1)-dimensional. We can therefore write it as the kernel of a real linear form:

(1.11)

B E s (β) =    X ∈ C p , b • X = p j=1 b j X j = 0    , for a suitable vector b ∈ R p \ {0}.
To formulate our last assumption we observe first that for every point ζ ∈ H there is a neighborhood V of ζ in Σ and a C ∞ conjugator Q 0 (ζ) defined on V such that

Q 0 (ζ)A(ζ)Q -1 0 (ζ) =    iω 1 (ζ)I n 1 0 . . . 0 iω J (ζ)I n J    =: D 1 (ζ), (1.12)
where the ω j are real when γ = 0 and there is a constant c > 0 such that either Re (iω j ) ≤ -c γ or Re (iω j ) ≥ c γ for all ζ ∈ V.

In view of Lemma 1.11 we can choose the first p columns of Q -1 0 (ζ) to be a basis of E s (ζ), and we write

Q -1 0 (ζ) = [Q in (ζ) Q out (ζ)
]. Choose J ′ so that the first J ′ blocks of D 1 lie in the first p columns, and the remaining blocks in the remaining Np columns. Thus, Re (iω j ) ≤ -c γ for 1 ≤ j ≤ J ′ .

Observing that the linearization of the boundary condition in

(1.2) is u -→ ψ(εu) u + [dψ(εu) u] εu ,
we define the operator

B(v 1 , v 2 ) u := ψ(v 1 ) u + [dψ(v 1 ) u] v 2 , (1.13)
which appears in Assumption 1.12 below. For later use we also define

D(v 1 , v 2 ) u := D(v 1 ) u + [dD(v 1 ) u] v 2 , (1.14)
as well as

B(v 1 ) := B(v 1 , v 1 ) , D(v 1 ) := D(v 1 , v 1 ) . (1.15)
We now state the weak stability assumption that we make when considering the general case of nonlinear boundary conditions in (1.2).

Assumption 1.12.

• There exists a neighborhood O of (0, 0

) ∈ R 2N such that for all (v 1 , v 2 ) ∈ O and all ζ ∈ Ξ \ Ξ 0 , ker B(v 1 , v 2 ) ∩ E s (ζ) = {0}. For each (v 1 , v 2 ) ∈ O the set Υ(v 1 , v 2 ) := {ζ ∈ Σ 0 : ker B(v 1 , v 2 ) ∩ E s (ζ) = {0}} is nonempty and included in the hyperbolic region H. Moreover, if we set Υ := ∪ (v 1 ,v 2 )∈O Υ(v 1 , v 2 ), then Υ ⊂ H (closure in Σ 0 ). • For every ζ ∈ Υ there exists a neighborhood V of ζ in Σ and a C ∞ function σ(v 1 , v 2 , ζ) on O × V such that for all (v 1 , v 2 , ζ) ∈ O × V we have Ker B(v 1 , v 2 ) ∩ E s (ζ) = {0} if and only if ζ ∈ Σ 0 and σ(v 1 , v 2 , ζ) = 0.
Moreover, there exist matrices

P i (v 1 , v 2 , ζ) ∈ GL p (C), i = 1, 2, of class C ∞ on O × V such that ∀ (v 1 , v 2 , ζ) ∈ O × V (1.16) P 1 (v 1 , v 2 , ζ)B(v 1 , v 2 )Q in (ζ)P 2 (v 1 , v 2 , ζ) = diag γ + i σ(v 1 , v 2 , ζ), 1, . . . , 1 .
For nonlinear boundary conditions, the phase φ 0 in (1.6) is assumed to satisfy (τ , η) ∈ Υ(0, 0), or in other words the intersection ker B ∩ E s (τ , η) is not reduced to {0}. The set Υ 0 in Assumption 1.5 is a short notation for Υ(0, 0). The phases φ m are still defined by (1.7) and thus only depend on L(∂) and B and not on the nonlinear perturbations f 0 and ψ(ε u)ψ(0) added in (1.2).

Remark 1.13. 1) The properties stated in Assumption 1.12 are just a convenient description of the requirements for belonging to the WR class of [START_REF] Benzoni-Gavage | Generic types and transitions in hyperbolic initial-boundary-value problems[END_REF]. Like the uniform Lopatinskii condition, Assumption 1.12 can in practice be verified by hand via a "constant-coefficient" computation. More precisely, for (v 1 , v 2 ) near (0, 0) ∈ R 2N and ζ ∈ Σ, one can define (see, e.g., [START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF]chapter 4

]) a Lopatinskii determinant ∆(v 1 , v 2 , ζ) that is C ∞ in (v 1 , v 2 ), analytic in ζ = (τ -iγ, η) on Σ \ G, continuous on Σ, and satisfies ∆(v 1 , v 2 , ζ) = 0 if and only if Ker B(v 1 , v 2 ) ∩ E s (ζ) = {0}. In particular, ∆(v 1 , v 2 , •) is real-analytic on H.
It is shown in Remark 1.13 of [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] that Assumption 1.12 holds provided (1.17)

∅ = {ζ ∈ Σ : ∆(0, 0, ζ) = 0} ⊂ H and ∆(0, 0, ζ) = 0 ⇒ ∂ τ ∆(0, 0, ζ) = 0,
and it thus only involves a weak stability property for the linearized problem at (v 1 , v 2 ) = (0, 0). Instead of assuming (1.17), we have stated Assumption 1.12 in a form that is more directly applicable to the error analysis of Theorem 4.10.

2) To prove the basic estimate for the linearized singular system, Proposition 3.3, and to construct the exact solution U ε to the singular system (1.23) below, it is enough to require that the analogue of Assumption 1.12 holds when B(v 1 , v 2 ) is replaced by B(v 1 ) given in (1.15). However, for the error analysis of section 4 in the case of nonlinear boundary conditions, we need Assumption 1.12 as stated.

Main results

For each m ∈ {1, . . . , M } we let r m,k , k = 1, . . . , ν km denote a basis of ker L(dφ m ) consisting of real vectors. In section 4 we shall construct a "corrected" approximate solution u c ε of (1.2) of the form

(1.18) u c ε (x) = U 0 (x, θ 0 , ξ d ) + ε U 1 (x, θ 0 , ξ d ) + ε 2 U 2 p (x, θ 0 , ξ d ) | θ 0 = φ 0 ε ,ξ d = x d ε
, where

U 0 (x, θ 0 , ξ d ) = m∈I ν km k=1 σ m,k (x, θ 0 + ω m ξ d ) r m,k , U 1 (x, θ 0 , ξ d ) = m∈I ν km k=1 τ m,k (x, θ 0 + ω m ξ d ) r m,k -R ∞ L(∂)U 0 + D(0)U 0 , (1.19)
and R ∞ is the integral operator defined in (1.32). The σ m,k 's and τ m,k 's are scalar functions decaying in

θ m := θ 0 + ω m ξ d . The σ m,k 's satisfy R σ m,k (x, θ) dθ = 0 , (moment zero)
and describe the propagation of oscillations with phase φ m and group velocity v m . The second corrector ε 2 U 2 p (x, θ 0 , ξ d ) in (1.18) is a more complex object constructed in the error analysis of section 4.

The following theorem, our main result, is an immediate corollary of the more precise Theorem 4.10. Here we let Ω

T := {(x, θ 0 ) = (t, y, x d , θ 0 ) ∈ R d+1 × R 1 : x d ≥ 0, t < T }, and bΩ T := {(t, y, θ 0 ) ∈ R d × R 1 : t < T }. The spaces E s T appearing in the theorem are (1.20) E s T := C(R x d , H s (bΩ T )) ∩ L 2 (R x d , H s+1 (bΩ T )),
while the Sobolev spaces with θ-weights Γ s T and bΓ s T are defined in Definition 2.6. With [r] denoting the smallest integer greater than r, we define (1.21)

a 0 := d + 1 2 , a 1 := d + 1 2 + M 0 , a := max(2a 0 + 3, a 1 + 1), ã := 2a -a 0 ,
where M 0 := 3 d + 5 is fixed according to the regularity requirements in the singular pseudodifferential calculus (see Appendix B).

Theorem 1.14. We make Assumptions 1.1, 1.2, 1.5, and 1.8 when the boundary condition in (1.2) is linear (ψ(εu) ≡ ψ(0)); in the general case we substitute Assumption 1.12 for Assumption 1.5. Fix T > 0, set M 0 := 3 d + 5, and let a and ã be as in (1.21).

Consider the semilinear boundary problem (1.2), where G ∈ bΓ ã T . There exists

ε 0 > 0 such that if G bΓ a+2 T is small enough, there exists a unique function U ε (x, θ 0 ) ∈ E a-1 T satisfying the singular system (1.23) on Ω T such that u ε (x) := U ε x, φ 0 ε is an exact solution of (1.2) on (-∞, T ] × R d + for 0 < ε ≤ ε 0 .
In addition there exists a profile U 0 (x, θ 0 , ξ d ) as in (1.19), whose components σ m,k lie in Γ a+1 T , such that the approximate solution defined by

u app ε := U 0 x, φ 0 ε , x d ε satisfies lim ε→0 |u ε -u app ε | L ∞ = 0 on (-∞, T ] × R d + .
In fact we have the rate of convergence

|u ε -u app ε | L ∞ ≤ C ε 1 2M 1 +3 , where M 1 := d 2 + 3 .
Observe that although the boundary data in the problem (1.2) is of size O(ε), the approximate solution u app ε is of size O(1), exhibiting an amplification due to the weak stability at frequency β. The main information provided by Theorem 1.14 is that this amplification does not rule out existence of a smooth solution on a fixed time interval, that is it does not trigger a violent instability, at least in this weakly nonlinear regime. Although the first and second correctors U 1 and U 2 p do not appear in the statement of Theorem 1.14, they are essential in the error analysis. As an application of Theorem 1.14, an easy analysis of the equations for the leading profile U 0 (see (2.11) or (5.2)) gives the qualitative information about the exact solution described below in Remark 1.15(a).

Remark 1.15. a) In order to avoid some technicalities we have stated our main result for the problem (1.2) where all data is 0 in t < 0. This result easily implies a similar result in which outgoing pulses defined in t < 0 of amplitude O(ε) and wavelength ε give rise to reflected pulses of amplitude O(1). In either formulation, inspection of the profile equations shows that the pulses of amplitude O(1) emanate from a radiating pulse that propagates in the boundary along a characteristic of the Lopatinskii determinant.

b) We have decided to fix T > 0 at the start and choose data small enough so that a solution to the nonlinear problem exists up to time T . With only minor changes one can fix the data in the problem (G in (1.2)) at the start, and then choose T small enough so that a solution to the nonlinear problem exists up to time T .

In the remainder of this introduction, we discuss the construction of exact solutions, the construction of the approximate solution U 0 , and the error analysis. The proofs are given in Sections 2, 3, and 4. We hope that the analysis developed in this article will be useful in justifying quasilinear amplification phenomena such as the Mach stems or kink modes formation of [START_REF] Majda | A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis[END_REF][START_REF] Artola | Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes[END_REF].

Exact solutions and singular systems

The theory of weakly stable hyperbolic initial boundary value problems fails to provide a solution of the system (1.2) that exists on a fixed time interval independent of ε7 . In order to obtain such an exact solution to the system (1.2) we adopt the strategy of studying an associated singular problem first used by [START_REF] Joly | Coherent and focusing multidimensional nonlinear geometric optics[END_REF] for an initial value problem in free space. We look for a solution of the form

u ε (x) = U ε (x, θ 0 )| θ 0 = φ 0 (x ′ ) ε , (1.22)
where U ε (x, θ 0 ) satisfies the singular system derived by substituting (1.22) into the problem (1.2). Recalling that L(∂) = ∂ d + d-1 j=0 A j ∂ j , we obtain:

∂ d U ε + d-1 j=0 A j ∂ j + β j ∂ θ 0 ε U ε + D(εU ε ) U ε =: ∂ d U ε + A ∂ x ′ + β∂ θ 0 ε U ε + D(εU ε ) U ε = 0 ψ(εU ε ) U ε | x d =0 = ε G(x ′ , θ 0 ), U ε = 0 in t < 0.
(1.23)

In the wavetrain case the function U ε (x, θ 0 ) is taken to be periodic in θ 0 , but in the case of pulses the variable θ 0 ∈ R is treated as just another tangential variable on an equal footing with x ′ . The special difficulties presented by such singular problems when there is a boundary are described in detail in the introductions to [START_REF] Williams | Singular pseudodifferential operators, symmetrizers, and oscillatory multidimensional shocks[END_REF] and [START_REF] Coulombel | Resonant leading order geometric optics expansions for quasilinear hyperbolic fixed and free boundary problems[END_REF]; these difficulties are present for both wavetrains and pulses. In particular we mention: (a) symmetry assumptions on the matrices B j appearing in the problem (1.1) equivalent to (1.2) are generally of no help in obtaining an L 2 estimate for (1.23) (boundary conditions satisfying Assumption 1.5 can not be maximally dissipative, see [START_REF] Coulombel | Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems[END_REF]); (b) one cannot control L ∞ norms just by estimating tangential derivatives ∂ α (x ′ ,θ 0 ) U ε because (1.23) is not a hyperbolic problem in the x d direction 8 ; moreover, even if one has estimates of tangential derivatives uniform with respect to ε, because of the factors 1/ε in (1.23) one cannot just use the equation to control ∂ d U ε and thereby control L ∞ norms.

In [START_REF] Coulombel | Singular pseudodifferential calculus for wavetrains and pulses[END_REF] a class of singular pseudodifferential operators, acting on functions U (x ′ , θ 0 ) and having the form

(1.24) p D U (x ′ , θ 0 ) = 1 (2 π) d+1 R d ×R e ix ′ •ξ ′ +iθ 0 k p εV (x ′ , θ 0 ), ξ ′ + kβ ε , γ U (ξ ′ , k) dξ ′ dk, γ ≥ 1,
was introduced to deal with these difficulties. Observe that the differential operator A appearing in (1.23) can be expressed in this form. Operators like (1.24), but with the integral over k replaced by a sum over k ∈ Z, were first used in [START_REF] Williams | Singular pseudodifferential operators, symmetrizers, and oscillatory multidimensional shocks[END_REF] to prove uniform estimates for quasilinear singular systems arising in the uniformly stable wavetrain case. The calculi of [START_REF] Coulombel | Singular pseudodifferential calculus for wavetrains and pulses[END_REF] are inspired by the calculus of [START_REF] Williams | Singular pseudodifferential operators, symmetrizers, and oscillatory multidimensional shocks[END_REF], but incorporate improvements needed for the study of amplification in both the wavetrain and pulse cases.

Under the weak stability assumptions of the present paper, Assumption 1.5 or Assumption 1.12, the basic L 2 estimate for the problem ( L(∂), B) and for its singular analogue both exhibit loss of one tangential derivative. To derive energy estimates with a loss of derivative, one needs the remainder in the composition of two zero-order singular operators to be a smoothing operator, and not just bounded on L 2 with small norm as in [START_REF] Williams | Singular pseudodifferential operators, symmetrizers, and oscillatory multidimensional shocks[END_REF]. The calculi constructed in [START_REF] Coulombel | Singular pseudodifferential calculus for wavetrains and pulses[END_REF] have this smoothing property. The improved wavetrain calculus was used in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] to study amplification of wavetrains. As noted in that paper, the arguments used to prove the main L 2 estimate for the linearized singular problem and the higher order tame estimates carry over verbatim to the pulse case. The Nash-Moser iteration used in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] to construct an exact solution U ε (x, θ 0 ) of (1.23) on Ω T also carries over verbatim to the pulse case. In section 3 we state the main estimates for the linearized singular problem in the pulse case along with the existence theorem for the nonlinear singular system (1.23), and refer to [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] for the proofs. The tame estimate for the linearized singular problem is given in terms of E s T spaces (recall (1.20)), and these spaces are used as well in the Nash-Moser iteration. The singular pulse calculus summarized in Appendix B must, of course, be substituted for the wavetrain calculus used in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF].

Derivation of the profile equations

At first we work formally, looking for a corrected approximate solution of the form

u c ε (x) = U 0 (x, θ 0 , ξ d ) + ε U 1 (x, θ 0 , ξ d ) + ε 2 U 2 (x, θ 0 , ξ d ) | θ 0 = φ 0 ε ,ξ d = x d ε .
Plugging into the system (1.2) and setting coefficients of successive powers of ε equal to zero, we obtain interior profile equations

ε -1 : L(∂ θ 0 , ∂ ξ d )U 0 = 0 ε 0 : L(∂ θ 0 , ∂ ξ d )U 1 + L(∂)U 0 + D(0)U 0 = 0 ε 1 : L(∂ θ 0 , ∂ ξ d )U 2 + L(∂)U 1 + D(0)U 1 + (dD(0) U 0 )U 0 = 0, (1.25)
where

L(∂ θ 0 , ∂ ξ d ) := ∂ ξ d + d-1 j=0 β j A j ∂ θ 0 = ∂ ξ d + iA(β)∂ θ 0 .
Similarly, we obtain the boundary equations on {x d = 0, ξ d = 0},

ε 0 : B U 0 = 0 ε 1 : B U 1 + (dψ(0) U 0 )U 0 = G(x ′ , θ 0 ). (1.26)
For ease of exposition we will begin by studying these equations in the 3 × 3 strictly hyperbolic case, which contains all the main difficulties. In section 5 we describe the (minor) changes needed to treat the general case. We define the boundary phase φ 0 := β • x ′ , eigenvalues ω j , and interior phases φ j := φ 0 + ω j x d as in Section 1.1, where β ∈ H. We suppose ω 1 and ω 3 are incoming (or causal) and ω 2 is outgoing. The corresponding right and left eigenvectors of iA(β) are r j and l j , j = 1, 2, 3, normalized so that l j • r k = δ jk .

A general function W (x, θ 0 , ξ d ) valued in R 3 can be written

W = W 1 (x, θ 0 , ξ d )r 1 + W 2 (x, θ 0 , ξ d )r 2 + W 2 (x, θ 0 , ξ d )r 3
where we refer to W i , i = 1, 3 as the incoming components and W 2 as the outgoing component of

W . With F (x, θ 0 , ξ d ) = 3 i=1 F i (x, θ 0 , ξ d )r i valued in R 3 consider now an equation of the form L(∂ θ 0 , ∂ ξ d )W = F.
Using the matrix r 1 r 2 r 3 to diagonalize iA(β), we find that the W i must satisfy

(∂ ξ d -ω i ∂ θ 0 )W i (x, θ 0 , ξ d ) = l i • F := F i (x, θ 0 , ξ d ), i = 1, 2, 3. (1.27)
The general solution to (1.27) is

W i (x, θ 0 , ξ d ) = τ * i (x, θ 0 + ω i ξ d ) + ξ d 0 F i (x, θ 0 + ω i (ξ d -s), s) ds, (1.28)
where τ * i is arbitrary. This can be rewritten

W i (x, θ 0 , ξ d ) = τ * i (x, θ 0 + ω i ξ d ) + R + F i (x, θ 0 + ω i (ξ d -s), s) ds - +∞ ξ d F i (x, θ 0 + ω j (ξ d -s), s) ds := τ i (x, θ 0 + ω i ξ d ) - +∞ ξ d F i (x, θ 0 + ω i (ξ d -s), s) ds , (1.29) 
provided the integrals in (1.29) exist.

Definition 1.16 (Functions of type F). Suppose

F (x, θ 0 , ξ d ) = 3 i=1 F i (x, θ 0 , ξ d )r i , (1.30)
where each F i has the form

F i (x, θ 0 , ξ d ) = 3 k=1 f i k (x, θ 0 + ω k ξ d ) + 3 l≤m=1 g i l,m (x, θ 0 + ω l ξ d ) h i l,m (x, θ 0 + ω m ξ d ), (1.31)
where the functions f i k (x, θ), g i l,m (x, θ), h i l,m (x, θ) are real-valued, C 1 , and decay along with their first order partials at the rate O( θ -2 ) uniformly with respect to x. We then say that F is of type F. For such functions F , define

EF (x, θ 0 , ξ d ) := 3 j=1 lim T →∞ 1 T T 0 l j • F (x, θ 0 + ω j (ξ d -s), s) ds r j .
Remark 1.17. For F as in (1.31), we have

EF = 3 i=1 Fi (x, θ 0 , ξ d ) r i , where Fi := f i i (x, θ 0 + ω i ξ d ) + g i i,i (x, θ 0 + ω i ξ d )h i i,i (x, θ 0 + ω i ξ d ).
Remark 1.18. The definition of E can be extended to more general functions. For example, if

F = 3 i=1 F i (x, θ 0 + ω i ξ d ) r i ,
where the F i (x, θ) are arbitrary continuous functions (not necessarily decaying with respect to θ), the limits that define EF exist and we have EF = F . For another example, suppose F is of type F and satisfies EF = 0. Define

R ∞ F (x, θ 0 , ξ d ) := - 3 i=1 +∞ ξ d F i (x, θ 0 + ω i (ξ d -s), s) ds r i . (1.32)
Then the limits defining R ∞ F and ER ∞ F exist and we have ER ∞ F = 0.

The following two results are proved in [START_REF] Coulombel | Nonlinear geometric optics for reflecting uniformly stable pulses[END_REF].

Proposition 1.19 ([CW13]

). Suppose F is of type F and EF = 0. Then R ∞ F is bounded and

L(∂ θ 0 , ∂ ξ d )R ∞ F = R ∞ L(∂ θ 0 , ∂ ξ d )F = F = (I -E)F. (1.33) Proposition 1.20 ([CW13]). Let F (x, θ 0 , ξ d ) be a function of type F. (a) Then the equation L(∂ θ 0 , ∂ ξ d )U = F has a solution bounded in (θ 0 , ξ d ) if and only if EF = 0. (b) When EF = 0, every C 1 solution bounded in (θ 0 , ξ d ) has the form U = 3 i=1 τ i (x, θ 0 + ω i ξ d ) r i + R ∞ F with τ i (x, θ) ∈ C 1 and bounded.
Here

EU = 3 i=1 τ i (x, θ 0 + ω i ξ d ) r i and (I -E)U = R ∞ F . (c)If U is of type F then E L(∂ θ 0 , ∂ ξ d )U = L(∂ θ 0 , ∂ ξ d )EU = 0. (1.34)
By applying the operators E and R ∞ to the equations (1.25) formally (for now) using the properties (1.33),(1.34), we obtain:

(a) EU 0 = U 0 , (b) E( L(∂)U 0 + D(0)U 0 ) = 0, (c) BU 0 = 0 on x d = 0, ξ d = 0, (d) U 0 = 0 in t < 0 (1.35) and (a) (I -E)U 1 + R ∞ ( L(∂)U 0 + D(0)U 0 ) = 0, (b) E L(∂)U 1 + D(0)U 1 + (dD(0) U 0 )U 0 = 0, (c) BEU 1 = G -(dψ(0) U 0 )U 0 -B(I -E)U 1 on x d = 0, ξ d = 0, (d) U 1 = 0 in t < 0. (1.36) To construct U 1 we write U 1 = EU 1 + (I -E)U 1 where (I -E)U 1 = -R ∞ ( L(∂)U 0 + D(0)U 0 ) = R ∞ F 0 , (1.37) and EU 1 satisfies (a) E( L(∂) + D(0))EU 1 = -E((dD(0) U 0 )U 0 ) -E( L(∂) + D(0))R ∞ F 0 , (b) BEU 1 = G -(dψ(0) U 0 )U 0 -R ∞ F 0 on x d = 0, ξ d = 0 (c) EU 1 = 0 in t < 0.
(1.38)

Error analysis

The error analysis is done by studying the singular problem (4.17) satisfied by the difference

W ε (x, θ 0 ) = U ε (x, θ 0 ) -U ε (x, θ 0 ),
where U ε is the exact solution of the semilinear singular problem (1.23) and U ε is a corrected approximate solution of the form

U ε (x, θ 0 ) = U 0 (x, θ 0 , x d ε ) + ε U 1 (x, θ 0 , x d ε ) + ε 2 U 2 p (x, θ 0 , x d ε ).
Here U 0 and U 1 have the forms given in (1.19) and satisfy the profile equations (1.35), (1.36), and the second corrector U 2 p remains to be chosen. Let us denote U 0 ε (x, θ 0 ) := U 0 (x, θ 0 , x d ε ) and similarly define U 1 ε , U 2 p,ε . The idea is to apply the tame estimate of Proposition 3.6 to the linear singular problem (4.17) satisfied by W ε . To apply this estimate we need the functions U 0 ε , U 1 ε , and U 2 p,ε to lie in E s T spaces for appropriate choices of s. Thus, roughly speaking, these functions must decay in (x ′ , θ 0 ) "like functions in H s (x ′ , θ 0 )".

The pulse profiles σ m,k (x, θ m ) defining U 0 (x, θ 0 , ξ d ) have good decay in θ m , so it is not hard to see that U 0 ε lies in an E s T space (Proposition 4.3). Moreover, we show that the σ m,k (x, θ m ) actually have moment zero, and this can be used to show that U 1 ε , whose definition involves taking integrals as in (1.32) of an expression that is linear in U 0 , also lies in an E s T space (see, for example, Lemma 2.9 and Proposition 2.10). If the σ m,k (x, θ m ) did not have moment zero, U 1 ε would fail to lie in any E s T space. However, the second corrector presents greater difficulties. Considering the ε 1 profile equation in (1.25), we see that a natural first choice for the second corrector would be

U 2 = -R ∞ (I -E) L(∂)U 1 + D(0)U 1 + (dD(0) U 0 )U 0 . (1.39)
Since the primitive -+∞ θ f (s)ds of a function f that decays, say, like |s| -2 as |s| → +∞, itself decays to zero as |θ| → +∞ if and only if f has moment zero ( R f (s) ds = 0), and since neither U 1 nor the term (dD(0) U 0 )U 0 in (1.39) has moment zero9 , we see that this choice of U 2 ε generally cannot lie in any E s T space. A natural idea then is to replace U 0 and U 1 by approximations that involve profiles having moment zero. More precisely, we take for example U 0 p to be as in (1.19), but where the profile σ m,k (x, θ m ) is replaced by the moment-zero approximation σ m,k,p (x, θ m ) whose Fourier transform in θ m is defined by σm,k,p (x, η) = χ p (η)σ m,k (x, η).

Here χ p (η) is a smooth cutoff function vanishing on a neighborhood of 0 of size O(|p|) and equal to one outside a slightly larger neighborhood10 . In place of (1.39) one could then try

U 2 p = -R ∞ (I -E) L(∂)U 1 p + D(0)U 1 p + (dD(0) U 0 p )U 0 p . (1.40)
The contributions to U 2 p,ε involving U 1 p now do lie in suitable E s T spaces, but some of the contributions from the quadratic term do not lie in any E s T space. The difficulty is caused by products of the form σ m,k,p σ m,k ′ ,p , and the resolution is to redefine U 2 p as in (1.40) after replacing these terms by (σ m,k,p σ m,k ′ ,p ) p , see (4.10). We note that the contributions to U 2 p,ε from "transversal interactions" like σ m,k,p σ m ′ ,k ′ ,p , where m = m ′ do already lie in appropriate E s T spaces, see Proposition A.1. These moment-zero approximations introduce errors that blow up as p → 0, of course, but taking p = ε b for an appropriate b > 0, one can hope to control these errors using the factor ε 2 in ε 2 U 2 p . This strategy works and is carried out in the proof of Theorem 4.10 in section 4.2. The proof relies on the machinery of moment-zero approximations developed in section 4.1 and the quadratic interaction estimates of Appendix A.

Remark 1.21. 1) We learned the idea of using moment-zero approximations to construct correctors in pulse problems from the paper [START_REF] Alterman | Diffractive nonlinear geometric optics for short pulses[END_REF].

2) Together with [START_REF] Coulombel | Nonlinear geometric optics for reflecting uniformly stable pulses[END_REF], which dealt with reflecting pulses in quasilinear uniformly stable boundary problems, this paper completes the first stage of our project to rigorously justify, when that is possible, the formal constructions of [HMR86, AM87, MA88, MR83] in boundary problems involving multiple interacting pulses. The operators E, R ∞ , and the machinery of moment-zero approximations developed in these papers provide a set of tools for rigorously constructing leading profiles and correctors. The estimates for weakly stable singular systems (1.23) given in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] 11 and for uniformly stable quasilinear singular systems in [START_REF] Coulombel | Nonlinear geometric optics for reflecting uniformly stable pulses[END_REF] provide the basis for showing that approximate solutions are close to exact solutions for ε small. The approach to error analysis based on singular systems is especially well-suited to situations involving several pulses traveling at distinct group velocities. In these situations "one-phase methods" that depend on constructing high order approximate solutions, or which use estimates of conormal or striated type, seem inapplicable. Finally, we stress that pulses do interact; the interactions do not produce resonances that affect leading order profiles as in the wavetrain case, but the interactions, whether of transversal or selfinteraction type, do affect correctors to the leading order profiles. We have treated the analogous problems for wavetrains in [START_REF] Coulombel | Resonant leading order geometric optics expansions for quasilinear hyperbolic fixed and free boundary problems[END_REF][START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF].

Analysis of profile equations

For ease of exposition we continue as in Section 1.4 to consider the 3 × 3 strictly hyperbolic case. The minor changes needed to treat the general case are described in section 5.

2.1

The key subsystem for U 0 Let us write U 0 , the solution of the ε -1 equation in (1.25), as

U 0 = σ1 (x, θ 0 , ξ d ) r 1 + σ2 (x, θ 0 , ξ d ) r 2 + σ3 (x, θ 0 , ξ d ) r 3 .
As we saw in (1.28), the σi 's have the form

σi (x, θ 0 , ξ d ) = σ i (x, θ 0 + ω i ξ d ) for some σ i (x, θ i ).
Recall that we assume that the phase φ 2 is outgoing while the other two phases φ 1 , φ 3 are incoming (the case where only one phase is incoming and all other phases are outgoing is actually simpler). Our first task is to show that σ 2 ≡ 0. We will need the following version of a classical lemma by Lax [START_REF] Lax | Asymptotic solutions of oscillatory initial value problems[END_REF], see [CGW11, Lemma 2.11] for the proof.

Proposition 2.1. Let W (x, θ 0 , ξ d ) = 3 i=1 w i (x, θ 0 , ξ d )r i be any C 1 function. Then L(∂)W = 3 i=1 (X φ i w i ) r i + 3 i=1 k =i V i k w k r i ,
where X φ i is the characteristic vector field

X φ i := ∂ x d + d-1 j=0 -∂ ξ j ω i (β)∂ x j = 1 v i • e d (∂ t + v i • ∇ x ) ,
and V i k , for k = i, is the tangential vector field

V i k := d-1 l=0 (l i A l r k ) ∂ x l .
The relation (1.35)(b) can be simplified by using Proposition 2.1. More precisely, we recall the notation F 0 := -( L(∂)U 0 +D(0)U 0 ), see (1.37). The next Proposition is an immediate consequence of Proposition 2.1.

Proposition 2.2. The function F 0 reads F 0 = 3 i=1 F i r i , with

F i (x, θ 0 , ξ d ) = -X φ i σ i - k =i V i k σ k + 3 k=1 e i k σ k ,
for some real constants e i k and vector fields V i k as in Proposition 2.1.

In particular, the requirement EF 0 = 0 in (1.35)(b) reads

(2.1) X φ σ ie i i σ i = 0, i = 1, 2, 3. Since the outgoing mode σ 2 is zero in t < 0, this implies σ 2 ≡ 0 by integrating along the characteristics.

Using (1.26) (ε 0 ) and σ 2 = 0, we find the boundary condition

B (σ 1 (x ′ , 0, θ 0 ) r 1 + σ 3 (x ′ , 0, θ 0 ) r 3 ) = 0 ,
and we recall that the vectors r 1 , r 3 span the stable subspace E s (β), see Lemma 1.11. Thus, by (1.10) we have

σ 1 (x ′ , 0, θ 0 ) r 1 + σ 3 (x ′ , 0, θ 0 ) r 3 = a(x ′ , θ 0 ) e ,
for some scalar function a(x ′ , θ 0 ).

Since e = e 1 + e 3 , where e i ∈ span {r i }, we deduce

(2.2) σ i (x ′ , 0, θ 0 ) r i = a(x ′ , θ 0 ) e i , i = 1, 3 .
Using (2.1) and (2.2), we have derived the main subsystem governing U 0 :

X φ i σ i -e i i σ i = 0 for i = 1, 3 σ i (x ′ , 0, θ) r i = a(x ′ , θ) e i , σ i = 0 in t < 0 , (2.3)
where the scalar function a(x ′ , θ) remains to be determined.

Boundary equation

From the definition of F 0 , the fact that U 0 is purely incoming (σ 2 ≡ 0), and Remark 1.17, we see that the outgoing component of the right side of (1.38)(a) is zero. Writing

EU 1 = 3 i=1 τ i (x, θ 0 + ω i ξ d ) r i
and using Proposition 2.1, we find

X φ 2 τ 2 -e 2
2 τ 2 = 0, τ 2 = 0 in t < 0 , and thus τ 2 ≡ 0.

Since EU 1 is purely incoming, it is valued in E s (β). Therefore, by (1.11), the equation

(1.38)(b) is solvable if and only if the condition b • G -(dψ(0) U 0 )U 0 -B (I -E) U 1 = 0 on x d = ξ d = 0 , (2.4) holds. Since b • Br i = 0, i = 1, 3, using (1.37) we see that b • B (I -E)U 1 (x ′ , 0, θ 0 , 0) = b • B R ∞ F 0 = -b • B r 2 R + F 2 (x ′ , 0, θ 0 -ω 2 s, s) ds . Thus, the solvability condition (2.4) becomes b • G -(dψ(0) U 0 )U 0 + Br 2 R + F 2 (x ′ , 0, θ 0 -ω 2 s, s) ds = 0. (2.5)
We now rewrite this equation in terms of the function a(x ′ , θ 0 ) appearing in (2.3). We will use the following fundamental fact:

Proposition 2.3 ([CG10]

). There holds

(2.6) b • B m∈{1,3}
R m A j e m = κ∂ η j σ(β), j = 0, . . . , d -1, where κ ∈ R \ 0, ∂ τ σ(β) = 1, the function σ is defined in Assumption 1.5, and R m := k =m

P k ωm-ω k , so 12 R 1 = P 2 ω 1 -ω 2 + P 3 ω 1 -ω 3 , R 3 = P 1 ω 3 -ω 1 + P 2 ω 3 -ω 2 . Thus, b • B m∈I R m L(∂)e m = κ   ∂ τ σ(β)∂ t + d-1 j=1 ∂ η j σ(β)∂ x j   := X Lop . (2.7)
Our main result in this paragraph reads as follows.

Proposition 2.4. There are real constants c and d such that taking the θ 0 -derivative of equation (2.5) is equivalent to the following equation for the function a(x ′ , θ 0 ) in (2.3):

X Lop a + c a + d ∂ θ 0 (a 2 ) = -b • ∂ θ 0 G . (2.8)
Proof. 1.) Let us first observe that U 0 = a(x ′ , θ 0 ) e on x d = ξ d = 0, so the bilinear term (dψ(0) U 0 )U 0 in (2.5) reads a 2 (dψ(0) e)e, which gives an a 2 contribution (up to a real multiplicative constant). This term contributes to the "Burgers like" term d ∂ θ 0 (a 2 ) in (2.8) after taking the θ 0 -derivative.

2.) Let us recall the definition F 0 = -( L(∂)U 0 + D(0)U 0 ), and F 2 := l 2 • F 0 . Another easy contribution to (2.5) is thus given when computing

R + l 2 • D(0)(σ 1 (x ′ , 0, θ 0 + (ω 1 -ω 2 ) s) r 1 + σ 3 (x ′ , 0, θ 0 + (ω 3 -ω 2 ) s) r 3 ) ds = R + l 2 • D(0)(a(x ′ , θ 0 + (ω 1 -ω 2 ) s) e 1 + a(x ′ , θ 0 + (ω 3 -ω 2 ) s) e 3 ) ds .
Taking the θ 0 derivative of this integral gives a contribution of the form c a(x ′ , θ 0 ) for a suitable real constant c.

3.) It remains to examine the last integral term in (2.5), that is

I := R + l 2 • L(∂)U 0 (x ′ , 0, θ 0 -ω 2 s, s) ds = R + l 2 • L(∂)(σ 1 (x ′ , 0, θ 0 + (ω 1 -ω 2 ) s) r 1 + σ 3 (x ′ , 0, θ 0 + (ω 3 -ω 2 ) s) r 3 ) ds .
Since l 2 • r i = 0, i = 1, 3, the coefficient of the ∂ x d term in the latter integral vanishes and we obtain

I r 2 =   d-1 j=0 (l 2 A j e 1 ) R + ∂ j a(x ′ , θ 0 + (ω 1 -ω 2 )s) ds   r 2 +   d-1 j=0 (l 2 A j e 3 ) R + ∂ j a(x ′ , θ 0 + (ω 3 -ω 2 )s) ds   r 2 . (2.9) Let A m (x ′ , θ 0 ), m = 1, 3 be the unique antiderivative(s) of a in θ 0 such that A m (x ′ , (ω m -ω 2 )∞) = 0 .
The integrals in (2.9) can be computed and the function I r 2 can be rewritten

I r 2 = d-1 j=0 (l 2 A j e 1 ) ∂ j A 1 (x ′ , θ 0 ) ω 1 -ω 2 r 2 + d-1 j=0 (l 2 A j e 3 ) ∂ j A 3 (x ′ , θ 0 ) ω 3 -ω 2 r 2 .
(2.10) Using (2.6), (2.7), and the fact that b • Be i = 0, i = 1, 3, we obtain from (2.10) that the final contribution in taking the θ 0 -derivative of (2.5) reads

b • B∂ θ 0 (I r 2 ) = X Lop a.
Combining (2.3) with Proposition 2.4, we have the following key subsystem satisfied by (σ 1 , σ 3 ):

(a) X φ 1 σ 1 -e 1 1 σ 1 = 0 (b) X φ 3 σ 3 -e 3 3 σ 3 = 0 (c) X Lop a + c a + d ∂ θ 0 (a 2 ) = -b • ∂ θ 0 G on {x d = 0, ξ d = 0}.
(2.11) where σ i (x ′ , 0, θ 0 )r i = a(x ′ , θ 0 )e i (2.12) and all unknowns are zero in t < 0. Recall that the outgoing component σ 2 of U 0 vanishes. In Proposition 2.8 we solve for a by Picard iteration, and then obtain σ 1 and σ 3 in the interior by simply integrating along the appropriate characteristics.

Remark 2.5. In the case of wavetrains the interior equation for τ 2 is coupled to σ 1 and σ 3 by a nonlinear interaction integral whenever there is a resonance of the form

nφ 1 + n 3 φ 3 = n 2 φ 2 , with n i ∈ Z.
Thus, τ 2 , the outgoing component of EU 1 is not necessarily zero, and this leads to the presence of an extra term of the form ∂ θ 0 τ 2 in the last equation of (2.11). That extra term leads to a loss of derivatives in the estimate for the linearized system, and forced us to use Nash-Moser iteration to solve for (σ 1 , σ 3 , τ 2 ) in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF].

We shall work with profiles lying in a class of Sobolev spaces weighted in θ. Let

Ω T = {(x, θ) ∈ R d+1 + × R : t < T },
and introduce the following spaces.

Definition 2.6. For s ∈ N, define the spaces

(2.13) Γ s T := {a(x, θ) ∈ L 2 (Ω T ) : (θ, ∂ x , ∂ θ ) β a ∈ L 2 (Ω T ) for |β| ≤ s and a = 0 in t < 0} , with norms |a| s,T = |β|=|β 1 ,β 2 ,β 3 |≤s |θ β 1 ∂ β 2 x ∂ β 3 θ a| L 2 (Ω T ) . (2.14)
The analogous norms of functions of b(x ′ , θ) defined on bΩ T := {(x ′ , θ) ∈ R d × R : t < T } are denoted with brackets: b s,T . We denote the corresponding spaces by bΓ s T . We will let H s T denote the usual Sobolev space on Ω T with norm defined just as in (2.14) but without the θ weights. These spaces and those below have the obvious meanings when a function is vector-valued.

Remark 2.7. By Sobolev embedding if the functions

f i k , g i l,m , h i l,m appearing in (1.31) lie in Γ s T for s > d+2 2 + 3, then F as in (1.30) is of type F.
Proposition 2.8. Let T > 0, m > d+1 2 + 1 and suppose G ∈ bΓ m+1 T and vanishes in t < 0. Then provided G bΓ m+1 T is small enough, the system (2.11), (2.12) has a unique solution satisfying a ∈ bΓ m T and σ i ∈ Γ m T , i = 1, 3.

Proof. First one solves (2.11)(c) using the iteration scheme

X Lop a n+1 + 2 d a n ∂ θ 0 a n+1 = -b • ∂ θ 0 G -c a n .
The standard proof showing convergence towards a solution a ∈ H m T (x ′ , θ 0 ) is easily adapted to the weighted spaces bΓ m T . Details of a very similar argument are given in the proof of [CW13, Proposition 3.6]. The conclusion for σ 1 and σ 3 follows easily.

The first corrector U 1

To understand the properties of U 1 we need: Lemma 2.9. The functions σ 1 , σ 3 , and a all have moment zero.

Proof. Let a(x) = R a(x ′ , θ 0 ) dθ 0 . Taking the moment of equation (2.11)(c), we obtain the problem for a: X Lop a + c 4 a = 0, a = 0 in t < 0.

Thus a = 0 and so the equations for σ i , i = 1, 3 imply their moments are zero as well.

Proposition 2.10. Let σ(x, θ) ∈ Γ s T , s > d 2 + 3, have moment zero and let σ * (x, θ) denote the unique θ-primitive of σ that decays to zero as |θ| → ∞. Then σ * ∈ Γ s-1 T .

Proof. We have

σ ∈ Γ s T if and only if ∂ k m ∂ α x (m p σ(x, m)) ∈ L 2 (x, m) for all k, α, p such that k + |α| + p ≤ s. Since σ(x, 0) = 0 we have σ(x, m) = m 1 0 (∂ m σ)(x, sm) ds so σ * (x, m) = 1 im σ(x, m) = -i 1 0 (∂ m σ)(x, sm) ds,
and the result follows.

Proposition 2.11. Suppose G ∈ bΓ s+1 T , s > d 2 + 4, and vanishes in t < 0. Then the first corrector U 1 in (1.36) satisfies

(2.15) (I -E)U 1 (x, θ 0 , ξ d ) = 3 i=1 W i (x, θ 0 , ξ d ) r i , where W i (x, θ 0 , ξ d ) = k =i b k (x, θ 0 + ω k ξ d ) , with b k ∈ Γ s-2 T .
Proof. We have (

I -E)U 1 = R ∞ F 0 = R ∞ (I -E)F 0 ,
so using Proposition 1.37 we obtain

((I -E)U 1 ) i = - k =i e i k +∞ ξ d σ k (x, θ 0 + ω i ξ d + s(ω k -ω i )) ds + k =i +∞ ξ d V i k σ k (x, θ 0 + ω i ξ d + s(ω k -ω i )) ds . Now σ k ∈ Γ s T has moment zero, so +∞ ξ d σ k (x, θ 0 + ω i ξ d + s(ω k -ω i )) ds = σ * k (x, θ 0 + ω k ξ d )/(ω k -ω i ), where σ * k (x, θ k ) ∈ Γ s-1
T by Proposition 2.10. The other terms are treated similarly using

V i k σ k ∈ Γ s-1
T . Proposition 2.12. Suppose G ∈ bΓ s+1 T , s > d 2 + 4, and vanishes in t < 0. Then there exists a solution U 1 to (1.36) that satisfies

EU 1 (x, θ 0 , ξ d ) = τ 1 (x, θ 0 + ω 1 ξ d )r 1 + τ 3 (x, θ 0 + ω 3 ξ d )r 3 with τ k ∈ Γ s-3
T . Proof. We have already shown τ 2 = 0. Since the σ i ∈ Γ s T , i = 1, 3, have moment zero, and the functions b k in (2.15) lie in Γ s-2 T , it follows that the right side of (1.38)(a) has components given by functions in Γ s-3 T . Similarly, the right side of the boundary equation (1.38)(b) has components given by functions in bΓ s-3 T . The solvability condition (2.4) holds, so we may make a choice of boundary data EU 1 (x ′ , 0, θ 0 , 0) satisfying (1.38)(b) whose components are elements of bΓ s-3 T . Thus, solving the system (1.38), we obtain a solution EU 1 with components given by τ k ∈ Γ s-3 T , k = 1, 3. Definition 2.13. Suppose W (x, θ 0 , ξ d ) = EW + (I -E)W and

EW (x, θ 0 , ξ d ) = 3 i=1 a i (x, θ 0 + ω i ξ d )r i , with a i (x, θ i ) ∈ Γ s T ; (I -E)W (x, θ 0 , ξ d ) = 3 i=1 w i r i , where w i (x, θ 0 , ξ d ) = k =i b k (x, θ 0 + ω k ξ d ) with b k (x, θ k ) ∈ Γ s T .
Then we write W ∈ Γs T . We may summarize our construction of U 0 and U 1 as follows.

Theorem 2.14. Suppose G ∈ bΓ s+1 T , s > d 2 + 4, and vanishes in t < 0. Then provided G bΓ s+1 T is small enough, there exist solutions U 0 ∈ Γs T , U 1 ∈ Γs-3 T , satisfying the profile equations (1.35), (1.36). Moreover, U 0 and EU 1 are purely incoming.

The exact solution of the singular system

In this section we state the main estimates for the linearized singular system and also the existence theorem for the nonlinear singular system (1.23). We begin by gathering the notation for spaces and norms that is needed below. Notations 3.1. Here we take s ∈ N = {0, 1, 2, . . . }.

(a) Let The following spaces appear in the statement of the main existence theorem and are used in its proof.

Ω := R d+1 + × R, Ω T := Ω ∩ {-∞ < t < T }, bΩ := R d × R, bΩ T := bΩ ∩ {-∞ < t < T }, and set ω T := R d+1 + ∩ {-∞ < t < T }. (b) Let H s ≡ H s (bΩ), the standard Sobolev space with norm V (x ′ , θ 0 ) s . For γ ≥ 1 we set H s γ := e γt H s and V s,γ := e -γt V s . (c) L 2 H s ≡ L 2 (R + , H s (bΩ)) with norm |U (x, θ 0 )| L 2 H s ≡ |U | 0,s given by |U | 2 0,s = ∞ 0 |U (x ′ , x d , θ 0 )| 2 H s (bΩ) dx d . The corresponding norm on L 2 H s γ is denoted |V | 0,s,γ . (d) CH s ≡ C(R + , H s (bΩ)) denotes the space of continuous bounded functions of x d with values in H s (bΩ), with norm |U (x, θ 0 )| CH s = |U | ∞,s := sup x d ≥0 |U (., x d , .)| H s (bΩ T ) .The corresponding norm on CH s γ is denoted |V | ∞,s,γ . (e) Let M 0 := 3d + 5 and define C 0,M 0 := C(R + , C M 0 (bΩ)) as the space of continuous bounded functions of x d with values in C M 0 (bΩ), with norm |U (x, θ 0 )| C 0,M 0 := |U | L ∞ W M 0 ,∞ . Here L ∞ W M 0 ,∞ denotes the space L ∞ (R + ; W M 0 ,∞ (bΩ)) 13 . (f ) The corresponding spaces on Ω T are denoted L 2 H s T , L 2 H s γ,T , CH s T ,
Definition 3.2. For s ∈ {0, 1, 2, . . . }, let

E s T := CH s T ∩ L 2 H s+1 T , with the norm |U (x, θ 0 )| E s T := |U | ∞,s,T + |U | 0,s+1,T , E s γ,T := CH s γ,T ∩ L 2 H s+1 γ,T , with the norm |U (x, θ 0 )| E s γ,T := |U | ∞,s,γ,T + |U | 0,s+1,γ,T .
The linearization of the singular problem (1.23) at U (x, θ 0 ) has the form

(a) ∂ d Uε + A ∂ x ′ + β∂ θ 0 ε Uε + D(εU ) Uε = f (x, θ 0 ) on Ω , (b) B(εU ) Uε | x d =0 = g(x ′ , θ 0 ) , (c) Uε = 0 in t < 0, (3.1)
13 The size of M0 is determined by the requirements of the singular calculus described in Appendix B.

where the matrices B(εU ), D(εU ) are defined in (1.15)14 . Instead of (3.1), consider the equivalent problem satisfied by U γ := e -γt U :

∂ d U γ + A (∂ t + γ, ∂ x ′′ ) + β ∂ θ 0 ε U γ + D(εU ) U γ = f γ (x, θ 0 ) , B(εU ) U γ | x d =0 = g γ (x ′ , θ 0 ) , U γ = 0 in t < 0 . (3.2)
Below we let Λ D denote the singular Fourier multiplier (see (B.2)) associated with the symbol

Λ(X, γ) := γ 2 + ξ ′ + k β ε 2 1/2 , X := ξ ′ + k β ε .
The basic estimate for the linearized singular problem (3.2) is given in the next Proposition. Observe that the estimate (3.3) exhibits a loss of one "singular derivative" Λ D . This is quite a high price to pay, which counts as a factor 1/ε. In view of [CG10, Theorem 4.1], there is strong evidence that the loss below is optimal.

Proposition 3.3 (Main L 2 linear estimate). We make the structural assumptions of Theorem 1.14, let s 0 := d+1 2 + 1, and recall

M 0 = 3d + 5. Fix K > 0 and suppose |ε ∂ d U | C 0,M 0 -1 + |U | C 0,M 0 + |U | CH s 0 ≤ K for ε ∈ (0, 1].
There exist positive constants ε 0 (K) > 0, C(K) > 0 and γ 0 (K) ≥ 1 such that sufficiently smooth solutions U of the linearized singular problem (3.1) satisfy15 :

| U γ | 0,0 + U γ 0 √ γ ≤ C(K) |Λ D f γ | 0,0 + |f γ /ε| 0,0 γ 2 + Λ D g γ 0 + g γ /ε 0 γ 3/2 (3.3) for γ ≥ γ 0 (K), 0 < ε ≤ ε 0 (K).
The same estimate holds if B(εU ) in (3.1) is replaced by B(εU, εU ) and D(εU ) is replaced by D(εU, εU ) as long as

|ε∂ d (U, U )| C 0,M 0 -1 + |U, U | C 0,M 0 + |U, U | CH s 0 ≤ K for ε ∈ (0, 1].
The proof is identical to the proof of Proposition 2.2 in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF]. Here our hypothesis on |U | CH s 0 is needed to allow the pulse calculus summarized in Appendix B to be used in exactly the same way that the wavetrain calculus was used in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF]. The corollary below follows from Proposition 3.3 by the same argument used to derive Corollary 2.3 from Proposition 2.2 in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF].

Corollary 3.4 (Main H 1 tan linear estimate). Under the same assumptions as in Proposition 3.3, smooth enough solutions U of the linearized singular problem (3.1) satisfy:

| U γ | ∞,0 + | U γ | 0,1 + U γ 1 √ γ ≤ C(K) |Λ D f γ | 0,1 + |f γ /ε| 0,1 γ 2 + Λ D g γ 1 + g γ /ε 1 γ 3/2 (3.4) for γ ≥ γ 0 (K), 0 < ε ≤ ε 0 (K).
The next proposition localizes the estimate (3.4) to Ω T . By considering data εf , εg instead of f, g we can recast (3.4) in a form where the loss of a singular derivative is replaced by loss of an ordinary derivative. The proof is identical to that of [CGW13, Proposition 2.8]. Let us write the linearized operators on the left sides of (3.1)(a) and (b) as L ′ (εU ) U and B ′ (εU ) U respectively. Proposition 3.5. Let s 0 = d+1 2 + 1, fix K > 0, and suppose

|ε∂ d U | C 0,M 0 -1 T + |U | C 0,M 0 T + |U | CH s 0 T ≤ K for ε ∈ (0, 1].
There exist positive constants ε 0 (K), γ 0 (K) such that solutions of the singular problem 

L ′ ε (U ) U = εf in Ω T , B ′ ε (U ) U = εg on bΩ T , U = 0 in t < 0, satisfy | U | ∞,0,γ,T + | U | 0,1,γ,T + U | x d =0 1,γ,T √ γ ≤ C(K) |f | 0,2,γ,T γ 2 + g 2,γ,T γ 3/2 for 0 < ε ≤ ε 0 (K), γ ≥ γ 0 (K),
(U, U )| C 0,M 0 -1 T + |U, U | C 0,M 0 T + |U, U | CH s 0 T ≤ K for ε ∈ (0, 1].
We need the following higher derivative estimate in the error analysis. This estimate is also needed in the Nash-Moser iteration used to prove the nonlinear existence Theorem (3.7). We recall the definitions (1.21) for the indices a 0 , a 1 , a, ã. Proposition 3.6 (Tame estimate for the linearized system). Fix K > 0 and suppose

|ε ∂ d U | C 0,M 0 -1 T + |U | C 0,M 0 T + |U | CH s 0 T ≤ K for ε ∈ (0, 1]. (3.5)
Let µ 0 := a 0 +2 and s ∈ [0, ã], where ã is defined in (1.21). There exist positive constants γ = γ(K), κ 0 (γ, T ), ε 0 , and C such that if

|U | 0,µ 0 ,γ,T + U | x d =0 µ 0 ,γ,T ≤ κ 0 ,
then solutions U of the linearized system (3.1) satisfy for 0 < ε ≤ ε 0 :

| U | E s γ,T + U | x d =0 s+1,γ,T ≤ C |f | 0,s+2,γ,T + g s+2,γ,T + (|f | 0,µ 0 γ,T + g µ 0 ,γ,T ) (|U | 0,s+2,γ,T + U | x d =0 s+2,γ,T ) .
The same estimate holds for 0

< ε ≤ ε 0 if B(εU ) in (3.1) is replaced by B(εU, εU ) and D(εU ) is replaced by D(εU, εU ) as long as |ε∂ d (U, U )| C 0,M 0 -1 T + |U, U | C 0,M 0 T + |U, U | CH s 0 T ≤ K for ε ∈ (0, 1] and |U, U | 0,µ 0 ,γ,T + U | x d =0 , U | x d =0 µ 0 ,γ,T ≤ κ 0 .
The proof is exactly the same as the proof of Proposition 2.15 in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF]. Finally, we state the existence theorem for solutions of the singular system (1.23).

Theorem 3.7. Fix T > 0, define a, a 0 , and ã as in (1.21), and suppose G ∈ H ã(bΩ T ). There exists ε 0 > 0 such that if G a+2 is small enough, there exists a solution U ε of the system (1.23) on

Ω T for 0 < ε ≤ ε 0 with U ε ∈ E a-1 , U ε | x d =0 ∈ H a . This statement remains true if a is increased and if ã ≥ 2a -a 0 .
Proof. The proof is an exact repetition of the Nash-Moser argument used to prove Theorem 5.13 in [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF]. One fixes T > 0, K > 0 and γ = γ(K) as in Proposition 3.6, and uses the scale of spaces E s γ,T (Definition 3.2) with γ T = 1. The smoothing operators S θ are defined just as in Lemma 5.12 of [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF], taking account in the obvious way for the fact that now functions u(x, θ 0 ) ∈ E s γ,T are defined for θ 0 ∈ R instead of θ 0 ∈ T. The verification of the condition (3.5) needed to apply the tame estimate of Proposition 3.6 in the induction argument is done just as in Lemma 5.20 of [START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF].

Error analysis 4.1 Moment-zero approximations

When constructing a corrector to the leading part of the approximate solution we must take primitives in θ of functions f (x, θ) that decay to zero as |θ| → ∞. A difficulty is that such primitives do not necessarily decay to zero as |θ| → ∞, and this prevents us from using those primitives directly in the error analysis. The failure of the primitive to decay manifests itself on the Fourier transform side as a small divisor problem. To get around this difficulty we work with the primitive of a moment-zero approximation, because such a primitive does have the desired decay.

We will use the following spaces:

Definition 4.1. 1.) For s ≥ 0, let E s T be given in Definition 3.2. 2.) Let E s T := {U (x, θ 0 , ξ d ) : |U | E s T := sup ξ d ≥0 |U (•, •, ξ d )| E s T < ∞}. Proposition 4.2. For s > (d + 1)/2, the spaces E s
T and E s T are Banach algebras. Proof. This is a consequence of Sobolev embedding and the fact that L ∞ (bΩ T ) ∩ H s (bΩ T ) is a Banach algebra for s ≥ 0.

The proofs of the following two propositions follow directly from the definitions. where the hat denotes the Fourier transform in θ.

Proposition 4.5. For s ≥ 1 suppose σ(x, θ) ∈ Γ s+2 and σ(x, θ 0 , ξ d ) := σ(x, θ 0 + ωξ d ). Then

(a) |σ -σp | E s T ≤ C |σ| Γ s+2 T √ p, (b) |∂ x d σ -∂ x d σp | E s-1 T ≤ C |σ| Γ s+2 T √ p. Proof. 1.) Recall that σ ∈ Γ s T ⇔ θ β 1 ∂ β 2 x ∂ β 3 θ σ(x, θ) ∈ L 2 (x, θ) for |β| ≤ s ⇔ ∂ β 1 m ∂ β 2 x m β 3 σ(x, m) ∈ L 2 (x, m) for |β| ≤ s. It follows that σ ∈ Γ s+2 T ⇒ σ(x, m) ∈ H s+2 T (x, m) ⊂ H 1 (m, H s+1 (x)) ⊂ L ∞ (m, H s+1 (x)). (4.2) 2.) We have |σ -σ p | 2 H s+1 T ∼ |α|+k≤s+1 ∂ α x m k σ(x, m)(1 -χ p (m)) 2 L 2 (x,m) = |α|+k≤s+1 |m|≤2p |∂ α x m k σ(x, m)(1 -χ p (m))| 2 dx dm ≤ C |m|≤2p |σ(x, m)| 2 H s+1 (x) dm ≤ C |σ| 2 Γ s+2 T (2p),
where the last inequality uses (4.2). The conclusion now follows from Propostion 4.3.

3.)

The proof of part (b) is essentially the same.

Proposition 4.6. Let σ(x, θ) ∈ H s T , s ≥ 0, and let σ p be a moment-zero approximation to σ. We have

(a) |σ p | H s T ≤ C |σ| H s T , (b) If σ ∈ Γ s T , then |σ p | Γ s T ≤ C p s |σ| Γ s T .
Proof. Part (b) follows from (4.1). Indeed, for |β| ≤ s, there holds

|∂ β 1 m ∂ β 2 x m β 3 σp (x, m)| L 2 T ≤ C p β 1 |σ| Γ s T , since |∂ β 1 m χ p | ≤ C/p β 1 .
Taking β 1 = 0 we similarly obtain part (a).

Next we consider primitives of moment-zero approximations.

Proposition 4.7. Let σ(x, θ) ∈ Γ s T , s > d 2 + 3. Let σ * p (x, θ) be the unique primitive of σ p in θ that decays to zero as |θ| → ∞. Then σ * p ∈ Γ s T with moment zero, and

(a) |σ * p | H s T ≤ C |σ p | H s T p (b) |σ * p | Γ s T ≤ C |σ p | Γ s T p s+1 . (4.3) Proof. 1.) Since σ p (x, θ) ∈ Γ s T , s > d 2 + 3, we have |σ p (x, θ)| ≤ C θ -2
for all (x, θ). The unique θ-primitive of σ p decaying to zero as |θ| → ∞ is thus

σ * p (x, θ) = - +∞ θ σ p (x, s) ds = θ -∞ σ p (x, s) ds.
Moreover, we have 

∂ θ σ * p = σ p ⇔ im σ * p = σ p = χ p σ,
|σ τ -(σ τ ) p | 2 H s T ∼ |α|+k≤s+1 |∂ α x m k (σ * τ )(x, m) (1 -χ p (m))| 2 L 2 (x,m) ≤ C |m|≤2p |(σ * τ )(x, m)| 2 H s (x) dm ≤ C |m|≤2p |σ(x, m -m 1 )| H s (x) |τ (x, m 1 )| H s (x) dm 1 2 dm ≤ C p |σ(x, m)| 2 L 2 (m,H s (x)) |τ (x, m)| 2 L 2 (m,H s (x)) ≤ C p |σ| 2 H s T |τ | 2 H s T .
Proposition 4.9. Let σ(x, θ) and τ (x, θ) belong to Γ s T , s > d 2 + 3 and let (στ ) * p denote the unique primitive of (στ ) p that decays to zero as |θ| → ∞. Then

|(σ τ ) * p | H s T ≤ C |σ| H s T |τ | H s T p .
Proof. Since Γ s T is a Banach algebra, Proposition 4.7 implies (στ ) * p ∈ Γ s T with moment zero and

|(σ τ ) * p | H s T ≤ C |(σ τ ) p | H s T p .
Since H s T is a Banach algebra, the result now follows from Proposition 4.6(a).

Proof of Theorem 1.14

Choice of a and ã. The conditions on the boundary datum G(x ′ , θ 0 ) are different in Theorems 3.7 and 2.14 We need to choose a, ã, and G(x ′ , θ 0 ) so that both Theorems apply simultaneously. We also need a large enough so that we can apply Proposition 3.6 in the step (4.18) of the error analysis below. These conditions are met if we take a and ã as in (1.21), and choose G ∈ bΓ ã T such that G bΓ a+2 T is small enough. Applying Theorems 3.7 and 2.14, we now have for 0 < ε ≤ ε 0 an exact solution U ε (x, θ 0 ) ∈ E a-1 T to the singular system (1.23) and profiles U 0 ∈ Γa+1 T , U 1 ∈ Γa-2 T satisfying the profile equations (1.35) and (1.36).

Approximation. Fix 0 < p ≤ 1, we use Proposition 4.5 to choose moment zero approximations U 0 p and U 1 p such that

|U 0 -U 0 p | E a-1 T ≤ C √ p, |∂ x d U 0 -∂ x d U 0 p | E a-2 T ≤ C √ p, |U 1 -U 1 p | E a-4 T ≤ C √ p, |∂ x d U 1 -∂ x d U 1 p | E a-5 T ≤ C √ p. (4.6)
Having made these choices, we can now state the main result of this section, which yields the final convergence result of Theorem 1.14 as an immediate corollary.

Theorem 4.10. We make the same Assumptions as in Theorem 1.14 and let a and ã be chosen as in (1.21). Consider the leading order approximate solution to the singular semilinear system (1.23) given by

U 0 ε (x, θ 0 ) := U 0 x, θ 0 , x d ε ,
and let U ε (x, θ 0 ) ∈ E a-1 T be the exact solution to (1.23) just obtained. Then

|U ε (x, θ 0 ) -U 0 ε (x, θ 0 )| E a-6 T ≤ C ε 1 2M 1 +3 , where M 1 = d 2 + 3 .
Proof. We shall fill in the sketch provided in section 1.5. The approximate solution to the singular system defined by (U 0 + εU 1 )(x, θ 0 , x d ε ) is too crude for the error analysis, so we must construct an additional corrector.

1.) As a first try we could use Proposition 1.19 to construct Ũ 2 p (x, θ 0 , ξ d ) satisfying

L(∂ θ 0 , ∂ ξ d ) Ũ 2 p = -(I -E) L(∂)U 1 p + D(0)U 1 p + (dD(0)U 0 p )U 0 p := -(I -E)G. (4.7)
This choice of Ũ 2 p (x, θ 0 , x d ε ) turns out not to lie in any E r T space, and is thus too large to be useful in the error analysis. Observe however that G is of type F.

To remedy this problem we replace (I -E)G by a modification [(I -E)G] mod defined as follows. First, using the earlier formulas for EU 1 and (I -E)U 1 and Remark 1.17, we have

-(I -E)G = 3 i=1   - k =i V i k τ k,p - k =i X φ i b k,p - k =i,l =k,l =i V i k b l,p + k =i e i k τ k,p   r i + 3 i=1   k =i c i k σ 2 k,p + l =m d i l,m σ l,p σ m,p   r i =: A + B, (4.8) 
where B is the second sum over i in (4.8), σ q,p = σ q,p (x, θ 0 + ω q ξ d ), and τ r,p = τ r,p (x, θ 0 + ω r ξ d ).

The problem is caused by the self-interaction terms given by the sum over k = i in B, so we define

-[(I -E)G] mod = A + 3 i=1   k =i c i k (σ 2 k,p ) p + l =m d i l,m σ l,p σ m,p   r i , (4.9)
and we set

U 2 p := -R ∞ [(I -E)G] mod . (4.10) Instead of (4.7) we have L(∂ θ 0 , ∂ ξ d )U 2 p = -[(I -E)G] mod . (4.11)
For later use we set

D(x, θ 0 , ξ d ) := (I -E)G -[(I -E)G] mod and estimate |D(x, θ 0 , x d ε )| E a T ≤ C √ p.
Indeed, using Propositions 4.8 and 4.6(a) we have

σ 2 k,p -(σ 2 k,p ) p (x, θ 0 + ω k x d ε ) E a T ≤ | σ 2 k,p -(σ 2 k,p ) p | H a+1 T ≤ |σ k | 2 H a+1 T √ p.
We then define the corrected approximate solution

U ε (x, θ 0 ) := U 0 (x, θ 0 , x d ε ) + εU 1 (x, θ 0 , x d ε ) + ε 2 U 2 p (x, θ 0 , x d ε ). Since U 1 ∈ Γa-2 T , Proposition 4.3 implies U 1 ε ∈ E a-3 T . 2.) Estimate of |U 2 p,ε | E a-4 T
. For A as in (4.8) let us write A = 3 i=1 a i (x, θ 0 , ξ d )r i . By (4.10), (4.9) and the formula (1.32) for R ∞ , for i = 1, 2, 3 we must estimate

|b i (x, θ 0 , x d ε )| E s-2 T
, where b i (x, θ 0 , ξ d ) reads as follows:

k =i c i k +∞ ξ d σ 2 k,p p (x, θ 0 + ω i ξ d + s(ω k -ω i )) ds + m =i d i i,m +∞ ξ d σ i,p (x, θ 0 + ω i ξ d )σ m,p (x, θ 0 + ω i ξ d + s(ω m -ω i )) ds + l =i d i l,i +∞ ξ d σ l,p (x, θ 0 + ω i ξ d + s(ω l -ω i ))σ i,p (x, θ 0 + ω i ξ d ) ds (4.12) + l =m,l =i,m =i d i l,m +∞ ξ d σ l,p (x, θ 0 + ω i ξ d + s(ω l -ω i ))σ m,p (x, θ 0 + ω i ξ d + s(ω m -ω i )) ds + +∞ ξ d a i (x, θ 0 + ω i (ξ d -s), s) ds = 5 r=1 b i,r (x, θ 0 , ξ d ),
where b i,r , r = 1, . . . , 5 are defined by the respective lines of (4.12). Since U 0 ∈ Γa+1 T , using Corollary A.3 we find b

i,1 x, θ 0 , x d ε E a T ≤ C k =i |σ k | 2 H a+1 T p ≤ C/p.
Similarly, from Proposition A.4 we get

b i,2 x, θ 0 , x d ε E a T ≤ C/p; b i,3 x, θ 0 , x d ε E a T ≤ C/p. Proposition A.1 on transversal interactions implies b i,4 x, θ 0 , x d ε E a T ≤ C p M 1 ,
where we have used Proposition 4.6

(b) to estimate |σ m,p | Γ M 1 T ≤ C p M 1 |σ m | Γ M 1 T . Since A ∈ Γa-3 T , Proposition A.5 implies |b i,5 (x, θ 0 , x d ε )| E a-4 T ≤ C/p, so adding up we obtain U 2 p,ε E a-4 T ≤ C p t .
To estimate (∂ x d U 2 p ) ε we differentiate (4.12) and estimate as above to find

(∂ x d U 2 p ) ε E a-5 T ≤ C p t+1 .
3.) Next we study the error upon substituting the corrected approximate solution U ε into the singular system (1.23). Letting L ε denote the operator defined by the left side of (1.23), we compute

(4.13) L ε (U ε ) = ε ( L(∂ θ 0 , ∂ ξ d )U 2 p )| ξ d = x d ε + L(∂)U 1 + D(0)U 1 + (dD(0)U 0 )U 0 | ξ d = x d ε + O(ε 2 ).
Here the profile equations (1.25) imply that the terms of order ε -1 and ε 0 vanish. Using (4.11) we can rewrite the coefficient of ε in (4.13) as

L(∂)(U 1 -U 1 p ) + D(0)(U 1 -U 1 p ) + (dD(0)U 0 )U 0 -(dD(0)U 0 p )U 0 p | ξ d = x d ε + E L(∂)U 1 p + D(0)U 1 p + (dD(0)U 0 p )U 0 p | ξ d = x d ε + D(x, θ 0 , x d ε ) := A + B + D(x, θ 0 , x d ε ) .
Using (4.6), Proposition 4.3, and the fact that E s T is a Banach algebra for s ≥ [(d + 1)/2], we see that

|A| E a-5 (Ω T ) < C √ p.
To estimate B, let

F = L(∂)U 1 + D(0)U 1 + (dD(0)U 0 )U 0 and F p = L(∂)U 1 p + D(0)U 1 p + (dD(0)U 0 p )U 0 p .
The profile equation (1.36)(b) implies EF = 0. Since F and F p are of type F, we can use the explicit formula for the action of E in Remark 1.17 and (4.6) to obtain

|B| E a-5 T = (EF p )| ξ d = x d ε E a-5 T = (E(F -F p ))| ξ d = x d ε E a-5 T ≤ C √ p.

4.)

The O(ε 2 ) terms in (4.13) consist of

ε 2 L(∂)U 2 p (x, θ 0 , ξ d ) | ξ d = x d ε E a-5 T ≤ C ε 2 p t+1 , (4.14)
as well as terms coming from the Taylor expansion of D

(εU ε )U ε like ε 2 (dD(0)U 0 )U 1 | ξ d = x d ε
, all of which satisfy better estimates than (4.14).

Setting R ε (x, θ 0 ) := L ε (U ε ), we have shown

|R ε | E a-5 T ≤ C ε √ p + ε p t+1 . (4.15)
5.) The boundary profile equations (1.26), and the fact that the traces of U 0 ε and U 1 ε lie in H a (bΩ T ) and H a-3 (bΩ T ), respectively, imply

r ε (x ′ , θ 0 ) H a-4 (bΩ T ) ≤ C ε 2 p t , where r ε := ψ(εU ε ) U ε -ε G(x ′ , θ 0 ). (4.16) Indeed, these O(ε 2 ) terms include ε 2 B U 2 p,ε (x ′ , 0, θ 0 ) H a-4 (bΩ T ) ≤ C ε 2 p t ,
and other terms satisfying the same estimate coming from the Taylor expansion of ψ(εU ε ) U ε . 6.) Next we consider the singular problem satisfied by the difference W ε := U ε -U ε :

∂ d W ε + A ∂ x ′ + β∂ θ 0 ε W ε + D 2 (εU ε , εU ε )W ε = -R ε ψ 2 (εU ε , εU ε )W ε = -r ε on x d = 0 W ε = 0 in t < 0, (4.17) 
where

D 2 (εU ε , εU ε )W ε := D(εU ε )U ε -D(εU ε )U ε = D(εU ε )W ε + 1 0 dD(εU ε + sε(U ε -U ε )) W ε ds (εU ε ) , and ψ 2 (εU ε , εU ε )W ε is defined similarly. Since U ε ∈ E a-1 T and U ε ∈ E a-4 T , a short computation shows ψ 2 (εU ε , εU ε )W ε = ψ(εU ε )W ε + (dψ(εU )W ε )εU ε + O ε 2 p M 1 = B(εU, εU )W ε + O ε 2 p M 1 ,
where the error term is measured in H a-4 (bΩ T ) and B is defined in (1.13). Similarly,

D 2 (εU ε , εU ε )W ε = D(εU, εU )W ε + O ε 2 p M 1 in E a-4 T .
Thus, using (4.15) and (4.16) we find

∂ d W ε + A ∂ x ′ + β∂ θ 0 ε W ε + D(εU ε , εU ε )W ε = ε O √ p + ε p M 1 +1 in E a-5 T B(εU ε , εU ε )W ε | x d =0 = O ε 2 p M 1 in H a-4 (bΩ T ) W ε = 0 in t < 0. Provided G bΓ α+2 T
is small enough, we can apply the estimate of Proposition 3.6 to obtain

|W ε | E a-6 T ≤ C √ p + ε p M 1 +1 . (4.18) Setting p = ε b and √ p = ε/p M 1 +1 , we find b = 2 2M 1 +3 . Thus, |W ε | E a-6 T ≤ C ε 1 2M 1 +3 , so (4.18) implies |U ε -U 0 ε | E a-6 T ≤ C ε 1 2M 1 +3 .
5 Extension to the general N × N system

It is only the discussion of profiles and the error analysis that needs to be extended to the general case. For each m ∈ {1, . . . , M } we let ℓ m,k , k = 1, . . . , ν km denote a basis of real vectors for the left eigenspace of the real matrix iA(β) associated to the real eigenvalue -ω m and chosen to satisfy

ℓ m,k • r m ′ ,k ′ = 1, if m = m ′ and k = k ′ , 0, otherwise.
For v ∈ C N we set P m,k v := (ℓ m,k • v) r m,k , (no complex conjugation here).

Functions of type F (see Definition 1.16) have the form

F (x, θ 0 , ξ d ) = M m=1 ν km k=1 F m,k (x, θ 0 , ξ d ) r m,k ,
where

F m,k = m ′ f m,k m ′ (x, θ 0 + ω m ′ ξ d ) + m ′ ,k ′ ,m ′′ ,k ′′ g m,k m ′ ,k ′ ,m ′′ ,k ′′ (x, θ 0 + ω m ′ ξ d ) h m,k m ′ ,k ′ ,m ′′ ,k ′′ (x, θ 0 + ω m ′′ ξ d ) .
The operator E is given by and all unknowns are zero in t < 0. The key subsystem and then the full profile system are solved as before (using a Picard iteration for a and integration along the characteristics for the σ m,k 's), and Theorem 2.14 on the existence and regularity of U 0 and U 1 still holds as stated. The error analysis in the proof of Theorem 4.10 goes through with the obvious minor changes. For example, the troublesome self-interaction terms c i k σ 2 k,p in the sum that is part of B in (4.8) are now replaced by terms of the form c i m,k,k ′ σ m,k,p σ m,k ′ ,p , m = i, where the index p as before denotes a moment-zero approximation. These terms are handled just as before by introducing -[(I -E)G] mod , see (4.9), in which they are replaced by c i m,k,k ′ (σ m,k,p σ m,k ′ ,p ) p . The contribution of these terms to U 2 p is estimated as before using Corollary A.3. The statement of Theorem 4.10 applies unchanged in the general case.

EF := m,k

A Estimates of interaction integrals

Pulses do not interact to produce resonances that affect the leading order profiles as in the wavetrain case. However, interaction integrals must be estimated carefully in the error analysis of Section 4. All results below are proved in our earlier paper [CW13] so we shall not reproduce the proofs here.

The following propositions are used in the error analysis for estimating integrals appearing in the definition of U 2 p,ε (step 2 of Theorem 4.10). In particular, we must estimate primitives of products of pulses. In some of the estimates below we must introduce moment-zero approximations to avoid errors that would fail to lie in any E r T space, which are thus too large to be useful in the error analysis. We begin with an estimate of "transversal interactions", see Proposition 4.10 in [START_REF] Coulombel | Nonlinear geometric optics for reflecting uniformly stable pulses[END_REF]. where ω, α are real and α / ∈ {0, 1}. With u ε (x, θ 0 ) := u(x, θ 0 , x d ε ), we have

|u ε | E s T ≤ C |σ 1 | H s+1 T |σ 2 | Γ t T + |σ 2 | H s+1 T |σ 1 | Γ t T ,
uniformly for ε ∈ (0, 1].

The previous estimate of transversal interactions did not require the use of moment-zero approximations. However, nontransversal interactions of pulses can produce errors that do not lie in any E r T space, and are thus too big to be helpful in the error analysis. Thus, we are forced to use a moment-zero approximation in the next two propositions (see corresponding Proposition 4.11, Corollary 4.12 and Proposition 4.14 in [START_REF] Coulombel | Nonlinear geometric optics for reflecting uniformly stable pulses[END_REF]). 

B Singular pseudodifferential calculus for pulses

Here we summarize the parts of the singular pulse calculus constructed in [START_REF] Coulombel | Singular pseudodifferential calculus for wavetrains and pulses[END_REF] that are needed in this article. First we define the singular Sobolev spaces used to describe mapping properties.

The variable in R d+1 is denoted (x, θ), x ∈ R d , θ ∈ R, and the associated frequency is denoted (ξ, k). In this new context, the singular Sobolev spaces are defined as follows. We consider a fixed vector β ∈ R d \ {0}. Then for s ∈ R and ε ∈ ]0, 1], the anisotropic Sobolev space H s,ε (R d+1 ) is defined by H s,ε (R d+1 ) := u ∈ S ′ (R d+1 ) / u ∈ L 2 loc (R d+1 ) and

R d+1 1 + ξ + k β ε 2 s u(ξ, k) 2 dξ dk < +∞ .
Here u denotes the Fourier transform of u on R d+1 . The space H s,ε (R d+1 ) is equipped with the family of norms

∀ γ ≥ 1 , ∀ u ∈ H s,ε (R d+1 ) , u 2 H s,ε ,γ := 1 (2 π) d+1 R d+1 γ 2 + ξ + k β ε 2 s u(ξ, k) 2 dξ dk .
When m is an integer, the space H m,ε (R d+1 ) coincides with the space of functions u ∈ L 2 (R d+1 ) such that the derivatives, in the sense of distributions,

∂ x 1 + β 1 ε ∂ θ α 1 . . . ∂ x d + β d ε ∂ θ α d u , α 1 + • • • + α d ≤ m ,
belong to L 2 (R d+1 ). In the definition of the norm • H m,ε ,γ , one power of γ counts as much as one derivative.
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=

  {x = (x ′ , x d ) = (t, y, x d ) = (t, x ′′ ) : x d ≥ 0}, consider the N × N semilinear hyperbolic boundary problem for v = v ε (x), where ε > 0 2 : (a) L(∂)v + f 0 (v) = 0 (b) φ(v) = ε 2 G(x ′ , x ′ • β ε ) on x d = 0 (c) v = 0 and G = 0 in t < 0,(1.1)

A

  j ∂ j with A j := B -1 d B j for j = 0, . . . , d -1 , ∂ 0 := ∂ t . Setting v = εu and writing f (v) = D(v)v, φ(v) = ψ(v)v, we get the problem for u = u ε (x) (a) L(∂)u + D(εu)u = 0 (b) ψ(εu)u = ε G(x ′ , x ′ • β ε ) on x d = 0(c) u = 0 in t < 0.

  (1.10) ker B ∩ E s (β) = Span {e} , e = m∈I e m , P m e m = e m .

  CH s γ,T and C 0,M 0 T with norms |U | 0,s,T , |U | 0,s,γ,T , |U | ∞,s,T , |U | ∞,s,γ,T , and |U | C 0,M 0 T respectively. On bΩ T we use the spaces H sT and H s γ,T with norms U s,T and U s,γ,T . (g) All constants appearing in the estimates below are independent of ε, γ, and T unless such dependence is explicitly noted.

  Proposition 4.3. (a) For s ≥ 0, let σ(x, θ) ∈ H s+1 T and set σ(x, θ 0 , ξ d ) := σ(x, θ 0 + ωξ d ), ω ∈ R. Then there holds|σ| E s T ≤ C|σ| H s+1 T . (b) Set σε (x, θ 0 ) := σ(x, θ 0 , x d ε ). Then |σ ε | E s T ≤ |σ| E s T . Definition 4.4 (Moment-zero approximations). Let 0 < p ≤ 1, and let φ ∈ C ∞ (R) have supp φ ⊂ {m : |m| ≤ 2}, with φ = 1 on |m| ≤ 1. Set φ p (m) = φ( m p) and χ p = 1φ p . For σ(x, θ) ∈ L 2 , define the moment zero approximation to σ, σ p (x, θ) by σp (x, m) := χ p (m) σ(x, m), (4.1)

0 FF

 0 m,k (x, θ 0 + ω m (ξ ds), s) ds r m,k , and we leave it to the reader to formulate the analogue of Remark 1.17. On functions of type F such that EF = 0 the action of the operator R ∞ is given byR ∞ F :=m,k (x, θ 0 + ω m (ξ ds), s) ds r m,k .The general form of the profile equations (1.35), (1.36) still applies. WithW (x, θ 0 , ξ d ) = m,k w m,k (x, θ 0 , ξ d ) r m,k ,the decomposition of Proposition 2.1 now has the formL(∂)W = m,k (X φm w m,k ) r m,k + m,k   m ′ =m,k ′ V m,k m ′ ,k ′ w m ′ ,k ′   r m,k , (5.1) where V m,k m ′ ,k ′ is the tangential vector field V m,k m ′ ,k ′ = d-1 j=0 (ℓ m,k A j r m ′ ,k ′ )∂ x j .Recalling that {1, . . . , M } = O∪I, where O and I contain the indices corresponding to outgoing and incoming phases, we have the expressions in (1.19) for U 0 and U 1 in the general case. As in (1.10) we haveker B ∩ E s (β) = Span{e} = m∈I e m = m∈I ν km k=1 e m,k ,where e m,k := P m,k e. Using (5.1) and arguing as in Propositions 2.2 and 2.3, we find that the key subsystem (2.11) now takes the formX φm σ m,k + e m,k σ m,k = 0, m ∈ I, k = 1, . . . , ν km , X Lop a + c a + d ∂ θ 0 (a 2 ) = -b • ∂ θ 0 G on {x d = 0, ξ d = 0} , (5.2)where σ m,k (x ′ , 0, θ 0 ) r m,k = a(x ′ , θ 0 ) e m,k ,

Proposition A. 1 .

 1 Let t be the smallest integer greater than d 2 + 3, and let s ≥ 0. Let σ 1 (x, θ), σ 2 (x, θ) belong to Γ t T ∩ H s+1 T , and define u(x, θ 0 , ξ d ) := -+∞ ξ d σ 1 (x, θ 0 + ωξ d + αs) σ 2 (x, θ 0 + ωξ d + s) ds,

Proposition A. 2 .

 2 Let σ(x, θ) and τ (x, θ) belong to Γ s T , s > d 2 + 3. For α, ω ∈ R, α = 0 setf (x, θ 0 , ξ d ) := -+∞ ξ d (σ τ ) p (x, θ 0 + ω ξ d + α s) ds. Let σ(x, θ), τ (x, θ),and ω, α be as in Proposition A.2 and setg(x, θ 0 , ξ d ) := -+∞ ξ d (σ p τ p ) p (x, θ 0 + ω ξ d + α s) ds. For s > d 2 + 3 let σ(x, θ) ∈ H s T , τ (x, θ) ∈ Γ s T . With ω, α ∈ R, α = 0 set j(x, θ 0 , ξ d ) := -σ(x, θ 0 + ω ξ d ) +∞ ξ d τ p (x, θ 0 + ω ξ d + α s) ds.The next Proposition requires moment zero approximations because forcing by a noninteracting pulse can also produce errors that fail to lie in any E r T space, see Proposition 4.15 in [CW13]. Proposition A.5. For s > d 2 + 3 and ω, α ∈ R, α = 0, let σ ∈ Γ s T and set k(x, θ 0 , ξ d ) = -+∞ ξ d σ p (x, θ 0 + ωξ d + αs) ds. Then k(x, θ 0 , x d ε )

  Definition 1.6 ([START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF]). As before let p be the number of positive eigenvalues of B d . The problem ( L(∂), B) is said to be uniformly stable or to satisfy the uniform Lopatinskii condition if Hence the uniform Lopatinskii condition is a convenient framework for nonlinear perturbation. The analogous statement may not be true when ( L(∂), B) is only weakly stable. Remarkably, weak stability persists under perturbation in the so-called WR class exhibited in[START_REF] Benzoni-Gavage | Generic types and transitions in hyperbolic initial-boundary-value problems[END_REF], and Assumption 1.5 above is a convenient equivalent definition of the WR class (see[START_REF] Coulombel | Geometric optics expansions with amplification for hyperbolic boundary value problems: linear problems[END_REF] Appendix B] or[START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF] Chapter 8]). In order to handle general nonlinear boundary conditions as in (1.2) we shall strengthen Assumption 1.5 in Assumption 1.12 below.

B : E s (ζ) -→ C p is an isomorphism for all ζ ∈ Σ.

Remark 1.7. Observe that if ( L(∂), B) satisfies the uniform Lopatinskii condition, continuity implies that this condition still holds for ( L(∂), B+ ψ), where ψ is any sufficiently small perturbation of B.

  and the constant C(K) only depends on K. The same estimate holds if B(εU ) in (3.1) is replaced by B(εU, εU ) given in (1.13), and D(εU ) is replaced by D(εU, εU ) given in (1.14), as long as there holds |ε∂ d

  Since |m| ≥ p on the support of χ p , this gives Proof. With * denoting convolution in m we have

		| σ * p (x, m)| ≤ C	|σ(x, m)| p
	and (4.3)(a) follows directly from this. From (4.4) we also obtain σ * p (x, 0) = 0.
	2.) The proof of (4.3)(b) is almost the same, except that now one uses
		∂ s m	χ p m	≤	C p s+1 .
	Proposition 4.8. Let σ(x, θ) and τ (x, θ) belong to H s T , s > d+2 2 . Then
	(4.5)	|σ τ -(σ τ ) p | H s T ≤ C |σ| H s T |τ | H s T	√ p.
	(4.4)				so σ * p =	χ p im σ	.

The notation in (1.4) and (1.5) is explained in sections 1.1 and 1.2.

Thus, we do not repeat those (lengthy) arguments here.

We borrow the idea of introducing low frequency cutoffs from[START_REF] Alterman | Diffractive nonlinear geometric optics for short pulses[END_REF] where single phase pulses in free space are studied.

If (τ , η) does not belong to the hyperbolic region H, some of the phases ϕm may be complex, see e.g. [Her12, Wil00, Les07, Mar10]. Moreover, glancing phases introduce a new scale √ ε as well as boundary layers.

This would be true even for problems ( L(∂), B) that are uniformly stable in the sense of Definition 1.6.

For initial value problems in free space, one can control L ∞ norms just by estimating enough derivatives tangent to time slices t = c.

More precisely, we refer here to the profiles like τ m,k (x, θm) or products of profiles that appear in these terms.

The cutoff renders harmless the small divisor that appears when one writes the Fourier transform of the θmprimitive of σ m,k,p in terms of σm,k,p (x, η).

 11 Recall that the wavetrain estimate in[START_REF] Coulombel | Semilinear geometric optics with boundary amplification[END_REF] applies verbatim to the pulse case, as long as one uses the singular pulse calculus instead of the singular wavetrain calculus in the proof. Both calculi are constructed in[START_REF] Coulombel | Singular pseudodifferential calculus for wavetrains and pulses[END_REF].

Recall PiX = (li • X)ri.

Here and below we often suppress the subscript ε on U .

Note that the norms |u|0,1 and |ΛDu|0,0 are not equivalent.

partially supported by NSF grants number DMS-0701201 and DMS-1001616.

B.1 Symbols

Our singular symbols are built from the following sets of classical symbols. 

and for all compact sets K ⊂ O:

Let C k b (R d+1 ), k ∈ N, denote the space of continuous and bounded functions on R d+1 , whose derivatives up to order k are continuous and bounded. Let us first define the singular symbols.

and let n ∈ N. Then we let S m n denote the set of families of functions (a ε,γ ) ε∈]0,1],γ≥1 that are constructed as follows:

) and where furthermore V takes its values in a convex compact subset K of O that contains the origin (for instance K can be a closed ball centered round the origin).

All results below extend to the case where in place of a function V that is independent of ε, the representation (B.1) is considered with a function V ε that is indexed by ε, provided that we assume that all functions ε V ε take values in a fixed convex compact subset K of O that contains the origin, and (V ε ) ε∈(0,1] is a bounded family of C n b (R d+1 ). Such singular symbols with a function V ε are exactly the kind of symbols that we manipulated in the construction of exact solutions to the singular system (1.23).

B.2 Definition of operators and action on Sobolev spaces

To each symbol a = (a ε,γ ) ε∈]0,1],γ≥1 ∈ S m n given by the formula (B.1), we associate a singular pseudodifferential operator Op ε,γ (a), with ε ∈ ]0, 1] and γ ≥ 1, whose action on a function u ∈ S(R d+1 ; C N ) is defined by

Let us briefly note that for the Fourier multiplier σ(v, ξ, γ) = i ξ 1 , the corresponding singular operator is

We now describe the action of singular pseudodifferential operators on Sobolev spaces.

2) defines a bounded operator on L 2 (R d+1 ): there exists a constant C > 0, that only depends on σ and V in the representation (B.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

The constant C in Proposition B.3 depends uniformly on the compact set in which V takes its values and on the norm of V in C d+1 b . For operators defined by symbols of order m > 0 we have:

2) defines a bounded operator from H m,ε (R d+1 ) to L 2 (R d+1 ): there exists a constant C > 0, that only depends on σ and V in the representation (B.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

The next proposition describes the smoothing effect of operators of order -1.

Proposition B.5. Let n ≥ d + 2, and let a ∈ S -1 n . Then Op ε,γ (a) in (B.2) defines a bounded operator from L 2 (R d+1 ) to H 1,ε (R d+1 ): there exists a constant C > 0, that only depends on σ and V in the representation (B.1), such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

Remark B.6. In applications of the pulse calculus, we verify the hypothesis that for V as in (B.1),

B.3 Adjoints and products

For proofs of the following results we refer to [START_REF] Coulombel | Singular pseudodifferential calculus for wavetrains and pulses[END_REF]. The two first results deal with adjoints of singular pseudodifferential operators while the last two deal with products.

, where V ∈ H s 0 (R d+1 ) for some s 0 > d+1 2 + 1, and let a * denote the conjugate transpose of the symbol a. Then Op ε,γ (a) and Op ε,γ (a * ) act boundedly on L 2 and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

If n ≥ 3 d + 3, then for another constant C, there holds

uniformly in ε and γ.

, where V ∈ H s 0 (R d+1 ) for some s 0 > d+1 2 + 1, and let a * denote the conjugate transpose of the symbol a. Then Op ε,γ (a) and Op ε,γ (a * ) map H 1,ε into L 2 and there exists a family of operators R ε,γ that satisfies

• there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

• the following duality property holds

In particular, the adjoint Op ε,γ (a) * for the L 2 scalar product maps H 1,ε into L 2 .

Proposition B.9. (a) Let a, b ∈ S 0 n , n ≥ 2 (d + 1), and suppose b = σ(εV, ξ + k β ε , γ) where V ∈ H s 0 (R d+1 ) for some s 0 > d+1 2 + 1. Then there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

If n ≥ 3 d + 3, then for another constant C, there holds

, and in each case suppose b = σ(εV, ξ + k β ε , γ) where V ∈ H s 0 (R d+1 ) for some s 0 > d+1 2 + 1. Then there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

, and suppose b = σ(εV, ξ + k β ε , γ) where V ∈ H s 0 (R d+1 ) for some s 0 > d+1 2 + 1. Then Op ε,γ (a) Op ε,γ (b) defines a bounded operator on H 1,ε and there exists a constant C ≥ 0 such that for all ε ∈ ]0, 1] and for all γ ≥ 1, there holds

Our final result is Gårding's inequality.

Theorem B.11. Let σ ∈ S 0 satisfy Re σ(v, ξ, γ) ≥ C K > 0 for all v in a compact subset K of O.

Let now a ∈ S n 0 , n ≥ 2 d + 2 be given by (B.1), where V ∈ H s 0 (R d+1 ) for some s 0 > d+1 2 + 1 and is valued in a convex compact subset K. Then for all δ > 0, there exists γ 0 which depends uniformly on V , the constant C K and δ, such that for all γ ≥ γ 0 and all u ∈ S(R d+1 ), there holds

B.4 Extended calculus

In the proof of Corollary 3.4 we use a slight extension of the singular calculus. For given parameters 0 < δ 1 < δ 2 < 1, we choose a cutoff χ e (ξ ′ , k β ε , γ) such that 0 ≤ χ e ≤ 1 ,

and define a corresponding Fourier multiplier χ D in the extended calculus by the formula (B.2) with χ e (ξ ′ , k β ε , γ) in place of σ(εV, X, γ). Composition laws involving such operators are proved in [START_REF] Coulombel | Singular pseudodifferential calculus for wavetrains and pulses[END_REF], but here we need only the fact that part (a) of Proposition B.9 holds when either a or b is replaced by an extended cutoff χ e .