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Rational homotopy – Sullivan models

Luc Menichi

Faculte des Sciences

2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

email: luc.menichi@univ-angers.fr

Abstract. This chapter is a short introduction to Sullivan models. In particular, we find
the Sullivan model of a free loop space and use it to prove the Vigué-Poirrier-Sullivan
theorem on the Betti numbers of a free loop space.

In the previous chapter, we have seen the following theorem due to Gromoll
and Meyer.

Theorem 0.1. Let M be a compact simply connected manifold. If the sequence of
Betti numbers of the free loop space on M , MS1

, is unbounded then any Rieman-
nian metric on M carries infinitely many non trivial and geometrically distinct
closed geodesics.

In this chapter, using Rational homotopy, we will see exactly when the sequence
of Betti numbers ofMS1

over a field of caracteristic 0 is bounded (See Theorem 6.1
and its converse Proposition 5.5). This was one of the first major applications of
rational homotopy.

Rational homotopy associates to any rational simply connected space, a com-
mutative differential graded algebra. If we restrict to almost free commutative
differential graded algebras, that is ”Sullivan models”, this association is unique.

1 Graded differential algebra

1.1 Definition and elementary properties

All the vector spaces are over Q (or more generally over a field k of characteric 0).
We will denote by N the set of non-negative integers.

Definition 1.1. A (non-negatively upper) graded vector space V is a family
{V n}n∈N of vector spaces. An element v ∈ Vi is an element of V of degree i.
The degree of v is denoted |v|. A differential d in V is a sequence of linear maps
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dn : V n → V n+1 such that dn+1 ◦ dn = 0, for all n ∈ N. A differential graded
vector space or complex is a graded vector space equipped with a differential. A

morphism of complexes f : V
≃
→W is a quasi-isomorphism if the induced map in

homology H(f) : H(V )
∼=
→ H(W ) is an isomorphism in all degrees.

Definition 1.2. A graded algebra is a graded vector space A = {An}n∈N, equipped
with a multiplication µ : Ap ⊗ Aq → Ap+q. The algebra is commutative if
ab = (−1)|a||b|ba for all a and b ∈ A.

Definition 1.3. A differential graded algebra or dga is a graded algebra equipped
with a differential d : An → An+1 which is also a derivation: this means that for
a and b ∈ A

d(ab) = (da)b+ (−1)|a|a(db).

A cdga is a commutative dga.

Example 1.4. 1) Let (B, dB) and (C, dC) be two cdgas. Then the tensor product
B ⊗ C equipped with the multiplication

(b⊗ c)(b′ ⊗ c′) := (−1)|c||b
′|bb′ ⊗ cc′

and the differential

d(b ⊗ c) = (db)⊗ c+ (−1)|b|b⊗ dc.

is a cdga. The tensor product of cdgas is the sum (or coproduct) in the category
of cdgas.

2) More generally, let f : A → B and g : A → C be two morphisms of cdgas.
Let B⊗AC be the quotient of B⊗C by the sub graded vector spanned by elements
of the form bf(a)⊗ c− b⊗ g(a)c, a ∈ A, b ∈ B and c ∈ C. Then B⊗A C is a cgda
such that the quotient map B ⊗ C ։ B ⊗A C is a morphism of cdgas. The cdga
B ⊗A C is the pushout of f and g in the category of cdgas:

A
f //

g

��

B

��

��

C //

,,

B ⊗A C

∃!

##
D

3) Let V andW be two graded vector spaces. We denote by ΛV the free graded
commutative algebra on V .

If V = Qv, i. e. is of dimension 1 and generated by a single element v, then
-ΛV is E(v) = Q⊕Qv, the exterior algebra on v if the degree of v is odd and
-ΛV is Q[v] = ⊕n∈NQv

n, the polynomial or symmetric algebra on v if the
degree of v is even.

Since Λ is left adjoint to the forgetful functor from the category of commutative
graded algebras to the category of graded vector spaces, Λ preserves sums: there
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is a natural isomorphism of commutative graded algebras Λ(V ⊕W ) ∼= ΛV ⊗ΛW .
Therefore ΛV is the tensor product E(V odd)⊗S(V even) of the exterior algebra

on the generators of odd degree and of the polynomial algebra on the generators
of even degree.

Definition 1.5. Let f : A→ B be a morphism of commutative graded algebras.
Let d : A→ B be a linear map of degree k. By definition, d is a (f, f)-derivation
if for a and b ∈ A

d(ab) = (da)f(b) + (−1)k|a|f(a)(db).

Property 1.6 (Universal properties). 1) Let iB : B →֒ B ⊗ ΛV , b 7→ b ⊗ 1 and
iV : V →֒ B ⊗ ΛV , v 7→ 1 ⊗ v be the inclusion maps. Let ϕ : B → C be a
morphism of commutative graded algebras. Let f : V → C be a morphism of
graded vector spaces. Then ϕ and f extend uniquely to a morphism B⊗ΛV → C
of commutative graded algebras such that the following diagram commutes

B
ϕ //

iB ##H
HH

HH
HH

HH
C V

foo

iV{{vv
vv
vv
vv
v

B ⊗ ΛV

∃!

OO

2) Let dB : B → B be a derivation of degree k. Let dV : V → B ⊗ ΛV be a
linear map of degree k. Then there is a unique derivation d such that the following
diagram commutes.

B
iB // B ⊗ ΛV V

dVoo

iV{{vv
vv
vv
vv
v

B
iB //

dB

OO

B ⊗ ΛV

∃!d

OO

3) Let f : ΛV → B be a morphism of commutative graded algebras. Let
dV : V → B be a linear map of degree k. Then there exists a unique (f, f)-
derivation d extending dV :

V
dV //

iV

��

B

ΛV

∃!d

==

Proof. 1) Since ΛV is the free commutative graded algebra on V , f can be ex-
tended to a morphism of graded algebras ΛV → C. Since the tensor product of
commutative graded algebras is the sum in the category of commutative graded
algebras, we obtain a morphism of commutative graded algebras from B ⊗ΛV to
C.

2) Since b⊗ v1 . . . vn is the product (b⊗ 1)(1⊗ v1) . . . (1⊗ vn), d(b⊗ v1 . . . vn)
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is given by

dB(b)⊗ v1 . . . vn +

n
∑

i=1

(−1)k(|b|+|v1|+···+|vi−1|)(b⊗ v1 . . . vi−1)(dV vi)(1⊗ vi+1 . . . vn)

3) Similarly, d(v1 . . . vn) is given by

n
∑

i=1

(−1)k(|v1|+···+|vi−1|)f(v1) . . . f(vi−1)dV (vi)f(vi+1) . . . f(vn)

1.2 Sullivan models of spheres

Sullivan models of odd spheres S2n+1, n ≥ 0.
Consider a cdga A(S2n+1) whose cohomology is isomorphic as graded algebras

to the cohomology of S2n+1 with coefficients in k:

H∗(A(S2n+1)) ∼= H∗(S2n+1).

When k is R, you can think of A as the De Rham algebra of forms on S2n+1.
There exists a cycle v of degree 2n+ 1 in A(S2n+1) such that

H∗(A(S2n+1)) = Λ[v].

The inclusion of complexes (kv, 0) →֒ A(S2n+1) extends to a unique morphism of
cdgas m : (Λv, 0)→ A(S2n+1)(Property 1.6):

(kv, 0) //

��

A(S2n+1)

(Λv, 0)

∃!m

99

The induced morphism in homology H(m) is an isomorphism. We say that m :

(Λv, 0)
≃
→ A(S2n+1) is a Sullivan model of S2n+1

Sullivan models of even spheres S2n, n ≥ 1.
Exactly as above, we construct a morphism of cdga m1 : (Λv, 0) → A(S2n).

But now, H(m1) is not an isomorphism:
H(m1)(v) = [v]. Therefore H(m1)(v

2) = [v2] = [v]2 = 0. Since [v2] = 0
in H∗(A(S2n)), there exists an element ψ ∈ A(S2n) of degree 4n − 1 such that
dψ = v2.

Let w denote another element of degree 4n − 1. The morphism of graded
vector spaces kv ⊕ kw →֒ A(S2n), mapping v to v and w to ψ extends to a
unique morphism of commutative graded algebras m : Λ(v, w) → A(S2n) (1) of
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Property 1.6):

kv ⊕ kw //

��

A(S2n)

Λ(v, w)

∃!m

99

The linear map of degree +1, dV : V := kv⊕kw → Λ(v, w) mapping v to 0 and
w to v2 extends to a unique derivation d : Λ(v, w)→ Λ(v, w) (2) of Property 1.6).

kv ⊕ kw
dV //

��

Λ(v, w)

Λ(v, w)

∃!d

99

Since d is a derivation of odd degree, d ◦ d (which is equal to 1/2[d, d]) is again a
derivation. The following diagram commutes

V
dV //

��

ΛV
d // ΛV

ΛV

d◦d

66lllllllllllllll

d

<<yyyyyyyy

Since the composite d ◦ dV is null, by unicity (2) of Property 1.6), the derivation
d ◦ d is also null. Therefore (ΛV, d) is a cdga. This is the general method to check
that d ◦ d = 0.

Denote by dA the differential on A(S2n). Let’s check now that dA ◦m = m ◦ d.
Since dA and d are both (id, id)-derivations, dA ◦m and m ◦ d are both (m,m)-
derivations.

Since dA(m(v)) = dA(v) = 0 = m(0) = m(d(v)) and dA(m(w)) = dA(ψ) =
v2 = m(v2) = m(d(w)), dA ◦ m and m ◦ d coincide on V . Therefore by unicity
(3) of Property 1.6), dA ◦m = m ◦ d. Again, this method is general. So finally,
we have proved that m is a morphism of cdgas. Now we prove that H(m) is an
isomorphism, by checking that H(m) sends a basis to a basis.

2 Sullivan models

2.1 Definitions

Let V be a graded vector space. Denote by V + = V ≥1 the sub graded vector
space of V formed by the elements of V of positive degrees: V = V 0 ⊕ V +.

Definition 2.1. A relative Sullivan model (or cofibration in the category of cdgas)
is a morphism of cdgas of the form

(B, dB) →֒ (B ⊗ ΛV, d), b 7→ b⊗ 1
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where
• H0(B) ∼= k,
• V = V ≥1,
• and V is the direct sum of graded vector spaces V (k):

∀n, V n =
⊕

k∈N

V (k)n

such that d : V (0)→ B⊗k and d : V (k)→ B⊗Λ(V (< k)). Here V (< k) denotes
the direct sum V (0)⊕ · · · ⊕ V (k − 1).

Let k ∈ N. Denote by ΛkV the sub graded vector space of ΛV generated by
elements of the form v1 ∧ · · · ∧ vk, vi ∈ V . Elements of ΛkV have by definition
wordlength k. For example ΛV = k⊕ V ⊕ Λ≥2V .

Definition 2.2. A relative Sullivan model (B, dB) →֒ (B ⊗ ΛV, d) is minimal if
d : V → B+⊗ΛV +B⊗Λ≥2V . A (minimal) Sullivan model is a (minimal) relative
Sullivan model of the form (B, dB) = (k, 0) →֒ (ΛV, d).

Example 2.3. [5, end of the proof of Lemma 23.1] Let (ΛV, d) be cdga such that
V = V ≥2. Then (ΛV, d) is a Sullivan model.

proof assuming the minimality condition. [5, p. 144] Suppose that d : V →
Λ≥2V . In this case, the V (k) are easy to define: let V (k) := V k for k ∈ N .
Let v ∈ V k. By the minimality condition, dv is equal to a sum

∑

i xiyi where the
non trivial elements xi and yi are both of positive length and therefore both of
degre ≥ 2. Since |xi|+ |yi| = |dv| = k + 1, both xi and yi are of degree less than
k. Therefore dv belongs to Λ(V <k) = Λ(V (< k)).

Property 2.4. The composite of relative Sullivan models is again a Sullivan
relative model.

Definition 2.5. Let C be a cdga. A (minimal) Sullivan model of C is a (mini-
mal) Sullivan model (ΛV, d) such that there exists a quasi-isomorphism of cdgas

(ΛV, d)
≃
→ C.

Let ϕ : B → C be a morphism of cdgas. A (minimal) relative Sullivan model
of ϕ is a (minimal) relative Sullivan model (B, dB) →֒ (B ⊗ ΛV, d) such that
ϕ can be decomposed as the composite of the relative Sullivan model and of a
quasi-isomorphism of cdgas:

B
ϕ //

##H
HH

HH
HH

HH
C

B ⊗ ΛV

≃

OO

Theorem 2.6. Any morphism ϕ : B → C of cdgas admits a minimal relative
Sullivan model if H0(B) ∼= k, H0(ϕ) is an isomorphism and H1(ϕ) is injective.
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This theorem is proved in general by Proposition 14.3 and Theorem 14.9 of [5].
But in practice, if H1(ϕ) is an isomorphism, we construct a minimal relative
Sullivan model, by induction on degrees as in Proposition 12.2. of [5].

2.2 An example of relative Sullivan model

Consider the minimal Sullivan model of an odd sphere found in section 1.2

(Λv, 0)
≃
→ A(S2n+1).

Assume that n ≥ 1. Consider the multiplication of Λv: the morphism of cdgas

µ : (Λv1, 0)⊗ (Λv2, 0)→ (Λv, 0), v1 7→ v, v2 7→ v.

Recall that v, v1 and v2 are of degree 2n+ 1.
Denote by sv an element of degree |sv| = |s| + |v| = −1 + |v|. The operator s of
degre −1 is called the suspension.

We construct now a minimal relative Sullivan model of µ. Define d(sv) =
v2 − v1. Let m : Λ(v1, v2, sv), d → (Λv, 0) be the unique morphism of cdgas
extending µ such that m(sv) = 0.

(Λv1, 0)⊗ (Λv2, 0)
µ //

))RRR
RR

RR
RR

RR
RR

R
(Λv, 0)

Λ(v1, v2, sv, d)

m

OO

Definition 2.7. Let A be a differential graded algebra such that A0 = k. The
complex of indecomposables of A, denoted Q(A), is the quotient A+/µ(A+⊗A+).

The complex of indecomposables of (Λv, 0), Q((Λv, 0)), is (kv, 0) while

Q(Λ(v1, v2, sv, d)) = (kv1 ⊕ kv2 ⊕ ksv, d(sv) = v2 − v1).

The morphism of complexes Q(m) : (kv1 ⊕ kv2 ⊕ ksv, d(sv) = v2 − v1)→ (kv, 0)
map v1 to v, v2 to v and sv to 0. It is easy to check that Q(m) is a quasi-
isomorphism of complexes.

By Proposition 14.13 of [5], since m is a morphism of cdgas between Sullivan
model, Q(m) is a quasi-isomorphim of if and only if m is a quasi-isomorphism.

So we have proved that m is a quasi-isomorphism and therefore

(Λv1, 0)⊗ (Λv2, 0) →֒ Λ(v1, v2, sv, d)

is a minimal relative Sullivan model of µ. Consider the following commutative
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diagram of cdgas where the square is a pushout

Λv, 0

Λ(v1, v2), 0

µ

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

µ

��

// Λ(v1, v2, sv), d

m

≃

55kkkkkkkkkkkkkkkk

��
Λv, 0 // Λv, 0⊗Λ(v1,v2),0 Λ(v1, v2, sv), d

It is easy to check that the cdga Λv, 0 ⊗Λ(v1,v2),0 Λ(v1, v2, sv), d is isomorphic
to Λ(v, sv), 0. As we will explain later, we have computed in fact, the minimal

Sullivan model Λ(v, sv), 0 of the free loop space (S2n+1)S
1

. In particular, the

cohomology algebra H∗((S2n+1)S
1

;k) is isomorphic to Λ(v, sv). We can deduce

easily that for p ∈ N, dimHp((S2n+1)S
1

) ≤ 1. So we have shown that the sequence
of Betti numbers of the free loop space on odd dimensional spheres is bounded.

2.3 The relative Sullivan model of the multiplication

Proposition 2.8. [6, Example 2.48] Let (ΛV, d) be a relative minimal Sullivan
model with V = V ≥2 (concentrated in degrees ≥ 2). Then the multiplication
µ : (ΛV, d) ⊗ (ΛV, d) ։ (ΛV, d) admits a minimal relative Sullivan model of the
form (ΛV ⊗ ΛV ⊗ ΛsV,D).

Constructive proof. We proceed by induction on n ∈ N∗ to construct quasi-isomorphisms

of cdgas ϕn : (ΛV ≤n ⊗ ΛV ≤n ⊗ ΛsV ≤n, D)
≃
։ (ΛV ≤n, d) extending the multipli-

cation on ΛV ≤n.
Suppose that ϕn is constructed. We now define ϕn+1 extending ϕn and µ, the

multiplication on ΛV . Let v ∈ V n+1. Then d(v) ∈ Λ≥2(V ≤n) and ϕn(dv ⊗ 1 ⊗
1− 1⊗ dv⊗ 1) = 0. Since ϕn is a surjective quasi-isomorphism, by the long exact
sequence associated to a short exact sequence of complexes, Ker ϕn is acyclic.
Therefore since dv ⊗ 1 ⊗ 1 − 1 ⊗ dv ⊗ 1 is a cycle, there exists an element γ of
degree n+1 of ΛV ≤n⊗ΛV ≤n⊗ΛsV ≤n such that D(γ) = dv⊗ 1⊗ 1− 1⊗ dv⊗ 1
and ϕn(γ) = 0. For degree reasons, γ is decomposable, i. e. has wordlength ≥ 2.
We define D(1 ⊗ 1 ⊗ sv) = v ⊗ 1 ⊗ 1 − 1 ⊗ v ⊗ 1 − γ and ϕn+1(1 ⊗ 1 ⊗ sv) = 0.
Since D ◦D(1 ⊗ 1 ⊗ sv) = 0 and d ◦ ϕn+1(1 ⊗ 1 ⊗ sv) = ϕn+1 ◦ d(1 ⊗ 1 ⊗ sv), by
Property 1.6, the derivation D is a differential on ΛV ≤n+1⊗ΛV ≤n+1⊗ΛsV ≤n+1

and the morphism of graded algebras ϕn+1 is a morphism of complexes.
The complex of indecomposables of (ΛV ≤n+1 ⊗ ΛV ≤n+1 ⊗ ΛsV ≤n+1, D),

Q((ΛV ≤n+1 ⊗ ΛV ≤n+1 ⊗ ΛsV ≤n+1, D)

is (V ≤n+1 ⊕ V ≤n+1 ⊕ sV ≤n+1, d) with differential d given by d(v′ ⊕ v” ⊕ sv) =
v⊕−v⊕ 0 for v′, v” and v ∈ V ≤n+1. Therefore it is easy to check that Q(ϕn+1) is
a quasi-isomorphism. So by Proposition 14.13 of [5], ϕn+1 is a quasi-isomorphism.
Since γ is of degree n+ 1 and sV ≤n is of degree < n, this relative Sullivan model



Rational homotopy – Sullivan models 9

is minimal. We now define ϕ : (ΛV ⊗ ΛV ⊗ ΛsV,D) ։ (ΛV, d) as

lim
−→

ϕn =
⋃

n∈N

ϕn :
⋃

n∈N

(

ΛV ≤n ⊗ ΛV ≤n ⊗ ΛsV ≤n
)

→
⋃

n∈N

ΛV ≤n.

Since homology commutes with direct limits in the category of complexes [14,
Chap 4, Sect 2, Theorem 7], H(ϕ) = lim

−→
H(ϕn) is an isomorphism.

3 Rational homotopy theory

Let X be a topological space. Denote by S∗(X) the singular cochains of X with
coefficients in k. The dga S∗(X) is almost never commutative. Nevertheless,
Sullivan, inspired by Quillen proved the following theorem.

Theorem 3.1. [5, Corollary 10.10] For any topological space X, there exists two
natural quasi-isomorphisms of dgas

S∗(X)
≃
→ D(X)

≃
← APL(X)

where APL(X) is commutative.

Remark 3.2. This cdga APL(X) is called the algebra of polynomial differential
forms. If k = R and X is a smooth manifold M , you can think that APL(M) is
the De Rham algebra of differential forms on M , ADR(M) [5, Theorem 11.4].

Definition 3.3. [6, Definition 2.34] Two topological spaces X and Y have the
same rational homotopy type if there exists a finite sequence of continuous appli-
cations

X
f0
→ Y1

f1
← Y2 . . . Yn−1

fn−1
← Yn

fn
→ Y

such that the induced maps in rational cohomology

H∗(X ;Q)
H∗(f0)
← H∗(Y1;Q)

H∗(f1)
→ H∗(Y2;Q) . . .H∗(Yn−11;Q)

H∗(fn−1)
→ H∗(Yn;Q)

H∗(fn)
← H∗(Y ;Q)

are all isomorphisms.

Theorem 3.4. Let X be a path connected topological space.
1) (Unicity of minimal Sullivan models [5, Corollary p. 191]) Two minimal

Sullivan models of APL(X) are isomorphic.
2) Suppose that X is simply connected and ∀n ∈ N, Hn(X ;k) is finite dimen-

sional. Let (ΛV, d) be a minimal Sullivan model of X. Then [5, Theorem 15.11]
for all n ∈ N, V n is isomorphic to Homk(πn(X)⊗Z k,k) ∼= HomZ(πn(X),k). In
particular [5, Remark 1 p.208], Dimension V n = Dimension πn(X)⊗Z k <∞.

Remark 3.5. The isomorphim of graded vector spaces between V and Homk(π∗(X)⊗Z

k,k) is natural in some sense [6, p. 75-6] with respect to maps f : X → Y . The
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isomorphism behaves well also with respect to the long exact sequence associated
to a (Serre) fibration ([5, Proposition 15.13] or [6, Proposition 2.65]).

Theorem 3.6. [6, Proposition 2.35][5, p. 139] Let X and Y be two simply con-
nected topological spaces such that Hn(X ;Q) and Hn(Y ;Q) are finite dimensional
for all n ∈ N. Let (ΛV, d) be a minimal Sullivan model of X and let (ΛW,d) be
a minimal Sullivan model of Y . Then X and Y have the same rational homotopy
type if and only if (ΛV, d) is isomorphic to (ΛW,d) as cdgas.

4 Sullivan model of a pullback

4.1 Sullivan model of a product

Let X and Y be two topological spaces. Let p1 : X×Y ։ Y and p2 : X×Y ։ X
be the projection maps. Let m be the unique morphism of cdgas given by the
universal property of the tensor product (Example 1.4 1))

APL(Y )

�� APL(p2)

��

APL(X) //

APL(p1) --

APL(X)⊗APL(Y )

∃!m

))
APL(X × Y ).

Assume that H∗(X ;k) or H∗(Y ;k) is finite dimensional in all degrees. Then [5,

Example 2, p. 142-3] m is a quasi-isomorphism. Let mX : ΛV
≃
→ APL(X) be a

Sullivan model of X . Let mY : ΛW
≃
→ APL(Y ) be a Sullivan model of Y . Then

by Künneth theorem, the composite

ΛV ⊗ ΛW
mX⊗mY→ APL(X)⊗APL(Y )

m
→ APL(X × Y )

is a quasi-isomorphism of cdgas. Therefore we have proved that “the Sullivan
model of a product is the tensor product of the Sullivan models”.

4.2 the model of the diagonal

Let X be a topological space such that H∗(X) is finite dimensional in all degrees.
Denote by ∆ : X → X × X , x 7→ (x, x) the diagonal map of X . Using the
previous paragraph, since APL(p1 ◦∆) = APL(p2 ◦∆) = APL(id) = id, we have
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the commutative diagram of cdgas.

APL(X) //

APL(p1) ((QQ
QQ

QQ
QQ

QQ
QQ

id

,,

APL(X)⊗APL(X)

m≃

��

APL(X)oo

APL(p2)vvmmm
mm
mm
mm
mm
m

id

rr

APL(X ×X)

APL(∆)

��
APL(X)

Therefore the composite APL(X) ⊗ APL(X)
m
→ APL(X × X)

APL(∆)
→ APL(X)

coincides with the multiplication µ : APL(X) ⊗ APL(X) → APL(X). Therefore
the following diagram of cdgas commutes

APL(X) APL(X ×X)
APL(∆)oo

APL(X)⊗APL(X)

µ
hhQQQQQQQQQQQQ

m≃

OO

ΛV

mX ≃

OO

ΛV ⊗ ΛV
µ

oo

mX⊗mX≃

OO

Here mX : ΛV
≃
→ APL(X) denotes a Sullivan model of X . Therefore we have

proved that “the morphism modelling the diagonal map is the multiplication of
the Sullivan model”.

4.3 Sullivan model of a fibre product

Consider a pullback square in the category of topological spaces

P
g //

q

��

E

p

��
X

f // B

where
• p : E → B is a (Serre) fibration between two topological spaces,
• for every i ∈ N, Hi(X) and Hi(B) are finite dimensional,
• the topological spacesX andE are path-connected andB is simply-connected.

Since p is a (Serre) fibration, the pullback map q is also a (Serre) fibration. Let
APL(B) ⊗ ΛV be a relative Sullivan model of A(p). Consider the corresponding
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commutative diagram of cdgas

APL(B)
APL(f) //

��

APL(p)





APL(X)

��

APL(q)

��

APL(B)⊗ ΛV //

m

≃
wwooo

oo
oo
oo
oo

APL(X)⊗APL(B) APL(B)⊗ ΛV

∃!m′

**
APL(E)

APL(g) // APL(P )

where the rectangle is a pushout and m′ is given by the universal property. Explic-
itly, for x ∈ APL(X) and e ∈ APL(B)⊗ΛV , m′(x⊗e) is the product of APL(q)(x)
and APL(g) ◦m(e).

Since APL(B) →֒ APL(B)⊗ ΛV is a relative Sullivan model, the inclusion ob-
tained via pullback APL(X) →֒ APL(X)⊗APL(B) (APL(B)⊗ΛV, d) ∼= (APL(X)⊗
ΛV, d) is also a relative Sullivan model (minimal if APL(B) →֒ APL(B) ⊗ ΛV is
minimal).

By [5, Proposition 15.8] (or for weaker hypothesis [6, Theorem 2.70]),

Theorem 4.1. The morphism of cdgas m′ is a quasi-isomorphism.

We can summarize this theorem by saying that: “The push-out of a (minimal)
relative Sullivan model of a fibration is a (minimal) relative Sullivan model of the
pullback of the fibration.”

Idea of the proof. Since by [5, Lemma 14.1], APL(B) ⊗ ΛV is a “semi-free” reso-
lution of APL(E) as left APL(B)-modules, by definition of the differential torsion
product,

TorAPL(B)(APL(X), APL(E)) := H(APL(X)⊗APL(B) (APL(B)⊗ ΛV ).

By Theorem 3.1 and naturality, we have an isomorphim of graded vector spaces

TorAPL(B)(APL(X), APL(E)) ∼= TorS
∗(B)(S∗(X), S∗(E)).

The Eilenberg-Moore formula gives an isomorphism of graded vector spaces

TorS
∗(B)(S∗(X), S∗(E)) ∼= H∗(P ).

We claimed that the resulting isomorphism between the homology ofAPL(X)⊗APL(B)

(APL(B)⊗ΛV ) and H∗(P ) can be identified with H(m). Therefore m is a quasi-
isomorphism.

Instead of working with APL, we prefer usually to work at the level of Sullivan

models. Let mB : ΛB
≃
→ APL(B) be a Sullivan model of B. Let mX : ΛX

≃
→

APL(X) be a Sullivan model ofX . Let ϕ be a morphism of cdgas such the following
diagram commutes exactly
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APL(B)
APL(f)// APL(X)

ΛB
ϕ //

mB ≃

OO

ΛX

mX ≃

OO

Let ΛB →֒ ΛB ⊗ ΛV be a relative Sullivan model of APL(p) ◦mB. Consider the
corresponding commutative diagram of cdgas

APL(B)

APL(p)

��

ΛB
ϕ //

��

mB

≃
oo ΛX

��

mX

≃
// APL(X)

APL(q)

��

ΛB ⊗ ΛV //

m

≃
xxrrr

rr
rr
rr
rr

ΛX ⊗ΛB (ΛB ⊗ ΛV )

∃!m′

((
APL(E)

APL(g) // APL(P )

(1)

where the rectangle is a pushout and m′ is given by the universal property. Then
again, ΛX →֒ ΛX ⊗ΛB (ΛB ⊗ΛV ) is a relative Sullivan model and the morphism
of cdgas m′ is a quasi-isomorphism.

The reader should skip the following remark on his first reading.

Remark 4.2. 1) In the previous proof, if the composites mX ◦ ϕ and APL(f) ◦
mB are not strictly equal then the map m′ is not well defined. In general, the
composites mX ◦ϕ and APL(f)◦mB are only homotopic and the situation is more
complicated: see part 2) of this remark.

2) Let mB : ΛB
≃
→ APL(B) be a Sullivan model of B. Let m′

X : ΛX ′ ≃
→

APL(X) be a Sullivan model of X . By the lifting Lemma of Sullivan models [5,
Proposition 14.6], there exists a morphism of cdgas ϕ′ : ΛB → ΛX ′ such that the
following diagram commutes only up to homotopy (in the sense of [6, Section 2.2])

APL(B)
APL(f)// APL(X)

ΛB
ϕ′

//

mB ≃

OO

ΛX ′.

m′

X ≃

OO

In general, this square is not strictly commutative. Let ΛB →֒ ΛB ⊗ ΛV be a
relative Sullivan model of APL(p)◦mB. Then there exists a commutative diagram
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of cdgas

APL(X)
APL(q) // APL(P )

ΛX //

≃

OO

≃

��

ΛX ⊗ΛB (ΛB ⊗ ΛV )

≃

OO

≃

��
ΛX ′ // ΛX ′ ⊗ΛB (ΛB ⊗ ΛV )

Proof of part 2) of Remark 4.2. Let ΛB
ϕ
→֒ ΛX

θ
→ ΛX ′ be a relative Sullivan

model of ϕ′. Since the composites m′
X ◦ θ ◦ ϕ and APL(f) ◦mB are homotopic,

by the homotopy extension property [6, Proposition 2.22] of the relative Sullivan
model ϕ : ΛB →֒ ΛX , there exists a morphism of cdgas mX : ΛX → APL(X)
homotopic tom′

X◦θ such thatmX◦ϕ = APL(f)◦mB. Therefore using diagram (1),
we obtain the following commutative diagram of cdgas:

APL(X)
APL(q) // APL(P ) APL(E)

APL(g)oo

ΛX //

≃ mX

OO

≃ θ

��

ΛX ⊗ΛB (ΛB ⊗ ΛV )

≃ m′

OO

≃ θ⊗ΛB(ΛB⊗ΛV )

��

ΛB ⊗ ΛV

≃ m

OO

oo

ΛX ′ // ΛX ′ ⊗ΛB (ΛB ⊗ ΛV ).

Here, since θ is a quasi-isomorphism, the pushout morphism θ⊗ΛB(ΛB⊗ΛV ) along
the relative Sullivan model ΛX →֒ ΛX⊗ΛB (ΛB⊗ΛV ) is also a quasi-isomorphism
[5, Lemma 14.2].

4.4 Sullivan model of a fibration

Let p : E → B be a (Serre) fibration with fibre F := p−1(b0).

F
j //

��

E

p

��
b0 // B

Taking X to be the point b0, we can apply the results of the previous section. Let

mB : (ΛV, d)
≃
→ APL(B) be a Sullivan model of B. Let (ΛV, d) →֒ (ΛV ⊗ ΛW,d)

be a relative Sullivan model of APL(p) ◦mB.
Since APL({b0}) is equal to (k, 0), there is a unique morphism of cdgasm′ such

that the following diagram commutes
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APL(B)
APL(p) // APL(E)

APL(j) // APL(F )

(ΛV, d) //

mB≃

OO

(ΛV ⊗ ΛW,d) //

≃

OO

(k, 0)⊗(ΛV,d) (ΛV ⊗ ΛW,d)

m′

OO

Suppose that the base B is a simply connected space and that the total space E
is path-connected. Then by the previous section, the morphism of cdga’s

m′ : (k, 0)⊗(ΛV,d) (ΛV ⊗ ΛW,d) ∼= (ΛW, d̄)
≃
−→ APL(F )

is a quasi-isomorphism:
“ The cofiber of a relative Sullivan model of a fibration is a Sullivan model of

the fiber of the fibration.”
Note that the cofiber of a relative Sullivan model is minimal if and only if the

relative Sullivan model is minimal.

4.5 Sullivan model of free loop spaces

Let X be a simply-connected space. Consider the commutative diagram of spaces

XS1 //

ev

��

XI

(ev0,ev1)

��

X

∆{{xx
xx
xx
xx
x≈

σoo

X
∆

// X ×X

where the square is a pullback. Here I denotes the closed interval [0, 1], ev, ev0,

ev1 are the evaluation maps and the homotopy equivalence σ : X
≈
→ XI is the

inclusion of constant paths. Let mX : ΛV
≃
→ APL(X) be a minimal Sullivan

model of X . By Proposition 2.8, the multiplication µ : ΛV ⊗ ΛV → ΛV admits a
minimal relative Sullivan model of the form

ΛV ⊗ ΛV →֒ ΛV ⊗ ΛV ⊗ ΛsV.

Since µ is a model of the diagonal (Section 4.2) and since ∆ = (ev0, ev1) ◦ σ, we
have the commutative rectangle of cdgas

APL(X ×X)
APL((ev0,ev1)) // APL(X

I)
APL(σ) // APL(X)

ΛV ⊗ ΛV

mX×X ≃

OO

// ΛV ⊗ ΛV ⊗ ΛsV
≃

// ΛV

mX≃

OO

Since σ is a homotopy equivalence, S∗(σ) is a homotopy equivalence of complexes
and in particular a quasi-isomorphim. So by Theorem 3.1 and naturality, APL(σ)
is also a quasi-isomorphism. Therefore, by the lifting property of relative Sullivan
models [5, Proposition 14.6], there exists a morphism of cdgas ϕ : ΛV ⊗ ΛV ⊗
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ΛsV → APL(X
I) such that, in the diagram of cdgas

APL(X ×X)
APL((ev0,ev1))// APL(X

I)
APL(σ)

≃
// APL(X)

ΛV ⊗ ΛV

mX×X ≃

OO

// ΛV ⊗ ΛV ⊗ ΛsV
≃

//

ϕ ≃

OO

ΛV

mX≃

OO

the left square commutes exactly and the right square commutes in homology.
Therefore ϕ is also a quasi-isomorphism. This means that

ΛV ⊗ ΛV →֒ ΛV ⊗ ΛV ⊗ ΛsV.

is a relative Sullivan model of the composite

ΛV ⊗ ΛV
mX×X

→ APL(X ×X)
APL((ev0,ev1))
−→ APL(X

I).

Here diagram (1) specializes to the following commutative diagram of cdgas

ΛV ⊗ ΛV
µ //

��

ΛV

��

mX

≃
// APL(X)

APL(ev)

��

ΛV ⊗ ΛV ⊗ ΛsV //

ϕ

≃wwooo
oo
oo
oo
oo
o

ΛV ⊗ΛV⊗ΛV ΛV ⊗ ΛV ⊗ ΛsV

≃
))TTT

TT
TTT

TTT
TTT

TT

A(XI) // A(XS1

)

(2)
where the rectangle is a pushout. Therefore

ΛV →֒ ΛV ⊗ΛV⊗ΛV (ΛV ⊗ ΛV ⊗ ΛsV ) ∼= (ΛV ⊗ ΛsV, δ)

is a minimal relative Sullivan model of APL(ev) ◦mX .

Corollary 4.3. Let X be a simply-connected space. Then the free loop space coho-
mology of H∗(XS1

;k) with coefficients in a field k of characteristic 0 is isomorphic
to the Hochschild homology of APL(X), HH∗(APL(X), APL(X)).

Replacing APL(X) by ADR(M) (Remark 3.2), this Corollary is a theorem of
Chen [3, 3.2.3 Theorem] when X is a smooth manifold M .

Proof. The quasi-isomorphism of cdgas mX : ΛV
≃
→ APL(X) induces an isomor-

phism between Hochschild homologies

HH∗(mX ,mX) : HH∗(ΛV,ΛV )
∼=
→ HH∗(APL(X), APL(X)).

By [5, Lemma 14.1], ΛV ⊗ΛV ⊗ΛsV is a semi-free resolution of ΛV as a ΛV ⊗ΛV op-
module. Therefore the Hochschild homology HH∗(ΛV,ΛV ) can be defined as the
homology of the cdga (ΛV ⊗ΛsV, δ). We have just seen above that H(ΛV ⊗ΛsV, δ)

is isomorphic to the free loop space cohomology H∗(XS1

;k).
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We have shown that a Sullivan model of XS1

is of the form (ΛV ⊗ΛsV, δ). The
following theorem of Vigué-Poirrier and Sullivan gives a precise description of the
differential δ.

Theorem 4.4. ([17, Theorem p. 637] or [6, Theorem 5.11]) Let X be a simply
connected topological space. Let (ΛV, d) be a minimal Sullivan model of X. For all
v ∈ V , denote by sv an element of degree |v| − 1. Let s : ΛV ⊗ΛsV → ΛV ⊗ΛsV
be the unique derivation of (upper) degree −1 such that on the generators v, sv,
v ∈ V , s(v) = sv and s(sv) = 0. We have s ◦ s = 0. Then there exists a unique

Sullivan model of XS1

of the form (ΛV ⊗ ΛsV, δ) such that δ ◦ s + s ◦ δ = 0 on
ΛV ⊗ ΛsV .

Remark 4.5. Consider the free loop fibration ΩX →֒ XS1 ev
։ X . Since (ΛV, d) →֒

(ΛV ⊗ΛsV, δ) is a minimal relative Sullivan model of APL(ev)◦mX , by Section 4.4,

k⊗(ΛV,d) (ΛV ⊗ ΛsV, δ) ∼= (ΛsV, δ̄)

is a minimal Sullivan model of ΩX . Let v ∈ V . By Theorem 4.4, δ(sv) = −sδv =
−sdv. Since dv ∈ Λ≥2V , δ(sv) ∈ Λ≥1V ⊗ Λ1sV . Therefore δ̄ = 0. Since ΩX is
a H-space, this follows also from Theorem 5.3 and from the unicity of minimal
Sullivan models (part 1) of Theorem 3.4).

5 Examples of Sullivan models

5.1 Sullivan model of spaces with polynomial cohomology

The following proposition is a straightforward generalisation [5, p. 144] of the
Sullivan model of odd-dimensional spheres (see section 1.2).

Proposition 5.1. Let X be a path connected topological space such that its coho-
mology H∗(X ;k) is a free graded commutative algebra ΛV (for example, polyno-
mial). Then a Sullivan model of X is (ΛV, 0).

Example 5.2. Odd-dimensional spheres S2n+1, complex or quartenionic Stiefel
manifolds [6, Example 2.40] Vk(C

n) or Vk(H
n), classifying spaces BG of simply

connected Lie groups [6, Example 2.42], connected Lie groups G as we will see in
the following section.

5.2 Sullivan model of an H-space

An H-space is a pointed topological space (G, e) equipped with a pointed contin-
uous map µ : (G, e)× (G, e)→ (G, e) such that the two pointed maps g 7→ µ(e, g)
and g 7→ µ(g, e) are pointed homotopic to the identity map of (G, e).



18 Luc Menichi

Theorem 5.3. [5, Example 3 p. 143] Let G be a path connected H-space such
that ∀n ∈ N, Hn(G;k) is finite dimensional. Then

1) its cohomology H∗(G;k) is a free graded commutative algebra ΛV ,
2) G has a Sullivan model of the form (ΛV, 0), that is with zero differential.

Proof. 1) Let A be H∗(G;k) the cohomology of G. By hypothesis, A is a con-
nected commutative graded Hopf algebra (not necessarily associative). Now the
theorem of Hopf-Borel in caracteristic 0 [4, VII.10.16] says that A is a free graded
commutative algebra.

2) By Proposition 5.1, 1) and 2) are equivalent.

Example 5.4. Let G be a path-connected Lie group (or more generally a H-space
with finitely generated integral homology). Then G has a Sullivan model of the
form (ΛV, 0). By Theorem 3.4, V n and πn(G) ⊗Z k have the same dimension
for any n ∈ N. Since H∗(G;k) is of finite (total) dimension, V and therefore
π∗(G) ⊗Z k are concentrated in odd degrees. In fact, more generally [2, Theorem
6.11], π2(G) = {0}. Note, however that π4(S

3) = Z/2Z 6= {0}.

5.3 Sullivan model of projective spaces

Consider the complex projective space CPn, n ≥ 1. The construction of the
Sullivan model of CP

n is similar to the construction of the Sullivan model of
S2 = CP

1 done in section 1.2:
The cohomology algebra H∗(APL(CP

n)) ∼= H∗(CPn) is the truncated poly-

nomial algebra k[x]
xn+1=0 where x is an element of degree 2. Let v be a cycle of

APL(CP
n) representing x := [v]. The inclusion of complexes (kv, 0) →֒ APL(CP

n)
extends to a unique morphism of cdgas m : (Λv, 0) → APL(CP

n)(Property 1.6).
Since [vn+1] = xn+1 = 0, there exists an element ψ ∈ APL(CP

n) of degree 2n+ 1
such that dψ = vn+1. Let w denote another element of degree 2n + 1. Let d be
the unique derivation of Λ(v, w) such that d(v) = 0 and d(w) = vn+1. The unique
morphism of graded algebras m : (Λ(v, w), d) → APL(CP

n) such that m(v) = v
and m(w) = ψ, is a morphism of cdgas. In homology, H(m) sends 1, [v], . . . , [vn]
to 1, x, . . . , xn. Therefore m is a quasi-isomorphism.

More generally, let X be a simply connected space such that H∗(X) is a trun-

cated polynomial algebra k[x]
xn+1=0 where n ≥ 1 and x is an element of even degree

d ≥ 2. Then the Sullivan model of X is (Λ(v, w), d) where v is an element of degree
d, w is an element of degree d(n+ 1)− 1, d(v) = 0 and d(w) = vn+1.

5.4 Free loop space cohomology for even-dimensional

spheres and projective spaces

In this section, we compute the free loop space cohomology of any simply connected

space X whose cohomology is a truncated polynomial algebra k[x]
xn+1=0 where n ≥ 1

and x is an element of even degree d ≥ 2.
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Mainly, this is the even-dimensional sphere Sd (n = 1), the complex projective
space CPn (d = 2), the quaternionic projective space HP

n (d = 4) and the Cayley
plane OP

2 (n = 2 and d = 8).
In the previous section, we have seen that the minimal Sullivan model of X is

(Λ(v, w), d(v) = 0, d(w) = vn+1) where v is an element of degree d and w is an
element of degree d(n + 1)− 1. By the constructive proof of Proposition 2.8, the
multiplication µ of this minimal Sullivan model (Λ(v, w), d) admits the relative
Sullivan model (Λ(v, w)⊗ Λ(v, w) ⊗ Λ(sv, sw), D) where

D(1⊗ 1⊗ sv) = v ⊗ 1⊗ 1− 1⊗ v ⊗ 1 and

D(1⊗ 1⊗ sw) = w ⊗ 1⊗ 1− 1⊗ w ⊗ 1−

n
∑

i=0

vi ⊗ vn−i ⊗ sv.

Therefore, by taking the pushout along µ of this relative Sullivan model (di-
agram (2)), or simply by applying Theorem 4.4, a relative Sullivan model of
APL(ev) ◦mX is given by the inclusion of cdgas (Λ(v, w), d) →֒ (Λ(v, w, sv, sw), δ)
where δ(sv) = −sd(v) = 0 and δ(sw) = −s(vn+1) = −(n+ 1)vnsv. Consider the
pushout square of cdgas

(Λ(v, w), d) //

θ≃

��

(Λ(v, w, sv, sw), δ)

≃ θ⊗Λ(v,w)Λ(sv,sw)
��

( k[v]
vn+1=0 , 0)

//
(

k[v]
vn+1=0 ⊗ Λ(sv, sw), δ̄

)

.

Here, since θ is a quasi-isomorphism, the pushout morphism θ ⊗Λ(v,w) Λ(sv, sw)
along the relative Sullivan model Λ(v, w) →֒ Λ(v, w, sv, sw) is also a quasi-isomorphism [5,

Lemma 14.2]. Therefore, H∗(XS1

;k) is the graded vector space

k⊕
⊕

1≤p≤n, i∈N

kvp(sw)i ⊕
⊕

0≤p≤n−1, i∈N

kvpsv(sw)i.

(In [11, Section 8], the author extends these rational computations over any com-
mutative ring.) Since for all i ∈ N, the degree of v(sw)i+1 is strictly greater than
the degree of vn(sw)i, the generators 1, vp(sw)i, 1 ≤ p ≤ n, i ∈ N, have all distinct
(even) degrees. Since for all i ∈ N, the degree of sv(sw)i+1 is strictly greater than
the degree of vn−1sv(sw)i, the generators vpsv(sw)i, 0 ≤ p ≤ n − 1, i ∈ N, have

also distinct (odd) degrees. Therefore, for all p ∈ N, Dim Hp(XS1

;k) ≤ 1.
At the end of section 2.2, we have shown the same inequalities when X is an

odd-dimensional sphere, or more generally for a simply-connected space X whose
cohomology H∗(X ;k) is an exterior algebra Λx on an odd degree generator x.
Since every finite dimensional graded commutative algebra generated by a single

element x is either Λx or k[x]
xn+1=0 , we have shown the following proposition:

Proposition 5.5. Let X be a simply connected topological space such that its coho-
mology H∗(X ;k) is generated by a single element and is finite dimensional. Then

the sequence of Betti numbers of the free loop space on X, bn := dim Hn(XS1

;k)
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is bounded.

The goal of the following section will be to prove the converse of this proposi-
tion.

6 Vigué-Poirrier-Sullivan theorem on closed

geodesics

The goal of this section is to prove (See section 6.4) the following theorem due to
Vigué-Poirrier and Sullivan.

6.1 Statement of Vigué-Poirrier-Sullivan theorem and of its

generalisations

Theorem 6.1. ([17, Theorem p. 637] or [6, Proposition 5.14]) Let M be a simply
connected topological space such that the rational cohomology of M , H∗(M ;Q) is
of finite (total) dimension (in particular, vanishes in higher degrees).

If the cohomology algebra H∗(M ;Q) requires at least two generators then the

sequence of Betti numbers of the free loop space on M , bn := dim Hn(MS1

;Q) is
unbounded.

Example 6.2. (Betti numbers of (S3 × S3)S
1

over Q)
Let V and W be two graded vector spaces such ∀n ∈ N, V n and Wn are finite

dimensional. We denote by

PV (z) :=

+∞
∑

n=0

(Dim V n)zn

the sum of the Poincaré serie of V . If V is the cohomology of a spaceX , we denote
PH∗(X)(z) simply by PX(z). Note that PV ⊗W (z) is the product PV (z)PW (z). We

saw at the end of section 2.2 that H∗((S3)S
1

;Q) ∼= Λv⊗Λsv where v is an element
of degree 3. Therefore

P(S3)S1 (z) = (1 + z3)
+∞
∑

n=0

z2n =
1 + z3

1− z2
.

Since the free loops on a product is the product of the free loops

H∗((S3 × S3)S
1

) ∼= H∗((S3)S
1

)⊗H∗((S3)S
1

).
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Therefore, since
1

1− z2
=

+∞
∑

n=0

(n+ 1)z2n,

P(S3×S3)S1 (z) =

(

1 + z3

1− z2

)2

= 1 + 2z2 +

+∞
∑

n=3

(n− 1)zn.

So the Betti numbers overQ of the free loop space on S3×S3, bn := Dim Hn((S3×

S3)S
1

;Q) are equal to n− 1 if n ≥ 3. In particular, they are unbounded.

Conjecture 6.3. The theorem of Vigué-Poirrier and Sullivan holds replacing Q

by any field F.

Example 6.4. (Betti numbers of (S3 × S3)S
1

over F)
The calculation of Example 6.2 over Q can be extended over any field F as

follows: Since S3 is a topological group, the map ΩS3 × S3 → (S3)S
1

, sending
(w, g) to the free loop t 7→ w(t)g, is a homeomorphism. Using Serre spectral
sequence ([13, Proposition 17] or[14, Chap 9. Sect 7. Lemma 3]) or Bott-Samelson
theorem ([12, Corollary 7.3.3] or [9, Appendix 2 Theorem 1.4]), the cohomology
of the pointed loops on S3, H∗(ΩS3) is again isomorphic (as graded vector spaces
only!) to the polynomial algebra Λsv where sv is of degree 2. Therefore exactly

as over Q, H∗((S3)S
1

;F) ∼= Λv ⊗ Λsv where v is an element of degree 3. Now the
same proof as in Example 6.2 shows that the Betti numbers over F of the free loop
space on S3×S3, bn := Dim Hn((S3×S3)S

1

;F) are again equal to n− 1 if n ≥ 3.

In fact, the theorem of Vigué-Poirrier and Sullivan is completely algebraic:

Theorem 6.5. ([17] when F = Q, [7, Theorem III p. 315] over any field F) Let F
be a field. Let A be a cdga such that H<0(A) = 0, H0(A) = F and H∗(A) is of finite
(total) dimension. If the algebra H∗(A) requires at least two generators then the
sequence of dimensions of the Hochschild homology of A, bn := dim HH−n(A,A)
is unbounded.

Generalising Chen’s theorem (Corollary 4.3) over any field F, Jones theorem [10]
gives the isomorphisms of vector spaces

Hn(XS1

;F) ∼= HH−n(S
∗(X ;F), S∗(X ;F)), n ∈ Z

between the free loop space cohomology of X and the Hochschild homology of
the algebra of singular cochains on X . But since the algebra of singular cochains
S∗(X ;F) is not commutative, Conjecture 6.3 does not follow from Theorem 6.5.

6.2 A first result of Sullivan

In this section, we start by a first result of Sullivan whose simple proof illustrates
the technics used in the proof of Vigué-Poirrier-Sullivan theorem.
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Theorem 6.6. [15] Let X be a simply-connected space such that H∗(X ;Q) is
not concentrated in degree 0 and Hn(X ;Q) is null for n large enough. Then on

the contrary, Hn(XS1

;Q) 6= 0 for an infinite set of integers n.

Proof. Let (ΛV, d) be a minimal Sullivan model of X . Suppose that V is con-
centrated in even degree. Then d = 0. Therefore H∗(ΛV, d) = ΛV is either
concentrated in degree 0 or is not null for an infinite sequence of degrees. By
hypothesis, we have excluded theses two cases. Therefore dim V odd ≥ 1.

Let x1, x2, . . . , xm, y, xm+1, ..... be a basis of V ordered by degree where y
denotes the first generator of odd degree (m ≥ 0). For all 1 ≤ i ≤ m, dxi ∈ Λx<i.
But dxi is of odd degree and Λx<i is concentrated in even degre. So dxi = 0.
Since dy ∈ Λx≤m, dy is equal to a polynomial P (x1, . . . , xm) which belongs to
Λ≥2(x1, . . . , xm).

Consider (ΛV ⊗ΛsV, δ), the Sullivan model of XS1

, given by Theorem 4.4. We
have ∀1 ≤ i ≤ m, δ(sxi) = −sdxi = 0 and δ(sy) = −sdy ∈ Λ≥1(x1, . . . , xm) ⊗
Λ1(sx1, . . . , sxm). Therefore, since sx1,. . . ,sxm are all of odd degree, ∀p ≥ 0,

δ(sx1 . . . sxm(sy)p) = ±sx1 . . . sxmpδ(sy)(sy)
p−1 = 0.

For all p ≥ 0, the cocycle sx1 . . . sxm(sy)p gives a non trivial cohomology class in

H∗(XS1

;Q), since by Remark 4.5, the image of this cohomology class inH∗(ΩX ;Q) ∼=
ΛV is different from 0.

6.3 Dimension of V odd ≥ 2

In this section, we show the following proposition:

Proposition 6.7. Let X be a simply connected space such that H∗(X ;Q) is of
finite (total) dimension and requires at least two generators. Let (ΛV, d) be the
minimal Sullivan model of X. Then dim V odd ≥ 2.

Property 6.8. (Koszul complexes) Let A be a graded algebra. Let z be a central
element of even degree of A which is not a divisor of zero. Then we have a quasi-
isomorphism of dgas

(A⊗ Λsz, d)
≃
։ A/z.A a⊗ 1 7→ a, a⊗ sz 7→ 0,

where d(a⊗ 1) = 0 and d(a⊗ sz) = (−1)|a|az for all a ∈ A.

Proof of Proposition 6.7 (following (2)⇒ (3) of p. 214 of [6]). As we saw in the
proof of Theorem 6.6, there is at least one generator y of odd degree, that is
dim V odd ≥ 1. Suppose that there is only one. Let x1, x2, . . . , xm, y, xm+1,. . . be
a basis of V ordered by degree (m ≥ 0).

First case: dy = 0. If m ≥ 1, dx1 = 0. If m = 0, dx1 ∈ Λ≥2(y) = {0} and
therefore again dx1 = 0. Suppose that for n ≥ 1, xn1 is a coboundary. Then
xn1 = d(yP (x1, . . . )) = yd(P (x1, . . . )) where P (x1, . . . ) is a polynomial in the
xi’s. But this is impossible since xn1 does not belong to the ideal generated by y.
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Therefore for all n ≥ 1, xn1 gives a non trivial cohomology class in H∗(X). But
H∗(X) is finite dimensional.

Second case: dy 6= 0. In particular m ≥ 1. Since dy is a non zero polynomial,
dy is not a zero divisor, so by Property 6.8, we have a quasi-isomorphism of cdgas

Λ(x1, . . . , xm, y)
≃
։ Λ(x1, . . . , xm)/(dy).

Consider the push out in the category of cdgas

Λ(x1, . . . , xm, y) //

≃

��

Λ(x1, . . . , xm, y, xm+1, . . . ), d

��
Λ(x1, . . . , xm)/(dy) // Λ(x1, . . . , xm)/(dy)⊗ Λ(xm+1, . . . ), d̄

Since Λ(x1, . . . , xm)/(dy) ⊗ Λ(xm+1, . . . ) is concentrated in even degrees, d̄ = 0.
Since the top arrow is a Sullivan relative model and the left arrow is a quasi-
isomorphism, the right arrow is also a quasi-isomorphism ([5, Lemma 14.2], or more
generally the category of cdgas over Q is a Quillen model category). Therefore
the algebra H∗(X) is isomorphic to Λ(x1, . . . , xm)/(dy)⊗Λ(xm+1, . . . ). If m ≥ 2,
Λ(x1, . . . , xm)/(dy) and soH∗(X) is infinite dimensional. Ifm = 1, since Λx1/(dy)
is generated by only one generator, we must have another generator x2. But
Λ(x1)/(dy)⊗ Λ(x2, . . . ) is also infinite dimensional.

6.4 Proof of Vigué-Poirrier-Sullivan theorem

Lemma 6.9. [17, Proposition 4] Let A be a dga over any field such that the
multiplication by a cocycle x of any degre A → A, a 7→ xa is injective (Our
example will be A = (ΛV, d) and x a non-zero element of V of even degree such
that dx = 0). If the Betti numbers bn = dim Hn(A) of A are bounded then the
Betti numbers bn = dim Hn(A/xA) of A/xA are also bounded.

Proof. Since Hn(xA) ∼= Hn−|x|(A), the short exact sequence of complexes

0→ xA→ A→ A/xA→ 0

gives the long exact sequence in homology

· · · → Hn(A)→ Hn(A/xA)→ Hn+1−|x|(A)→ . . .

Therefore dim Hn(A/xA) ≤ dim Hn(A) + dim Hn+1−|x|(A)

Proof of Vigué-Poirrier-Sullivan theorem (Theorem 6.1). Let (ΛV, d) be the min-

imal Sullivan model of X . Let (ΛV ⊗ ΛsV, δ) be the Sullivan model of XS1

given
by Theorem 4.4. From Proposition 6.7, we know that dim V odd ≥ 2. Let x1,
x2, . . . , xm, y, xm+1,. . . , xn, z = xn+1, . . . be a basis of V ordered by degrees
where x1,. . . , xn are of even degrees and y, z are of odd degrees. Consider the
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commutative diagram of cdgas where the three rectangles are push outs

Λ(x1, . . . , xn) //

��

(ΛV, d) //

��

(ΛV ⊗ ΛsV, δ)

��
Q // Λ(y, z, . . . ) //

��

(Λ(y, z, . . . )⊗ ΛsV, δ̄)

��
Q // (ΛsV, 0)

Note that by Remark 4.5, the differential on ΛsV is 0.
For all 1 ≤ j ≤ n+ 1,

δxj = dxj ∈ Λ≥2(x<j , y) ⊂ Λ≥1(x<j)⊗ Λy.

Therefore

δ(sxj) = −sδxj ∈ Λx<j ⊗ Λ1sx<j ⊗ Λy + Λ≥1(x<j)⊗ Λ1sy.

Since (sx1)
2 = · · · = (sxj−1)

2 = 0, the product

sx1 . . . sxj−1δ(sxj) ∈ Λ≥1(x<j)⊗ Λ1sy.

So ∀1 ≤ j ≤ n + 1, sx1 . . . sxj−1δ̄(sxj) = 0. In particular sx1 . . . sxnδ̄(sz) = 0.
Similarly, since dy ∈ Λ≥2x≤m, sx1 . . . sxmδ(sy) = 0 and so sx1 . . . sxnδ̄(sy) = 0.
By induction, ∀1 ≤ j ≤ n, δ̄(sx1 . . . sxj) = 0. In particular, δ̄(sx1 . . . sxn) = 0.
So finally, for all p ≥ 0 and all q ≥ 0, δ̄(sx1 . . . sxn(sy)

p(sz)q) = 0. The cocycles
sx1 . . . sxn(sy)

p(sz)q, p ≥ 0, q ≥ 0, give linearly independent cohomology classes
in H∗(Λ(y, z, . . . )⊗ΛsV, δ̄) since their images in (ΛsV, 0) are linearly independent.

For all k ≥ 0, there is at least k + 1 elements of the form sx1 . . . sxn(sy)
p(sz)q

in degree |sx1|+ · · ·+ |sxn|+ k · lcm(|sy|, |sz|) (just take p = i · lcm(|sy|, |sz|)/|sy|
and q = (k − i)lcm(|sy|, |sz|)/|sz| for i between 0 and k). Therefore the Betti
numbers of H∗(Λ(y, z, . . . )⊗ ΛsV, δ̄) are unbounded.

Suppose that the Betti numbers of (ΛV ⊗ ΛsV, δ) are bounded. Then by
Lemma 6.9 applied to A = (ΛV ⊗ ΛsV, δ) and x = x1, the Betti numbers of
the quotient cdga (Λ(x2, . . . ) ⊗ ΛsV, δ̄) are bounded. By continuing to apply
Lemma 6.9 to x2, x3, . . . , xn, we obtain that the Betti numbers of the quotient
cdga (Λ(y, z, . . . ) ⊗ ΛsV, δ̄ are bounded. But we saw just above that they are
unbounded.

7 Further readings

In this last section, we suggest some further readings that we find appropriate for
the student.

In [1, Chapter 19], one can find a very short and gentle introduction to rational
homotopy that the reader should compare to our introduction.
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In this introduction, we have tried to explain that rational homotopy is a
functor which transforms homotopy pullbacks of spaces into homotopy pushouts
of cdgas. Therefore after our introduction, we advise the reader to look at [8],
a more advanced introduction to rational homotopy, which explains the model
category of cdgas.

The canonical reference for rational homotopy [5] is highly readable.
In the recent book [6], you will find many geometric applications of rational

homotopy. The proof of Vigué-Poirrier-Sullivan theorem we give here, follows more
or less the proof given in [6].

We also like [16] recently reprinted because it is the only book where you can
find the Quillen model of a space: a differential graded Lie algebra representing
its rational homotopy type (instead of a commutative differential graded algebra
as the Sullivan model).
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