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Introduction

Denote by LM := map(S 1 , M) the free loop space on M. Except where specified, we work over an arbitrary principal ideal domain k.

In String Topology, shriek maps are used to defined operations. But usually shriek maps are used to obtained vanishing results: see for example [START_REF] Brown | Cohomology of groups[END_REF]III.10.1] for an application of the transfer map in group cohomology. In this paper, after defining them carefully, we use the operations in String Topology to obtain the following vanishing result: Theorem 1. (Theorem 30 3) and Remark 35 below) Let M be a connected, closed oriented manifold. Let ω ∈ H m (M) be its orientation class. Let χ(M) be its Euler characteristic. The cohomology of the free loops relative to the constant loops H * (LM, M) satisfies

H * (LM, M) ∪ χ(M)ev * (ω) = {0}.
This vanishing result also holds for any generalized cohomology h * and homotopy fibre product of (the pull-back) of an embedding with itself (Theorem 15 4) below).

Using Leray-Hirsch theorem or Serre spectral sequence, we deduce Again this Corollary is generalized for any generalized cohomology h * and any fibration with section (Lemmas 18 and 22 below). We deduce then the following theorem. Theorem 3. (Theorem 24) Let g : G ֒→ E be the pull-back of an embedding in the sense of definition 11. Under some mild hypothesis, if the fibration p g associated to g is Totally Non-Cohomologous to Zero and if all the homotopy fibres p -1 g ( * ) are not acyclic then the Euler class of g is null.

In the case of the diagonal embedding, Theorem 3 gives Corollary 2. We now give the plan of the paper. Part 1. We construct carefully the shriek maps used in String Topology to define the operations. In particular, we give the key property (Proposition 8) that we use in this paper.

Part 2. We give our most general results. In section 5, we define the open string product and open string coproduct of Sullivan [START_REF] Sullivan | Open and closed string field theory interpreted in classical algebraic topology[END_REF]. In section 6, we compute the open string coproduct of the homotopy fibre product of an embedding with itself. In section 7, we give general results on Totally Non-Cohomologous to Zero fibrations with sections using Leray-Hirsch (Lemma 18) or Serre spectral sequence ( Lemma 22). These general results are used to prove Theorem 3. In section 8, as an example, we consider the case when the embedding is the inclusion of complex projective spaces.

Part 3. We specialize to the case of free loop spaces where the embedding is the diagonal embedding. In section 9, we define the Chas-Sullivan loop product [START_REF] Chas | String topology[END_REF] and the loop coproduct. In section 10, we compute the dual of the loop coproduct in term of cup product. In particular, we recover the results of Tamanoi [START_REF]Loop coproducts in string topology and triviality of higher genus TQFT operations[END_REF] and Sullivan [START_REF] Sullivan | Open and closed string field theory interpreted in classical algebraic topology[END_REF] concerning the vanishing of the loop coproduct. In section 11, we give (Theorem 36) a variant of Theorem 1. As application, we prove an homotopy version of a classical result relating fixed point action of the circle and Euler characteristics. And we prove Corollary 2. In section 12, we give many examples showing that Corollary 2 is pertinent. We conjecture that Corollary 2 holds for any simply-connected finite CWcomplex. In section 13, we consider the case the case of relative free loop spaces. This is an example where the embedding is the pull-back of the diagonal embedding. As an application, we generalize Theorem 1 to the space map(∨ n S 1 , M) of maps from the wedge of n circles to M.

Acknowledgment: We wish to thank our expert in generalized cohomology, Geoffrey powell. We would like also to thank the universities of Angers and Nantes for giving us the opportunity to teach a Master course on characteristics classes following [START_REF] Milnor | Characteristic classes[END_REF].

Part 1. The shriek maps

The shriek map of an oriented embedding

Let h * be a generalized cohomology theory which is additive and multiplicative.

Let φ : M ֒→ B an embedding between two manifolds without boundary of dimensions m and b respectively. Following [21, Corollary 11.2], we suppose that φ(M) is a closed subset of B, i. e. [18, Proposition A.53 (c), Theorem A.57] Φ is proper. Of course, this is the case if M is compact.

We also suppose that the normal bundle ν is h * -oriented. If Remark 4. Our generalized cohomology h * does not necessarily satisfies the weak equivalence axiom. Therefore the Thom homomorphism might not be an isomorphism [29, (17.9.1)].

The Thom class u will be thought as an element of h b-m (N; ∂N).

Since M is closed in B, (B, B -M, N) is an excisive triad. The inclusion ∂N ≈ ֒→ N -M is a homotopy equivalence. Therefore the composite i : (N, ∂N) → (N, N -M) → (B, B -M)
induces an isomorphism in cohomology. Let j : B → (B, B -M) be the canonical map. By definition [8, p. 419], φ ! is the composite

h * (M) s * -1 ∼ = / / h * (N) -∪u ∼ = / / h * +b-m (N, ∂N) i * -1 ∼ = / / h * +b-m (B, B -M) j * / / h * +b-m (B)

The shriek map of the pull-back of an embedding

The idea to construct the shriek map of the pull-back of an embedding, is to pull-back the Thom class and the tubular neighborhood. In particular, we will forget the original vector bundle ν and the fact the Thom homomorphism was (may-be see Remark 4) a Thom isormorphism.

Consider a (Serre) fibration p :

E ։ B. Consider the pull-back diagram M φ / / q E p M φ / / B
The goal of this section is to construct a shriek map for φ.

Let Ñ := p -1 (N). Then

p -1 (N -M) = p -1 (N) -p -1 (M) = Ñ -M . Let ∂ N := p -1 (∂N).
Consider the two rectangles where all the squares are pull-backs

M s ≃ / / q Ñ / / p E p M s ≈ / / N / / B ∂ N ≃ / / p Ñ -M / / E p ∂N ≈ / / N -M / / B
Since the inclusion map s : M ≈ ֒→ N is a homotopy equivalence and p : Ñ ։ N is a (Serre) fibration, s : M ≃ ֒→ Ñ is a (weak) homotopy equivalence. Similarly, since the inclusion

∂N ≈ ֒→ N -M is a homotopy equivalence, the inclusion ∂ N ≃ ֒→ Ñ -M is also a (weak) homotopy equivalence.
Since the inverse image of an excisive triad is an excisive triad,

(E, E -M , Ñ) = (p -1 (B), p -1 (B -M), p -1 (N)) is an excisive triad. Therefore the composite ĩ : ( Ñ , ∂ N ) → ( Ñ, Ñ -M ) → (E, E -M) induces an isomorphism in cohomology.
Let ũ be the image of the Thom class u by p * : h * (N, ∂N) → h * ( Ñ , ∂ N ). Let j : E → (E, E -M) be the canonical map. By definition, φ! is the composite Comparing with the definition of the shriek map of φ given in Section 2, since ũ := p * (u), we obviously have the naturality with respect to pull-backs:

(5) p * • φ ! = φ! • q * .
Till now, our construction of the shriek map φ follows the construction of Tamanoi in the special case of the loop coproduct [START_REF] Tamanoi | Cap products in string topology[END_REF] and of the loop coproduct [START_REF]Loop coproducts in string topology and triviality of higher genus TQFT operations[END_REF] in string topology, except that Tamanoi, in each case, construct a specific homotopy equivalence Ñ ≈ → M replacing our homotopy equivalence s : M ≈ → Ñ. As remarked by Tamanoi [27, p. 8], note that in order to define φ, we don't need to know if the total space q * (S(ν)) of the bundle induced by pulling-back S(ν), is diffeomorphic [START_REF] Stacey | The differential topology of loop spaces[END_REF]Proposition 5.3], homeomorphic [6, p. 8], or homotopy equivalent to ∂ N .

Although, we don't need it in this note, let us prove that q * (S(ν)) is homotopy equivalent to ∂ N for completeness: Proposition 6. Let q * (D(ν)) and q * (S(ν)) the pull-backs of the closed disk bundle D(ν) and of the sphere disk bundle S(ν) along the (Serre) fibration q : M ։ M. Then there exist a (weak) homotopy equivalence

ẽ xp : q * (D(ν)) ≃ → Ñ
whose restriction to q * (S(ν))

ẽ xp : q * (S(ν)) ≃ → ∂ N
is also a (weak) homotopy equivalence.

Proof. Since the bundle projection ν : D(ν) ≈ ։ M is a homotopy inverse to the zero section map M → D(ν), the following triangle commutes up to an homotopy H :

[0, 1] × D(ν) → N. D(ν) ≈ ν exp ∼ = / / N M s < < z z z z z z z z z
The restriction of H to [0, 1] × S(ν) is a homotopy between the composite of exp with the inclusion map, S(ν) 

∼ = / / p ∂ N / / p Ñ / / p E p S(ν) exp ∼ = / / ∂N / / N / / B q * (S(ν)) / / q M s ≃ / / q Ñ / / p E p S(ν) ν / / M s ≈ / / N / / B Denote by ẽ xp : q * (S(ν)) ≃ → S (ν) ∼ =
→ ∂ N the composite of the weak homotopy equivalence and of the homeomorphism.

Similarly, the homotopy H gives a weak homotopy equivalence q * (D(ν))

≃ → Ñ. Since ẽ xp : q * (S(ν))
≃ → ∂ N was defined using the restriction of H to S(ν), we claim that this weak homotopy equivalence q * (D(ν))

≃ → Ñ extends ẽ xp : q * (S(ν)) ≃ → ∂ N .
Therefore, we call it also ẽ xp.

If p : E ։ B is a fiber bundle, then using [1, 4.6.4], we have that q * (S(ν)) and ∂ N are homeomorphic, instead of just homotopy equivalent.

Remark 7. Since q * (S(ν)) ։ S(ν) and p : S (ν) ։ S(ν) are fiber homotopy equivalent [23, Chap. 2 Theorem 14], the induced isomorphism in cohomology

ẽ xp : h * ( Ñ, ∂ N ) ∼ = → h * (q * (D(ν)), q * (S(ν)))
fits into the commutative square

h * ( Ñ, ∂ N ) ẽ xp * ∼ = / / h * (q * (D(ν)), q * (S(ν))) h * (N, ∂N) exp * ∼ = / / p * O O h * (D(ν), S(ν)) q * O O
Therefore, by naturality of the Thom class [1, 11.7.11],

-ũ, which was defined as p * (u), coincides with the Thom class of the vector bundle q * (ν) induced by pulling-back ν along q : M ։ M and -the composite

h * ( M ) s * -1 → ∼ = h * ( Ñ ) -∪ũ → ∼ = h * +b-m ( Ñ, ∂ N )
is a Thom isomorphism (if h * satisfies the weak equivalence axiom, see Remark 4).

The Euler class

Let srel : M → ( Ñ, ∂ N ) be the relative inclusion map. Since, by Remark 7, ũ is the Thom class of the vector bundle q * (ν) obtained by pull-back, s * rel (ũ) is its Euler class. Proposition 8. [26, Theorem 2.1 [START_REF] Cohen | A polarized view of string topology, Topology, geometry and quantum field theory[END_REF]] For the shriek map of the pullback of an embedding, we have the formula for any x ∈ h * ( M ):

φ * • φ! (x) = x ∪ s * rel (ũ). For an embedding φ : M ֒→ B, this formula is well known [14, Theorem 6.1 [START_REF] Cohen | A polarized view of string topology, Topology, geometry and quantum field theory[END_REF]]. For φ, the pull-back of an embedding, the proof will be similar [14, p. 282].

Proof. Remark that the following square commutes

( Ñ , ∂ N ) ĩ / / (E, E -M ) M φ / / srel O O E. j O O Remark also that s * rel : h * ( Ñ, ∂ N ) → h * ( M ) is h * ( Ñ)
-linear where h * ( Ñ) acts on h * ( M ) by restriction of scalar with respect to the algebra morphism s * : h * ( Ñ) → h * ( M ). Therefore, by definition of φ! , Proof. Let l : F ֒→ M be the inclusion of the fiber of the induced fibration q. We have the commutative diagram

φ * • φ! (x) = φ * • j * • ĩ * -1 (s * -1 (x) ∪ ũ) = s * rel • ĩ * • ĩ * -1 (s * -1 (x) ∪ ũ) = s * • s * -1 (x) ∪ s * rel (ũ) = x ∪ s * rel (ũ) Consider the commutative diagram M srel / / q ( Ñ, ∂ N ) p M s rel / / (N
F l / / ε k ! ! M φ / / q E p { * } η / / M φ / / B
where the two squares are pull-backs. By Proposition 8 and equation (9

), φ * • φ! (x) = x ∪ q * (e ν )
where e ν ∈ H b-m (M) is the Euler class of the normal bundle ν. Therefore

k * • φ! (x) = l * • φ * • φ! (x) = l * (x) ∪ l * • q * (e ν ) = l * (x) ∪ ε * • η * (e ν ) = 0.
Part 2. The general case

The open string (co)products

In this section, we define the joining product ∧ of Sullivan [START_REF] Sullivan | Open and closed string field theory interpreted in classical algebraic topology[END_REF] that following Tamanoi [START_REF] Tamanoi | TQFT string operations in open-closed string topology[END_REF], we prefer to call the open string product. And more important for us, we define a generalized version of the cutting at time 1/2 product ∨ 1/2 of Sullivan [START_REF] Sullivan | Open and closed string field theory interpreted in classical algebraic topology[END_REF] that following Tamanoi [START_REF] Tamanoi | TQFT string operations in open-closed string topology[END_REF], we prefer to call the open string coproduct.

Let f : F → E and g : G → E be two maps. Let

f E g = {(a, ω, b) ∈ F × E I × G/f (a) = ω(0), g(b) = ω(1)}
denote the homotopy fibre product of f and g which is obtained by the following pull-back f E g / / (ev 0 ,ev 1 )

E I (ev 0 ,ev 1 ) F × G (f ×g) / / E × E.
Definition 11. A continuous map g : G → E is the pull-back of an embedding if it is equipped with a pull-back diagram

G g / / q E p M φ / / B
where φ : M ֒→ B a proper embedding between two manifolds of codimension m with h * -oriented normal bundle and where the map p is a (Serre) fibration (This is exactly the case considered in Section 3).

Remark 12. Suppose that a continous map g : G → E fits into a pull-back diagram

G g / / q E p M φ / / B
where φ : M ֒→ B a proper embedding between two manifolds of codimension m with h * -oriented normal bundle and where the map p is smooth and is transverse to φ.

Then g : G ֒→ E a proper embedding between two manifolds of codimension m with h * -oriented normal bundle.

A common example to both definition 11 and remark 12 is when p is a smooth fibre bundle.

Proof of Remark 12. Since φ and p are transverse, g : G ֒→ E is an embedding of codimension m. Note that the normal bundle of g, ν g , is the pull-back q * (ν φ ) of the normal bundle of φ, ν φ , along q. Therefore since ν φ is h * -oriented, ν g is also h * -oriented [1, 11.7.11] without assuming that

G or E is h * -orientable. Since φ(M) is a closed subset of B, g(G) = p -1 (φ(M)) is a closed subset of E. Theorem 13. [25] Let f : F → E, g : G → E and h : H → E be three maps. 1) If G is a smooth h * -oriented manifold without boundary of dimension n then there is a open string product lp f,g,h : H * ( f E g ) ⊗ H * ( g E h ) → H * -n ( f E h ).
2) Suppose that g is the pull-back of an embedding in the sense of definition 11. Then there is a open string coproduct

lcp f,g,h : h * ( f E g ) ⊗ h * ( g E h ) → h * +m ( f E h ).
Remark 14. In [START_REF] Sullivan | Open and closed string field theory interpreted in classical algebraic topology[END_REF], Sullivan consider the open string product only in the case when g is an embedding.

Proof. 1) Consider the three pull-back squares (Compare with [START_REF] Tamanoi | TQFT string operations in open-closed string topology[END_REF]Diagram p.11])

f E g × g E h ev 1 ×ev 0 f E g × E g E h ∆ o o µ f,g,h / / ev 1/2 f E h ev 1/2 G × G G ∆ o o g / / q E p M φ / / B
The open string product lp f,g,h is defined as the Chas-Sullivan loop product above using the left pull-back square:

H * f E g ⊗ H * g E h × → H * f E g × g E h ∆! → H * -n f E g × E g E h µ f,g,h * → H * -n f E h .
2) Since p is a (Serre) fibration, then the composite

f E h ev 1/2 / / E p / / B
is also a fibration. Therefore using the total right rectangle, since φ : M ֒→ B is an embedding, we obtain the shriek map

µ ! f,g,h : h * ( f E g × E g E h ) → h * +m ( f E h ).
The open string coproduct lcp f,g,h is now defined as the composite

h * ( f E g )⊗h * ( g E h ) × → h * ( f E g × g E h ) ∆ * → h * ( f E g × E g E h ) µ ! f,g,h → h * +m ( f E h ).

A simple formula for the open string coproduct

Theorem 15. Let f : F → E, g : G → E and h : H → E be three maps. Suppose that g is the pull-back of an embedding in the sense of definition 11. Let e ν ∈ h m (M) be the Euler class of the normal bundle of the embedding φ :

M ֒→ B. Let ev 0 : g E h ։ G, (a, w, b) → a be the first projection map. Let ev 1 : f E g ։ G, (a, w, b) → b be the second projection map. Let σ : G ֒→ g E g , b → (b, constant path g(b), b
) be the section of both projections map ev 0 and ev 1 when f = g = h.

Then 1) the open string coproduct

lcp f,g,g : h * ( f E g ) ⊗ h * ( g E g ) → h * +m ( f E g ) is given by lcp f,g,g (a ⊗ b) = a ∪ ev * 1 (σ * (b) ∪ q * (e ν )) . 2) the open string coproduct lcp g,g,h : h * ( g E g ) ⊗ h * ( g E h ) → h * +m ( g E h )
is given by

lcp g,g,h (b ⊗ c) = ev * 0 • σ * (b) ∪ c ∪ ev * 0 • q * (e ν ). 3) In the case f = g = h, ev * 0 • q * (e ν ) = ev * 1 • q * (e ν ) ∈ h * ( g E g ). 4) The ideal Ker σ * : h * ( g E g ) ։ h * (G) satisfies Ker σ * ∪ ev * 0 • q * (e ν ) = {0}. 5) the open string coproduct on h * ( g E g ) lcp g,g,g : h * ( g E g ) ⊗ h * ( g E g ) → h * +m ( g E g ) is given by lcp g,g,g (a⊗b) = ev * 0 (σ * (a) ∪ σ * (b) ∪ q * (e ν )) = ev * 1 (σ * (a) ∪ σ * (b) ∪ q * (e ν )) . 6) Let α ∈ g E g . Denote by g E g [α] the path-connected component of α. Denote by g E g 0 := ∪ α∈G g E g [σ(α)] , i. e. the subspace of g E g , union of the path-connected components Im π 0 (σ) : π 0 (G) ֒→ π 0 ( g E g ) (If G is path-connected, there is only one). Then the open string coproduct lcp f,g,g is trivial outside of h * ( f E g )⊗h * ( g E g 0 ), the open string coproduct lcp g,g,h is trivial outside of h * ( g E g 0 )⊗h * ( g E h ), the open string coproduct lcp g,g,g is trivial outside of h * ( g E g 0 )⊗h * ( g E g 0 ). 7) The open string coproduct lcp f,g,g maps h * ( f E g [α] )⊗h * ( g E g ) to h * +m ( f E g [α]
). The open string coproduct lcp g,g,h maps h

* ( g E g )⊗h * ( g E h [α] ) to h * +m ( g E h [α]
).

The image of the open string coproduct lcp

g,g,g is contained in g E g 0 . 8) Suppose that there is an integer dim G such that ∀i > dim G, h i (G) = {0}. Then for all a, b ∈ h * ( g E g ) such that |a| + |b| > dim G -m, lcp g,g,g (a ⊗ b) = 0.
Proof. 1) and 2) Recall that we have the following two pull-back squares

f E g × E g E h µ f,g,h / / ev 1/2 f E h ev 1/2 G g / / q E p M φ / / B
Denote by (q • ev 1/2 ) * (ν) the pull-back of ν along q • ev 1/2 . Let e (q•ev 1/2 ) * (ν) by its Euler class. By Proposition 8, for any

x ∈ h * ( f E g × E g E h ) µ * f,g,h • µ ! f,g,h (x) = x ∪ e (q•ev 1/2 ) * (ν)
. By formula (9) (Naturality of Euler class),

e (g•q) * (T M ) = (q • ev 1/2 ) * (e ν )
where e ν is the Euler class of the normal bundle.

Putting everything together, we have that

(16) µ * f,g,h • µ ! f,g,h (x) = x ∪ ev * 1/2 • q * (e ν ).
Note that till here, the same discussion for the open string product, shows that

(17) ∆ * • ∆! (x) = x ∪ ev * 1/2 (e T G ).
But now, we will see that both µ * f,g,g and µ * g,g,h admit a retract. In particular, µ * g,g,g admits two different retracts i * Let i 2 : g E h → g E g × E g E h be the inclusion map on the second factor defined by

1 and i * 2 . Let i 1 : f E g → f E g × E g E g be
i 2 (a, w, b) = ((a, constant path g(a), a), (a, w, b)))
for a ∈ G, w ∈ E I and b ∈ H such that (g(a), h(b)) = (w(0), w(1)). The first inclusion i 1 is a section up to homotopy of µ f,g,g . Therefore i * 1 is a retract of µ * f,g,g . So by formula [START_REF]Module derivations and non triviality of an evaluation fibration[END_REF], since ev

1/2 • i 1 is the projection map ev 1 : f E g ։ G, (a, w, b) → b, for any x ∈ h * ( f E g × E g E g ), µ ! f,g,g (x) = i * 1 • µ * f,g,g • µ ! f,g,g (x) = i * 1 (x ∪ ev * 1/2 • q * (e ν )) = i * 1 (x) ∪ i * 1 • ev * 1/2 • q * (e ν )) = i * 1 (x) ∪ ev * 1 • q * (e ν ).
Similarly since i * 2 is a retract of µ * g,g,h and since

ev 1/2 •i 2 is the projection map ev 0 : g E h ։ G, (a, w, b) → a, for any x ∈ h * ( g E g × E g E h ), µ ! g,g,h (x) = i * 2 (x) ∪ ev * 0 • q * (e ν ).
Since the following two squares commute

f E g i 1 / / ∆ f E g × N g E g ∆ f E g × f E g id×(σ•ev 1 ) / / f E g × g E g g E h i 2 / / ∆ g E g × N g E h ∆ g E h × g E h (σ•ev 0 )×id / / g E g × g E h , for any a ∈ h * ( f E g ) and b ∈ h * ( g E g ), µ ! f,g,g • ∆ * (a × b) = i * 1 • ∆ * (a × b) ∪ ev * 1 • q * (e ν ) = a ∪ (σ • ev 1 ) * (b) ∪ ev * 1 • q * (e ν ) and for any b ∈ h * ( g E g ) and c ∈ h * ( g E h ), µ ! g,g,h • ∆ * (b × c) = (σ • ev 0 ) * (b) ∪ c ∪ ev * 0 • q * (e ν ). 3) Using 1), lcop g,g,g (1 ⊗ 1) = ev * 1 • q * (e ν ). Using 2), lcop g,g,g (1 ⊗ 1) = ev * 0 • q * (e ν ). 4) Let ε be 0 or 1. Since σ * • ev * ε = id, using the split short exact sequence 0 → Ker σ * i ֒→ h * ( g E g ) σ *
։ h * (G) → 0, we obtain that Ker σ * = Im r ε where r ε : h * ( g E g ) ։ Ker σ * is the retract of the inclusion defined by r ε (a) = a -ev * ε • σ * (a). By 1) and 3),

lcop g,g,g (a ⊗ 1) = a ∪ ev * 1 • q * (e ν ) = a ∪ ev * 0 • q * (e ν ). By 2), lcop g,g,g (a ⊗ 1) = ev * 0 • σ * (a) ∪ ev * 0 • q * (e ν ). Therefore r 0 (a) ∪ ev * 0 • q * (e ν ) = 0. 5) By 4), b ∪ ev * 0 • q * (e ν ) = ev * 0 • σ * (b) ∪ ev * 0 • q * (e ν ). Therefore by 2) lcop g,g,g (a ⊗ b) = ev * 0 • σ * (a) ∪ ev * 0 • σ * (b) ∪ ev * 0 • q * (e ν )
. By 4) and 3)

a ∪ ev * 1 • q * (e ν ) = ev * 1 • σ * (a) ∪ ev * 1 • q * (e ν ).
Therefore by 1) and the graded commutativity of the cup product

lcop g,g,g (a ⊗ b) = ev * 1 • σ * (a) ∪ ev * 1 • σ * (b) ∪ ev * 1 • q * (e ν ).
6) Since by definition, σ arrives inside g E g 0 , σ * factorizes through the projection h * ( g E g ) ։ h * ( g E g 0 ). So using 1) and 2), 6) is proved.

7) Let a ∈ h * ( f E g [α]
) and b ∈ h * ( g E g ). The cohomology of a space is isomorphic to the product of the cohomology algebras of its pathconnected components. Therefore the cup product with ev * 1 (σ * (b) ∪ q * (e ν )) defines a linear application from h

* ( f E g [α] ) to itself. So by 1), lcop f,g,g (a ⊗ b) ∈ h * ( f E g [α]
). In the case f = g, by 6), if lcop g,g,g (a ⊗ b) is non-zero then the pathconnected component of α belongs to the image of π 0 (σ) and in this case lcop g,g,g (a

⊗ b) ∈ h * ( f E g 0 ). 8) The element σ * (a)∪σ * (b)∪q * (e ν ) ∈ h * (G) is of degree |a|+|b|+m > dim G
and so is null. Using 5), we obtain that lcop g,g,g (a ⊗ b) = 0.

TNCZ fibrations

Lemma 18. Suppose that B is path-connected. Suppose also that B is a CW-complex or that h * satisfies the weak equivalence axiom. Let 

′ : p -1 (b ′ ) ֒→ E. In cohomology, i * b = w * # • i * b ′ [29, Proof of (17.9.3)]. So i * b is surjective if and only if i * b ′ is surjective. And given a family of vectors c j ∈ h * (E), the i * b (c j )'s form a h * -basis of h * (p -1 (b)) if and only if the i * b ′ (c j )'s form a h * -basis of h * (p -1 (b ′ )).
Proof. Let b 0 ∈ B. Let ε F : F → * be the unique map to a point. Since B is path-connected and h * (F ) := coker ε * F : h * → h * (F ) does not depend of a base point and is homotopy invariant [29, 17.1.3], we can chose any fibre F . We take

F := p -1 ({p • σ(b 0 )}). Since h * (i) : h * (E) ։ h * (F ) is surjective, h * (i) : h * (E) ։ h * (F ) is also surjective. Since h * (σ) • h * (p) = id, h * (E) = Ker h * (σ) ⊕ Im h * (p). Since Im h * (p) ⊂ Ker h * (i), the restriction of h * (i) to Ker h * (σ) is also sur- jective.
Suppose that h * (F ) = {0}. Then there exists classes c j ∈ Ker h * (σ) ⊂ h * (E) such that the h * (i)(c j )'s form a h * -basis of h * (F ). Now let b 0 ∈ B, σ(b 0 ) ∈ E and σ(b 0 ) ∈ F be the chosen base points * of B, E and F . Denote by η X

x 0 : {x 0 } ֒→ X be the inclusion of the base point x 0 into a based space X. Then we have the canonical identification for a based space X between h * (X) and h * (X, x 0 ) ∼ = Ker η X *

x 0 : h * (X) → h * . Since σ : (B, * ) ֒→ (E, * ) and i : (F, * ) ֒→ (E, * ) are based maps, we can consider that the classes c j ∈ h * (E, * ), that the i * (c j )'s form a h * -basis of h * (F, * ), that Ker h * (σ) = Ker σ * and so that c j ∪ p * (e) = 0.

Since h * (F ) ∼ = h * (F, * ) ⊕ h * , the classes c j ∈ h * (E, * ) and the unit 1 ∈ h 0 (E) are send by i * to a h * -basis of h * (F ). So by the Leray-Hirsch theorem for generalized cohomology ( [29, (17.8.4)] using Remark 19), h * (E) is a free h * (B)-modules with basis 1 and the c j 's. So e = 0. Remark 20. In Lemma 18, when the generalized cohomology h * is a singular cohomology H * , it is enough to suppose that Hq (F ) is k-free module of finite type for each degree q ≥ 0. Indeed in this case, we can apply the Leray-Hirsch theorem for singular cohomology [11, Exercise 3 p. 51] (see also [29, (17.8.1)] using Remark 19 or [START_REF] Mimura | Topology of Lie groups. I, II[END_REF]Theorem 4.4] where the fibre of the fibration is assumed to be path-connected). In Lemma 22 below, we improve further Lemma 18 for singular cohomology. The proof of Lemma 22 relies on the following interesting Lemma: Let f be an element of H * (F ). Suppose that f is in the image of i * : H * (E) → H * (F ).

Lemma 21. Let F i ֒→ E p ։ B
Denote by e ⊗ 1, the image of e by the canonical morphism [22, III.2.10.10]

i * : H m (B) → H m (B; H 0 (F )) = E m,0 2
Denote by 1 ⊗ f the image of f by the inverse of the canonical morphism [22, III.2.10.9]

i * 0 : E 0, * 2 = H 0 (B; H * (F )) ∼ = → H 0 ( * ; H * (F )) = H * (F ).
Then the product e For degree reasons, ∀r ≥ 2, d r (e ⊗ 1) = 0 and e ⊗ 1 in E m,0

⊗ 1 ∪ 1 ⊗ f ∈ E m, *
∞ = F m H m (E) is p * (e). Since f ∈ Im i * , ∀r ≥ 2, d r (1 ⊗ f ) = 0.
Let q be the degree of f . Let c ∈ Hq (E) such that H * (i)(c) = f . As explained in the proof of Lemma 18, c can be chosen in Ker Suppose that ∀n ∈ N, H n (B) is a finitely generated k-module or ∀q ∈ N, H q (F ) is a finitely generated k-module. Suppose also that ∀q ≥ 2, H q (F ) is a torsion free k-module.

σ * . Then 1 ⊗ f in E 0,q ∞ = H q (E)/F 1 H q (E) is the class of c. Therefore e ⊗ 1 ∪ 1 ⊗ f in E m,q ∞ = F m H m+q (E)/F m+1 H m+q (E)
If the fibration p is Totally Non-Cohomologous to Zero, i. e. H * (i) :

H * (E) ։ H * (F ) is onto and if H m (B) is a free k-module then e = 0 or H * (F ) = {0}. Proof. Since H * (i) is onto, the action of π 1 (B) on H * (F ) is trivial [22, III.Theorem 4.4].
By hypothesis, H q (F ) is a finitely generated k-module or ∀n ≥ 0 H n (B) is a finitely generated k-module. So since k is a principal ideal domain by [START_REF] Spanier | Algebraic topology[END_REF]Theorem 5.5.10], we have a short exact sequence

0 → H p (B) ⊗ H q (F ) µ → E p,q
2 → Tor k (H p+1 (B), H q (F )) → 0 where µ is a morphism of algebras. Therefore, since ∀q ≥ 0 H q (F ) is torsion free, ∀p, q ∈ N E p,q 2 ∼ = H p (B) ⊗ H q (F ) as algebras. Since i * is onto, d r is null on E 0,q . Therefore the Serre spectral sequence collapses on the E 2 -term (Here we have reproved the well-known [22, III.Theorem 4.4] with weaker hypothesis).

So by Lemma 21, for any f ∈ Hq (F ), the element e ⊗ f ∈ E m,q = H m (B) ⊗ H q (F ) must be zero. Since H m (F ) is free, e ⊗ f = 0 implies that e = 0 or f has torsion.

The following lemma is a generalization of Lemma 22 if the base B of the fibration is not path-connected. Denote by F β , the fibre p -1 (b) when b ∈ B β . For all β ∈ π 0 (B), suppose that ∀n ∈ N, H n (B β ) is a finitely generated k-module or ∀q ∈ N, H q (F β ) is a finitely generated k-module. Suppose also that ∀β ∈ π 0 (B), ∀q ≥ 2, H q (F β ) is a torsion free k-module.

If the fibration p is Totally Non-Cohomologous to Zero, i. e. ∀β ∈ π 0 (B) H * (i β ) :

H * (E) ։ H * (F β ) is onto and if ∀β ∈ π 0 (B) H m (B β ) is a free k-module then ∀β ∈ π 0 (B) (e β = 0 or H * (F β ) = {0}).
Proof. For all β ∈ π 0 (B), we apply Lemma 22 to the fibration Suppose that ∀n ∈ N, H n (G) is a finitely generated k-module or ∀y ∈ B, ∀q ∈ N, H q (p -1 φ (y)) is a finitely generated k-module. Suppose also that ∀y ∈ B, ∀q ≥ 2, H q (p -1 φ (y)) is a torsion free k-module.

F β i β ֒→ E π 0 (p) -1 (β) p β ։ B β

If the fibration p g is Totally Non-Cohomologous to Zero, i. e. ∀x ∈ E H

* (i x ) : H * (E I × g G) ։ H * (p -1 g (x)) is onto and if H m (G) is a free k-module then ∀b ∈ G either H * (p -1 φ (p • g(b))) = {0} or the component of q * (e ν ) in H m (G [b] ) the cohomology of the path-connected component of b in G is trivial.
Proof. By definition of the homotopy fibre product f E g , for any a ∈ F , we have the following commutative diagram of spaces ev -1 0 (a)

∼ = / / p -1 g (f (a)) i f (a) ≈ / / p -1 φ (p • f (a)) f E g / / ev 0 E I × g G pg p I ×q / / B I × φ M p φ M φ
y y r r r r r r r r r r r r r

s ≈ o o F f / / E p / / B
where the bottom left square is a pull-back, s is a homotopy equivalence and the bottom right square is a homotopy pull-back (i. e. the induced map p -1 g (f (a)) → p -1 φ (p • f (a)) between the homotopy fibre of g and φ is a homotopy equivalence). Since ∀a ∈ F , H * (i f (a) ) : 

H * (E I × g G) → H * (p -1 g (f (a))) is onto, H * ( f E g ) → H * (ev -1 0 (a)) is also onto, i. e.
G g / / q E p CP q φ / / CP n
where p : E ։ CP n is a (Serre) fibration over the n-th complex projective space CP n and φ : CP q ֒→ CP n is the inclusion, 0 ≤ q < n.

If the fibration p g associated to g is Totally Non-Cohomologous to Zero and if H 2n-2q (G) is a free k-module then q * (a n-q ) = 0. Here a is a generator of H 2 (CP q ). and that for all b ∈ H * ( g E g ) of degree > 4q -2n, b ∪ ev * 0 (a n-q ) = 0.

Remark 28. (Over Q, the converse of Corollary 26 is true) Over Q, a relative Sullivan model of ev 0 is given by the inclusion of differential graded algebras [START_REF]On the cohomology algebra of a fiber[END_REF]Example 7.3]). If n > p + q, by replacing sy by sy -ztx n-p-q-1 , we can assume that d(sy) = 0. If q ≥ p, by replacing t by t -zx q-p , we can assume that d(t) = 0. Therefore if n > p + q and q ≥ p then over Q, ev 0 is Totally Non-Cohomologous to Zero.

(Λ(x 2 , z 2p+1 ), d) ֒→ (Λ(x 2 , z 2p+1 , t 2q+1 , sy 2n+1 ), d) with d(z 2p+1 ) = x p+1 2 , d(t 2q+1 ) = x q+1 2 and d(sy 2n+1 ) = t 2q+1 x n-q 2 - z 2p+1 x n-p 2 (Compare with

Part 3. the free loops case

In this part, we consider our main example of homotopy fibre product, the space LM of free loops on a manifold.

The loop product and the loop coproduct

Let M be a smooth oriented manifold without boundary. In this section, M is not necessarily compact. The diagonal map ∆ : M ֒→ M × M is an embedding. Since M is Hausdorff, ∆(M) is a closed subset of M × M. As we have explained in Section 2, we can define the shriek map of ∆, ∆ ! in homology.

By definition, the intersection product in homology, is the composite

H * (M) ⊗ H * (M) × → H * (M × M) ∆ ! → H * -m (M).
We have the following push-out squares

S 1 S 1 / / S 1 ∨ S 1 S 1 c o o ⋆ ⋆ O O / / ⋆ O O S 0 O O o o
where c : S 1 → S 1 ∨ S 1 is the comultiplication or pinch map of S 1 . Note that all the vertical maps are cofibrations. Since the functor map(-, M) transforms push-out squares in pull-back squares, we have the following pull-back squares where all the vertical maps are fibrations

LM × LM ev×ev LM × M LM q ∆ o o µ / / LM (ev,ev 1/2 ) M × M M ∆ / / ∆ o o M × M
and µ := map(c, M) is the composition or multiplication of loops. Since ∆ : M ֒→ M × M is an embedding, as we have explained in Section 3, we can define the shriek map of ∆, ∆! in homology, and the shriek maps of µ, µ ! in homology, µ ! in cohomology. By definition, the Chas-Sullivan loop product in homology, is the composite

H * (LM)⊗H * (LM) × → H * (LM×LM) ∆! → H * -m (LM× M LM) µ * → H * -m (LM).
By definition, the loop coproduct in homology is the composite

H * (LM) µ ! → H * -m (LM × M LM) ∆ * → H * -m (LM × LM).
In this note, we work over an arbitrary principal ideal domain k and so the cross product is not in general an isomorphism. Therefore, we will consider the loop coproduct in cohomology. By definition, the loop coproduct in cohomology is the product defined by the composite

H * (LM)⊗H * (LM) × → H * (LM×LM) ∆ * → H * (LM× M LM) µ ! → H * +m (LM)
Remark 29. Let k : ΩM ֒→ LM be the inclusion of the pointed loops into the free loops. If the dimension of M is positive, from Corollary 10, we obtain that the composite

H * (ΩM) ⊗ H * (ΩM) k * ⊗k * → H * (LM) ⊗ H * (LM) loop product → H * -m (LM)
is trivial.

A simple formula for the loop coproduct

Denote by LM [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF] the path-connected component of LM of freely contractile loops. Recall that ev : LM ։ M is the evaluation map. Let σ : M ֒→ LM, m → constant loop m, be its trivial section.

Theorem 30. Let M be a connected, closed k-oriented manifold of dimension m. Let ω ∈ H m (M) be its orientation class. Let χ(M) be its Euler characteristic. Then 1) The loop coproduct,

µ ! • ∆ * on H * (LM) is given for a, b ∈ H * (LM), by µ ! • ∆ * (a ⊗ b) = χ(M)a ∪ ev * (σ * (b) ∪ ω).
Here ∪ is the cup product on H * (LM).

2) The loop coproduct, µ ! • ∆ * on H * (LM) is graded commutative with respect to the usual degrees: that is, for a ∈ H p (LM), b ∈ H q (LM)

µ ! • ∆ * (a ⊗ b) = (-1) pq µ ! • ∆ * (b ⊗ a). 3) The ideal Ker σ * : H * (LM) ։ H * (M) satisfies Ker σ * ∪ χ(M)ev * (ω) = {0}. 4) The loop coproduct, µ ! • ∆ * on H * (LM) is given for a, b ∈ H * (LM), by µ ! • ∆ * (a ⊗ b) = χ(M)ev * (σ * (a) ∪ σ * (b) ∪ ω). 5) the loop coproduct, µ ! • ∆ * on H * (LM) is trivial outside of H 0 (LM [1] )⊗ H 0 (LM [1] ) ∼ = k ⊗ k. 6) On H 0 (LM [1]
) ⊗ H 0 (LM [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF] ), the loop coproduct is given by

µ ! • ∆ * (1 ⊗ 1) = χ(M)ev * (ω).
7) The image of the loop coproduct µ ! • ∆ * is contained in H * (LM [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF] ).

Remark 31. Over a field, parts 2), 5) and 7) of this Theorem are not new. Indeed over a field, the commutativity of the loop coproduct was proved by Cohen and Godin [START_REF] Cohen | A polarized view of string topology, Topology, geometry and quantum field theory[END_REF] and parts 5) and 7) are the duals of [28, Theorem B (

Lemma 32. Consider ∆ M ∆ , the self homotopy fibre product along the diagonal. Explicitly ∆ M ∆ is just the subspace

{(ω, ω ′ ) ∈ M I × M I /ω(0) = ω ′ (0), ω(1) = ω ′ (1)}.
Let Θ : ∆ M ∆ ∼ = → LM be the homeomorphism mapping (ω, ω ′ ) to the free loop ω * ω ′-1 obtained by composing the path ω with the inverse of the path ω ′ . Then 1) [25, Example iii) free loop space] With respect to the loop product and the open string product,

H * (Θ) : H * ( ∆ M ∆ ) ∼ = → H * (LM)
is an isomorphism of algebras.

2) With respect to the loop coproduct and the open string coproduct,

H * (Θ) : H * (LM) ∼ = → H * ( ∆ M ∆ )
is an isomorphism of algebras.

Proof. Denote by ρ α : LM

∼ =
→ LM the homeomorphism mapping a free loop l to the rotated free loop t → l(t + α). Up to the homeomorphism Θ, the two pull-back squares defining the open string (co)product on

∆ M ∆ × ∆ M ∆ ev 1 ×ev 0 ∆ M ∆ × M ×M ∆ M ∆ ∆ o o µ ∆,∆,∆ / / ev 1/2 ∆ M ∆ ev 1/2 M × M M ∆ o o ∆ / / M × M
coincide with the following two vertical rectangles defining the loop (co)product since ρ α is homotopic to the identity map.

LM × LM ρ 1/2 ×id ∼ = LM 1/2 × M LM 0 ∼ = o o / / LM ρ 1/4 ∼ = LM × LM ev×ev LM × M LM q ∆ o o µ / / LM (ev,ev 1/2 ) M × M M ∆ / / ∆ o o M × M
Proof of Theorem 30. We apply Theorem 15 in the case where

f = g = h = φ is the diagonal embedding ∆ : M ֒→ M × M.
The normal bundle ν of ∆ is isomorphic to the tangent bundle of M, T M [21, Lemma 11.5]. Since M is compact and connected, the Euler class of the tangent bundle is the fundamental class multiplied by the Euler characteristics [START_REF] Milnor | Characteristic classes[END_REF]Corollary 11.12]:

e ν = e T M = χ(M)ω.
Using part 2) of Lemma 32, we have proved Theorem 30.

Remark 33. Let M be a connected, non-compact k-oriented manifold of dimension m and suppose that k is a field. Then its loop coproduct

µ ! • ∆ * on H * (LM) is trivial. Proof of Remark 33. Since M is non-compact then H m (M) = 0. Since k is a field, H m (M) = Hom k (H m (M), k) = 0. So e T M
is trivial. Therefore the same proof as the proof of Theorem 30 shows that the loop coproduct is trivial.

Alternatively, for any

x ∈ H * (LM × M LM) µ * • µ ! (x) = x ∪ q * (e T M ) = 0.
Since the composition of loops µ admits a section, µ * is injective and so µ ! is null.

Corollary 34. The loop coproduct is trivial if and only if χ(M) = 0 in k.

This corollary follows also from [28, (3-1) and (3-2)] (Compare also with [START_REF]Loop coproducts in string topology and triviality of higher genus TQFT operations[END_REF]Corollary 3.2] or [START_REF] Sullivan | Open and closed string field theory interpreted in classical algebraic topology[END_REF]Bottom p. 7]). In [START_REF] Chataur | Frobenius rational loop algebra[END_REF], Chataur and Thomas gave the first example of manifold with non-trivial loop coproduct.

Proof. Since ev • σ = id, ev * is injective. Therefore since w is a basis of H m (M),

χ(M)ev * (ω) = 0 ⇐⇒ χ(M)ω = 0 ⇐⇒ χ(M) = 0 in k. Remark 35. Since ev • σ = id M , M
is a subspace of LM and we can consider the relative cohomology H * (LM, M). Using the long exact sequence associated, H * (LM, M) can be identified with Ker σ * : H * (LM) ։ H * (M). From part 3) of Theorem 30, we have that the loop coproduct vanishes on H * (LM, M). In [START_REF] Sullivan | Open and closed string field theory interpreted in classical algebraic topology[END_REF], Sullivan introduced a non trivial product on H * (LM, M) of different degree that he called the cutting at any time ∨. In [START_REF] Goresky | Loop products and closed geodesics[END_REF], Goresky and Hingston rediscover this non trivial product that they denote ⊛.

Applications

Theorem 36. Let M be a connected, closed k-oriented manifold of dimension m. Let ω ∈ H m (M) be its orientation class. Let χ(M) be its Euler characteristic. Then 1) χ(M)ev * (ω) ∈ H m (LM [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF] ).

2) For any a ∈ H * (LM) of positive degree,

χ(M)a ∪ ev * (ω) = 0.
Proof. Comparing 6) and 7) in Theorem 30, we get 1). By 5) and 1) in Theorem 30,

0 = µ ! • ∆ * (a ⊗ 1) = χ(M)a ∪ ev * (ω).
If k is a field then 1) means that for all non contractile free loop α and for all a ∈ H m (LM [α] ),

χ(M)H m (ev)(a) = 0.
Remark 37. In general, ev * (ω) does not belong to H * (LM [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF] ) and a ∪ ev * (ω) is not trivial: Suppose that k is a field. Let G be a connected compact Lie group. Note that χ(G) = 0. For any [α] ∈ π 1 (G), let Θ α be the usual isomorphism from the tensor product

H * (Ω [α] G) ⊗ H * (G) to H * (LG [α] ).
Here Ω [α] G denotes the pointed loops of G homotopic to α. Let ε be the augmentation of H * (Ω [α] G). The previous isomorphism Θ α fits into the commutative triangle of graded vector spaces

H * (Ω [α] G) ⊗ H * (G) Θα ∼ = / / ε⊗Id ) ) R R R R R R R R R R R R R H * (LG [α] ) H * (ev)
w w p p p p p p p p p p p

k ⊗ H * (G) Let [G] be the fundamental class of G. Recall that [α] is a generator of H 0 (Ω [α] G). Then H dim G (ev) • Θ α ([α] ⊗ [G]) = [G] = 0
Therefore ev * (ω) does not belong to H dim G (LG [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF] ) for any non simplyconnected, connected compact Lie group G (e. g. S 1 ).

Let η : k → H * (ΩG) be the unit map of H * (ΩG). The usual isomorphism of algebras Θ from the tensor product of graded algebras H * (ΩG) ⊗ H * (G) to H * (LG) fits similarly into the commutative triangle of graded algebras If G is a connected compact Lie group such that H * (ΩG) is not concentrated in degree 0 (e. g. S 3 ), we have obtained an element a of positive degree such that a ∪ ev * (ω) is non zero.

H * (ΩG) ⊗ H * (G) Θ ∼ = / / H * (LG) k ⊗ H * (G) η⊗Id h h R R R R R R R R R R R R R H * (ev)
Corollary 38. Let M be a connected, closed k-oriented manifold of dimension m such that in k, χ(M) = 0. Let µ : S 1 × M → M be a continuous map such that the composite

{1} × M → S 1 × M µ → M
is homotopic to the identity map. Then there exists an map ν : S 1 × M → M homotopic to µ who has at least a fixed point m 0 , i. e. ν(S 1 × {m 0 }) = m 0 .

Proof. Let σ µ : M → LM be the map sending m ∈ M to its orbit µ(-, m) : S 1 → M. Since for all m ∈ M, ev • σ µ (m) = µ(1, m), σ µ is a section up to homotopy of ev. Therefore in cohomology,

σ * µ • ev * (χ(M)ω) = χ(M)ω.
Since M is path-connected, σ µ arrives in the path-connected component LM [α] of a free loop α. So σ * µ is trivial outside of H * (LM [α] ). By 1) of Theorem 36, χ(M)ev * (ω) ∈ H m (LM [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF] ). Since χ(M) is not zero in k, χ(M)ω = σ * µ • ev * (χ(M)ω) is not trivial. Therefore α is contractile, i. e. [α] = [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF].

Let i : {m 0 } ֒→ M be the inclusion of a non-degenerated base point into M. Since α is contractile, σ µ (m 0 ) is homotopic to the constant loop m0 and so the following triangle commutes up to homotopy.

S 1 × M µ / / M S 1 × {m 0 } S 1 ×i O O m0 : : t t t t t t t t t t
By the homotopy extension property of the cofibration S 1 × i : S 1 × {m 0 } ֒→ S 1 × M, we can change up to homotopy µ into a map ν such that the triangle commutes now exactly.

Corollary 38 should be considered as an homotopy version of the following classic result: Theorem 39. ( [START_REF] Spanier | Algebraic topology[END_REF]Theorem 4.7.12]. Compare also with [14, Theorem 5.39 or Corollary 6.17]) Let M be a compact Euclidean Neighborhood Retract (e. g. a compact topological manifold [10, A.9]) such that χ(M) = 0. Let µ : S 1 × M → M be an action of the circle on M. Then M has at least a fixed point.

Remark 40. If a map µ : S 1 ×M → M is only an action up to homotopy then it may happen that M has no fixed point. Therefore the conclusion of Corollary 38 cannot be improved in general: Consider the sphere M = S 2 in R 3 . Let ν : S 1 × S 2 → S 2 be the action given by rotation of axis z. Let f : S 2 → S 2 be the rotation of angle π and of axis y. Since f is homotopic to the identity map, the composite f • ν is an action up to homotopy without any fixed point. Let f be an element as in Corollary 41. By Theorem 36,

χ(M) i(f ) = χ(M)( i) • i * (c) = χ(M)c ∪ ev * (ω) = 0.
So we have recover Corollary 41. Suppose that i * is onto and that H * (ΩM) is torsion free, the Serre spectral sequence collapses at the E 2 -term. So i is injective. Therefore χ(M)f = 0. And we have recover Corollary 42.

TNCZ free loop fibrations

Recall our result on TNCZ free loop fibration.

Corollary 43. (Corollary 42) Let M be a connected, closed k-oriented manifold. Suppose that the free loop fibration

ΩM i ֒→ LM ev ։ M is To- tally Non-Cohomologous to Zero, i. e. H * (i) is onto and that H k (ΩM) is a torsion free k-module for each k ≥ 1. Then χ(M) = 0 in k or M is a point. 1)
The first examples to have in mind are connected compact Lie groups.

2) Let M be a sphere S d or the complex or quaternionic projective space CP n , HP n . Since χ(S d ) = 1 + (-1) d and χ(CP n ) = χ(HP n ) = n + 1, it follows from our calculations in [START_REF] Menichi | The cohomology ring of free loop spaces[END_REF] that over any commutative ring k, H * (i; k) is onto if and only if χ(M) = 0 in k (when k is a field, this follows easily from the formality of M using the Jones isomorphism between Hochschild homology and free loop space cohomology).

3) The converse of Corollary 42 is not true: if n + 1 is not equal to 0 in k, take for example M = CP n × S 3 .

Over Q, Vigué-Poirrier has characterised which free loop fibrations are TNCZ.

Theorem 44. [START_REF] Vigué-Poirrier | Dans le fibré de l'espace des lacets libres, la fibre n'est pas, en général, totalement non cohomologue à zéro[END_REF] Let X be a simply-connected topological space such that for all n, H n (X; Q) is finite dimensional. Then

H * (i; Q) : H * (LX; Q) → H * (ΩX; Q) is onto if and only if H * (X; Q) is a free graded commutative algebra.
In [15, Theorem 2], Kuribayashi studied TNCZ free loop fibrations for some homogeneous spaces over a prime field 

F p . Let V k (R n ) denotes the real Stiefel manifold of orthonormal k-frames in R n . Using the fibration S n-k ֒→ V k (R n ) ։ V k-1 (R n ), we see that if k ≥ 2, χ(V k (R n )) = 0. Similarly for the complex or quartenionic Stiefel manifold, χ(V k (C n )) = χ(V k (H n )) =
(G k (C n )) = χ(G k (H n )) = n k .
We can now rewrite the main theorem of [START_REF] Kuribayashi | On the mod p cohomology of the spaces of free loops on the Grassmann and Stiefel manifolds[END_REF] in term of Euler characteristics. Proof. We have the following two strictly commutative squares and the following triangle commutting up to a homotopy H.

Theorem 45. ([15, Theorem 2]) 1) Let M be Sp(n)/U(n) or V k (C n )) or V k (H n ). Then H * (i; F p ) : H * (LM; F p ) → H * (ΩM; F p ) is onto if and only if χ(M) = 0 modulo p. 2) Let M be G m (C m+n ) or G m (
ΩX × ΩX j / / µ LX × X LX µ ΩX i / / LX ΩX × ΩX j / / τ LX × X LX τ µ & & L L L L L L L L L L L ΩX × ΩX j / / LX × X LX µ / / LX
where the maps µ are the composition of loops and the maps τ are the exchange isomorphisms. The homotopy H is the restriction to

[0, 1/2] × LX × X LX of the composite of Id × µ : S 1 × LX × X LX → S 1 × LX
and of the action of the circle on free loops

S 1 × LX → LX. So finally, i • µ is homotopic to i • µ • τ . Since H * (i) is injective, H * (µ) • H * (τ ) = H * (µ).
Note that our homotopy between i • µ and i • µ • τ is much simpler than the one arriving in EG × G G ad given by Iwase in [13, for a proof using Hochschild homology). In particular χ(ΣX) = 0 modulo the characteristic of k.

Conjecture 48. Let X be a simply-connected finite CW-complex and suppose that k is a field. If H * (i; k) : H * (LX; k) → H * (ΩX; k) is onto then χ(X) is zero modulo the characteristic of k or H * (X) ∼ = k.

It follows from the theorem of Vigue-Poirrier recalled above (Theorem 44) that the conjecture is true over the rationals. In Example 47, we have checked the conjecture for suspensions. In this paper, we proved the conjecture when X is a smooth connected, closed koriented manifold M (Corollary 42). We believe that conjecture 48 can be proved easily using Spanier-Whitehead duality. Example 50. An interesting example is when the fibration g = g 1 : map(S, M) ։ M is the evaluation at the base point of a well-pointed space S. In this case, the pull-back g * LM of LM along g is the space map(S ∨ S 1 , M) of maps from the wedge of S and the circle to M.

Example 51. A generalization of the preceding example is when g 2 : L → M is any smooth map and the fibration g 1 : map(S, L) ։ L is the evaluation at the base point of a well-pointed space S. In this case, the pull-back g * LM of LM along g is the space map((S ∨ S 1 , S), (M, L)) of couples of maps (ϕ, ψ) such that the square S 

Corollary 2 .

 2 (Corollary 42 below) Let M be a connected, closed oriented manifold. Suppose that the free loop fibration ΩM i ֒→ LM ev ։ M is Totally Non-Cohomologous to Zero with respect to a field F, i. e. H * (i; F) : H * (LM; F) ։ H * (ΩM; F) is onto. Then χ(M) = 0 in F or M is a point.

  M and B are both h * -oriented, ν is h * -oriented since T M and T B |M = T M ⊕ν are h * -oriented ([12, Chapter 4, Lemma 4.1] or [7, Theorem 6 p. 45]). By the tubular neighborhood theorem ( [21, 11.1] or [12, Chapter 4, Theorem 5.2]), there exists an open neighborhood V of M in B and a diffeomorphism exp : ν ∼ = → V such that under this diffeomorphism, the zero section map M → ν corresponds to the inclusion map s : M ֒→ V . Consider the associated closed disk bundle D(ν) and the associated sphere bundle S(ν). Let N := exp(D(ν)) be a closed tubular neighborhood. Let ∂N := exp(S(ν)) be its boundary. Note that the inclusion map s : M ≈ ֒→ N is a homotopy equivalence. Since ν is h * -oriented, there exists a Thom class u ∈ h b-m (D(ν); S(ν)) and a Thom isomorphism [21, Theorem 9.1].

  Therefore the two spaces S (ν) and q * (S(ν)) obtained by pulling back this two composites along the (Serre) fibration p : Ñ ։ N are (weakly) homotopy equivalent[START_REF] Spanier | Algebraic topology[END_REF] Chap. 

  the inclusion map on the first factor defined by i 1 (a, w, b) = ((a, w, b), (b, constant path g(b), b)) for a ∈ F , w ∈ E I and b ∈ G such that f (a) = w(0) and g(b) = w(1).

։

  B be a (Serre) fibration with base B which admits a section σ : B → E up to homotopy, i. e. p • σ ≈ id B and an element e ∈ h * (B) such that Ker σ * ∪ p * (e) = {0}. If the fibration p is Totally Non-Cohomologous to Zero, i. e. h * (i) : h * (E) ։ h * (F ) is onto and if h * (F ) is a finitely generated free graded h * -module then e = 0 or h * (F ) = {0}. Remark 19. Let p : E ։ B be a fibration. Let ω : I → B be a path from b to b ′ . Let w # : p -1 (b) ≈ → p -1 (b ′ ) be the induced homotopy equivalence between the fibers [23, Theorem 2.8.12]. By definition, w # commutes up to homotopy with the inclusions of fibers i b : p -1 (b) ֒→ E and i b

  be a (Serre) fibration with pathconnected base B which admits a section σ : B → E up to homotopy, i. e. p • σ ≈ id B and an element e ∈ H m (B) such that Ker σ * ∪ p * (e) = {0}. Consider the cohomological Serre spectral sequence (E * , * r , d r ) associated to the fibration p. Suppose that the action of π 1 (B) on H * (F ) is trivial.

2

  must be killed: there exist r ≥ 2 and x ∈ E * , *r such that d r (x) = e ⊗ 1 ∪ 1 ⊗ f .Proof. Since B is path-connected, the triviality of the local coefficients H * (F ) implies that i * 0 is an isomorphism (and conversely by [22, III.1.18 (3)]).

  is the class of p * (e) ∪ c. Since Ker σ * ∪ p * (e) = {0}, p * (e) ∪ c = 0. Therefore e ⊗ 1 ∪ 1 ⊗ f must be killed. Lemma 22. Let F i ֒→ E p ։ B be a (Serre) fibration with pathconnected base B which admits a section σ : B → E up to homotopy, i. e. p • σ ≈ id B and an element e ∈ H m (B) such that Ker σ * ∪ p * (e) = {0}.

Lemma 23 .

 23 Let B = ∪ β∈π 0 (B) B β the decomposition of B into its pathconnected components. Let p : E ։ B be a (Serre) fibration with base B which admits a section σ : B → E up to homotopy, i. e. p • σ ≈ id B and an element e = (e β ) β∈π 0 (B) ∈ H m (B) = Π β∈π 0 (B) H m (B β ) such that Ker σ * ∪ p * (e) = {0}.

  obtained by restricting p to the union E π 0 (p) -1 (β) of path-connected components α of E such that π 0 (p)(α) = β. The fibration p β admits the restriction of σ to B β , σ β : B β → E π 0 (p) -1 (β) as section up to homotopy. The product of mapsΠ β∈π 0 (B) σ * β : Π β∈π 0 (B) H * (E π 0 (p) -1 (β) ) → Π β∈π 0 (B) H * (B β ) can be identified with σ * : H * (E) → H * (B). Therefore Ker σ * ∪ p * (e) can be identified with Π β∈π 0 (B) (Ker σ * β ∪ p * β (e β )). Of course, the following theorem generalizes the fundamental Corollary 11.4 of [21]. Theorem 24. Let g : G ֒→ E be the pull-back of an embedding in the sense of definition 11. Let e ν ∈ h m (M) be the Euler class of the normal bundle of the embedding φ : M ֒→ B. Let p g : E I × g G ։ E be the fibration associated to g defined by p g ((ω, b)) = ω(0) for any b ∈ G and any path ω : I → E such that ω(1) = g(b). Let p φ : B I × φ M ։ B be the fibration associated to φ.

  ev 0 is Totally Non-Cohomologous to Zero. Suppose now that f = g (and F = G). By part 4) of Theorem 15, Ker σ * ∪ ev * 0 • q * (e ν ) = {0}. By applying Lemma 23 to the fibration ev 0 : g E g ։ G we obtain that for all b ∈ G, the component of q * (e ν ) in H * (G [b] ) is trivial or H * (ev -1 0 (b)) = {0}. 8. an example Corollary 25. Consider the following pull-back diagram

  Therefore for any non-zero element b of H * (ΩG), Θ(b ⊗ 1) ∪ H * (ev)(ω) = Θ(b ⊗ w) = 0.

Corollary 41 .

 41 Let M be a connected, closed k-oriented manifold of dimension m. Consider the cohomological Serre spectral sequence (E * , * r , d r ) associated to the free loop fibrationΩM i ֒→ LM ev ։ M. Suppose that the (conjugation) action of π 1 (M) on H * (ΩM) is trivial. Let f be an element of H * (ΩM). Suppose that f is in the image of i * : H * (LM) → H * (ΩM). Then χ(M)ω ⊗ f ∈ H m (M) ⊗ H * (ΩM) = E m, *2 must be killed: there exist r ≥ 2 and x ∈ E * , * r such that d r (x) = χ(M)ω ⊗ f . Consider the free loop fibration ΩM i ֒→ LM ev ։ M. In this case, i ! is the intersection morphism H * +dim M (LM) → H * (ΩM) defined by Chas and Sullivan.

  0. The Euler characteristic χ(G/H) of the quotient of a compact connected Lie group G by a connected closed subgroup H of same rank is the quotient |W (G)|/|W (H)| of the cardinals of their Weyl groups [22, VII.Theorem 3.13]. Therefore χ(Sp(n)/U(n) = 2 n and for Grassmannians χ

13 . 1 ։ L g 2 →

 1312 the relative free loops case Let g : N → M be a map. Let g * LM denote the relative free loops space of g which is obtained by the following pull-back Theorem 49. Let σ : N ֒→ g * LM, n → (n, constant loop g(n)) be the section of the projection map p :g * LM → N, (n, w) → n. Let M be a smooth h * -oriented manifold of dimension m. Let e T M ∈ h m (M)be the Euler class of the tangent bundle of M. Suppose that g is the compositeN g Mwhere a) N is a smooth manifold without boundary and g 2 is smooth and b) g 1 is a (Serre) fibration .Then for anyb ∈ h * (g * LM), b ∪ p * • g * (e T M ) = p * • σ * (b) ∪ p * • g * (e T M ).In particular if there is an integer dim N such that ∀i > dim N, h i (N) = {0} then for all b ∈ h * (g * LM) of degree |b| > dim G -m, b ∪ p * • g * (e T M ) = 0.

2 S

 2 ∨ S 1 ϕ / / M. commutes.Corollary 52. Let M be a smooth h * -oriented manifold of dimension m. Let e T M ∈ h m (M) be the Euler class of the tangent bundle of M. Denote by ∨ n S 1 the wedge of n ≥ 0 circles. Let σ n : M ֒→ map(∨ n S 1 , M), m → constant map m be the section of the evaluation map ev n :map(∨ n S 1 , M) ։ M. Then for any b ∈ h * (map(∨ n S 1 , M)), b ∪ ev * n (e T M ) = ev * n • σ * n (b) ∪ ev * n (e T M). Proof. When n = 0, the formula is true since ev 0 and σ 0 are just the identity map of M. By induction on n, suppose that for any a ∈ h * (map(∨ n-1 S 1 , M)), a ∪ ev * n-1 (e T M ) = ev * n-1 • σ * n-1 (a) ∪ ev * n-1 (e T M ). By example 50 in the case S = ∨ n-1 S 1 and g = ev n-1 , for any b ∈ h * (map(S ∨ S 1 , M)), b ∪ p * • ev * n-1 (e T M ) = p * σ * (b) ∪ ev * n-1 (e T M ).By taking a = σ * (b), the latter is equal top * ev * n-1 • σ * n-1 • σ * (b) ∪ ev * n-1 (e T M ) Since p * • ev * n-1 = ev * n and σ * n-1 • σ * = σ * n ,the conclusion follows. Remark 53. Again, let S be a well-pointed space. Suppose that the fibration map * (S ∨ S 1 , M) i ֒→ map(S ∨ S 1 , M) ev ։ M is Totally Non-Cohomologous to Zero, i. e. H * (i) is onto. Let π : S ∨ S 1 ։ S 1 be the canonical projection. Then we have the commutative triangle LM map(π,M ) ∨ S 1 , M) ev M Since the induced map between the fibers in cohomology, H * (map * (π, M)) : H * (map * (S ∨ S 1 , M)) → H * (ΩM) is surjective, the free loop fibration ΩM i ֒→ LM ev ։ M is also Totally Non-Cohomologous to Zero, i. e. H * (i) is onto. Conclusion: the preceding corollary together with Lemma 22 is not really interesting to see if the fibration (ΩM) ×n i ֒→ map(∨ n S 1 , M) evn ։ M is Totally Non-Cohomologous to Zero or not.Let f : N → M and g : N → M be two maps. Let N × f M I × g N denote the homotopy coincidence point space of f and g which is obtained by the following pull-backN × f M I × g N / / p M I (ev 0 ,ev 1 ) N (f,g) / / M × M. Lemma 54. Let ξ : N × f M I × g N ֒→ 1,f (N × M) 1,g be the map from the homotopy coincidence point space of f and g to the homotopy fibre product of (1, f ) : N → N × M and (1, g) : N → N × M defined by ξ(n, ω) = (n, the path t → (n, ω(t)), n) for any n ∈ N and any path ω : I → M such that ω(0) = f (n) and ω(1) = g(n). Then ξ is a homotopy equivalence

  H m+n ) with m and n ≥ 2 and p any prime. Then H * (i; F p ) : H * (LM; F p ) → H * (ΩM; F p ) is not onto. (ΩV m (R m+n ); F p ) is onto if and only if n is odd. So over F p , it is not clear when the converse of Corollary 42 holds or not. Let X be a topological space. Suppose that ∀n ≥ 0, H n (ΩX; Z) is a finitely generated free abelian group, that H * (LX; Z) has no p-torsion and that H * (i; F p ) : H * (LX; F p ) → H * (ΩX; F p ) is onto. Then by the universal coefficient theorem for homology, H We now give a last result on TNCZ free loop fibration due to Iwase in the context of classifying space BG of finite loop spaces. Theorem 46. [13, Theorem 2.2] Let X be a pointed topological space. If H

3) Let p an odd prime. Then H * (i;

F p ) : H * (LV m (R m+n ); F p ) → H * * (i; Q) : H * (LX; Q) → H * (ΩX; Q) is onto. * (i; k) : H * (ΩX; k) → H * (LX; k) is injective then the Pontryagin algebra H * (ΩX; k) is graded commutative (in particular π 1 (X) is abelian).

  Example 47. (Suspension) Suppose that k is a field. Let X be a pathconnected space such that H * (X) is not concentrated in degree 0. By Bott-Samelson theorem, the Pontryagin algebra H * (ΩΣX) is isomorphic to the tensor algebra T H + (X) on the homology of X in positive degrees. Suppose that H * (i; k) : H * (LΣX; k) → H * (ΩΣX; k) is surjective. Then H * (i; k) : H * (ΩΣX; k) → H * (LΣX; k) is injective. So by Theorem 46, the Pontryagin ring H * (ΩΣX) is graded commutative. So H + (X) is of dimension 1 and is concentrated in even degree if the characteristic of k is different from 2 (See [16, Example 2.6]

	Proof of
	Lemma 3.1].

Proof. By [START_REF] Milnor | Characteristic classes[END_REF]Theorem 14.10], c(T CP n ), the total Chern class of the tangent bundle of CP n is equal to (1+a) n+1 in H Π (CP n ). Since T CP q ⊕ ν = T CP n |CP q , in H Π (CP q ), c(ν) = c(T CP n |CP q )/c(T CP q ) = (1 + a) n+1 /(1 + a) q+1 = (1 + a) n-q . Therefore e(ν) = c n-q (ν) = a n-q .

We have a morphism of S 1 -principal fibre bundles

φ / / S 2n+1 CP q φ / / CP n where φ : S 2q+1 ֒→ S 2n+1 is the inclusion. Since this square is a pullback, the homotopy fibre of φ, p -1 φ ( * ), is homotopy equivalent to the homotopy fibre of φ. Since π 2q+1 (S 2n+1 ) = {0}, φ is homotopically trivial and its homotopy fibre is homotopy equivalent to S 2q+1 ×ΩS 2n+1 . Therefore by Theorem 24, all the components of q * (e ν ) are trivial.

Corollary 26. Let f : CP p ֒→ CP n and g : CP q ֒→ CP n be the inclusions, 0 ≤ p < n, 0 ≤ q < n. If the fibration ev 0 : f E g ։ CP p is Totally Non-Cohomologous to Zero then q ≥ p and n > p + q.

Proof. Suppose that q < p. Since ev * 0

Therefore ev * 0 is not injective and so by [22, III.Theorem 4.4], ev 0 is not Totally Non-Cohomologous to Zero.

Consider the Serre spectral sequence associated to the fibration F ֒→ f E g ev 1 ։ CP q . We saw in the proof of Corollary 25 that its fibre F is homotopy equivalent to S 2p+1 × ΩS 2n+1 . Therefore H + (F ) is concentrated in degree ≥ 2p + 1. And so E s,t r = {0} ⇒ t = 0 or t ≥ 2p + 1. Therefore ev * 1 is an isomorphism in degree ≤ 2p. (In particular, if p ≥ q, ev * 1 is injective). Suppose now that ev 0 is Totally Non-Cohomologous to Zero and that n -q ≤ p. Then H 2n-2q (ev 1 ) :

And so a n-q = 0 in H * (CP q ). Therefore n -q > q. In particular, p > q.

Remark 27. In the case p = q of Corollary 26, parts 4) and 8) of Theorem 15 give that Ker σ * ∪ ev * 0 (a n-q ) = {0}

Proof. Since M is compact, ∀n ≥ 0, H n (M) is a finitely generated kmodule. So since k is a principal ideal domain by [START_REF] Spanier | Algebraic topology[END_REF]Theorem 5.5.10], we have a short exact sequence

Corollary 42. Let M be a connected, closed k-oriented manifold. Suppose that the free loop fibration

Interpretation and proofs of Corollaries 41 and 42 in term of integration along the basis. Let F i ֒→ E p ։ M be a fibration. Suppose that π 1 (M) acts trivially on H q (F ). Let i : H q (F ) → H q+m (E) be the composite

If M is a sphere, this integration along the basis i appears in Wang exact sequence and the following two properties are well known [31, Theorems (3.1) and (3.5) Chapter VII]: for x ∈ H * (F ) and y ∈ H * (E),

and p * (ω) = ( i) [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF]. In general, these properties are easy to deduce from the multiplicativity and the naturality of the Serre spectral sequence. In particular, we have ( i) • i * (y) = y ∪ p * (ω). Since the inclusion of the fibre i : F ֒→ E is the pull-back along p of the embedding * ֒→ M, following Section 3, one can define a shriek map i ! for i.

In this paper, we will not use that i ! coincides with ( i) although this should follows from the diagram in [17, (2) p. 12].

Proof. Consider the three pull-backs squares

(ev 0 ,ev 1 )

Here p 1 are the projections on the first factor. Consider also the two pull-back squares

for any n ∈ N and any path ω : I → M such that ω(1) = g(n).

Obviously ξ is a homotopy equivalence. We obtain the following commutative diagram where the two squares are pull-backs according to the two previous diagrams.

By decomposing (1, f ) into the composite of a homotopy equivalence and of a fibration, we show using the structure of model category on topological spaces, that ξ is a homotopy equivalence since both ev 0 and (p N , ev 0 ) = ev 0 • ξ are fibrations.

Proof of Theorem 49. Consider the two pull-back squares

Since g 2 and 1 : M → M are transverse, g 2 × 1 is transverse to the diagonal embedding ∆. And so by Remark 12, (1, g 2 ) : L → L × M is a proper embedding of codimension m with h * -oriented normal bundle. Since g 1 is a (Serre) fibration, g 1 ×1 is also a (Serre) fibration. Therefore (1, g) : N → N × M is the pull-back of an embedding in the sense of definition 11. So we can apply part 4) of Theorem 15. Since the homotopy equivalence ξ : N × f M I × g N ≈ ֒→ 1,f (N ×M) 1,g of Lemma 54 in the case f = g commutes with the projection maps, i. e. ev 0 • ξ = p and also with the two sections σ, the ideal Ker σ * : h * (g * LM) ։ h * (N) satisfies Ker σ * ∪ p * • g * (e T M ) = {0}.