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Approximation of backward stochastic differential equations
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Abstract: We design a numerical scheme for solving a Dynamic Programming equation with Malli-

avin weights arising from the time-discretization of backward stochastic differential equations

with the integration by parts-representation of the Z-component by [MZ02]. When the sequence

of conditional expectations is computed using empirical least-squares regressions, we establish,

under general conditions, tight error bounds as the time-average of local regression errors only

(up to logarithmic factors). We compute the algorithm complexity by a suitable optimization of

the parameters, depending on the dimension and the smoothness of value functions, in the limit

as the number of grid times goes to infinity. The estimates take into account the regularity of

the terminal function.

Keywords: Backward stochastic differential equations, Malliavin calculus, dynamic programming

equation, empirical regressions, non-asymptotic error estimates.
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1 Introduction

1.1 The problem

Let T > 0 be a fixed terminal time and let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space whose

filtration is augmented with the P-null sets. Let π = {0 =: t0 < t1 < . . . < tN−1 < tN := T} be a

given time-grid on [0, T ] and ∆i := ti+1 − ti. Additionally, for a fixed q ∈ N\{0}, we are given a set

{H(i)
j : 0 ≤ i < j ≤ N} of (Rq)>-valued random variables in L2(FT ,P) (i.e. square integrable and
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FT -measurable) that we call Malliavin weights (whose significance is explained below). Here > stands

for the transpose.

In this paper, we introduce a numerical algorithm, named MWLS, to approximate discrete time

stochastic processes (Y,Z) defined by
Yi = Ei[ξ +

N−1∑
j=i

fj(Yj+1, Zj)∆j ], 0 ≤ i ≤ N,

Zi = Ei[ξH(i)
N +

N−1∑
j=i+1

fj(Yj+1, Zj)H
(i)
j ∆j ], 0 ≤ i ≤ N − 1,

(1.1)

where Ei[·] = E[·|Fti ], ξ is a R-valued random variable in L2(FT ,P), and (ω, y, z) 7→ fj(ω, y, z) is Ftj ⊗
B(R)⊗B((Rq)>)-measurable. This system is solved backward in time in the order YN , ZN−1, YN−1 . . .

and it takes the form of a dynamic programming equation with Malliavin weights: we call it Malliavin

Weights Dynamic Programming equation (MWDP for short).

The main application of (1.1) is to approximate continuous-time, decoupled Forward-Backward

SDEs (FBSDEs) of the form

Yt = ξ +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs (1.2)

where (Ws)s≥0 is a Brownian motion in Rq, (Xs)s≥0 is a diffusion in Rd and ξ is of the form Φ(XT ).

Indeed, according to [MZ02, Theorem 4.2], there is a version of the process (Zt)0≤t<T given by

Zt = Et[ξH(t)
T +

∫ T

t

f(s,Xs, Ys, Zs)H
(t)
s ds] (1.3)

where the processes (H
(t)
s )0≤t<s≤T are Malliavin weights defined by

H(t)
s =

1

s− t
( ∫ s

t

(σ−1(r,Xr)DtXr)
>dWr

)>
, 0 ≤ t < s ≤ T, (1.4)

where (DtXr)t is the Malliavin derivative of Xr and σ(.) is the diffusion coefficient of X. The represen-

tation (1.3) is obtained via a Malliavin calculus integration by parts formula, see [Nua06] for a general

account on the subject. A discretization procedure to approximate the FBSDE (1.2-1.3) with (1.1),

including explicit definitions of the random variables H
(i)
j based on (1.4), is given in [Tur13], where

the author also computes the discretization error in terms of N . In honour of the connection between

(1.1) and (1.2-1.3), call the random variables H
(i)
j Malliavin weights, ξ the terminal condition, and

(i, ω, y, z) 7→ fi(y, z) the driver. We say that the pair (Y,Z) satisfying (1.1) solves a discrete BSDE,

or a MWDP, with terminal condition ξ and driver fi(x, y).

Contributions. In this paper, we are not concerned with the discretization procedure, rather with

the analysis of the MWDP equation (1.1) and its numerical resolution via what we call the MWLS

algorithm, in which one uses empirical least-squares regressions (approximations on finite basis of

functions using simulations) to compute conditional expectations. Since the system (1.1) may be

relevant to problems beyond the FBSDE system (1.2-1.3), we allow the framework and assumptions
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to accomodate as much generality as possible. However, MWLS is, to the best of our knowledge,

the first direct implementation of formula (1.3) in a fully implementable numerical scheme. For other

applications of Malliavin calculus in numerical simulations, with rather different perspectives and

results to ours, see for instance [FLL+99][KHP02][BT04][GM05][BCZ05][HNS11][BL13].

We adapt the recent theoretical analysis of [GT13] for discrete BSDEs (without Malliavin weights)

to the setting of MWDP: actually, the Malliavin weights lead to significantly differences. As in

the aforementioned reference, we consider locally Lipschitz driver fi(y, z), to allow the case of some

quadratic BSDEs or some proxy/variance reduction methods - see Section 1.3.

We prove stability results on the MWDP in Section 2. These results are instrumental throughout

the paper. The stability estimates on Z are at the individual time points (coherently with the repre-

sentation theorem of [MZ02]) rather than the time-averaged estimates of [GT13, Proposition 3.2]: this

allows for finer and more precise computations. The time-dependency in our estimates also takes into

better account the regularity of the terminal condition, similarly to the continuous-time case [DG06].

Section 3 is the core of the paper: it is dedicated to the MWLS algorithm in the Markovian context

Yi = yi(Xi) and Zi = zi(Xi) for some Markov chain Xi in Rd and unknown functions (yi(·), zi(·)). In

MWLS, the conditional expectations in (1.1) are replaced by Monte-Carlo least-squares regressions: to

each point of the time-grid, we use a cloud of independent paths of the explanatory process X and the

Malliavin weights H, and some approximation spaces for representing the value functions (yi(·), zi(·)).
The algorithm is detailed in Section 3.2 and a full error analysis is performed in Sections 3.3 and 3.4 in

terms of the number of simulations and the approximation spaces. The final error estimates (Theorem

3.10) are similar to [GT13, Theorem 4.11] in that they are the time-averaged regression errors of the

discrete BSDE, but the results are in a stronger norm and the time-dependency is better (in particular

we avoid the 1/∆i-factor). These error estimates appear to be optimal regarding the convergence rates

(up to logarithmic factors) and are valid under rather great generality regarding the distribution of

the stochastic model for X and H (model-free estimates).

Taking into account the time-dependency as mentioned above is important for the complexity

analysis (Section 3.5) and the derivation of optimal convergence rates. Regarding the curse of dimen-

sionality, the rates depend on a dimensionality parameter which is that of the Markov chain X (i.e.

d) and (hopefully) not that of the Malliavin weights.

This paper is theoretically oriented, and is aimed at paving the way for such new numerical ap-

proaches. Further works will be devoted to a deeper investigation about the numerical performance of

the MWLS algorithm compared to other known numerical schemes.

1.2 Notation used throughout the paper

• |x| stands for the Euclidean norm of the vector x, > denotes the transpose operator.

• |U |p := (E|U |p)
1
p stands for the Lp(P)-norm (p ≥ 1) of a random variable U . The Ftk -conditional

version is denoted by |U |p,k := (Ek|U |p)
1
p . To indicate that U is additionally measurable w.r.t.

the σ-algebra Q, we may write U ∈ Lp(Q,P).

• For a multidimensional process U = (Ui)0≤i≤N , its l-th component is denoted by Ul = (Ul,i)0≤i≤N .

• For any finite L > 0 and x = (x1, . . . , xn) ∈ Rn, define the truncation function TL(x) :=

(−L ∨ x1 ∧ L, . . . ,−L ∨ xn ∧ L).
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• For finite x > 0, log(x) is the natural logarithm of x.

1.3 Assumptions

First set of hypotheses. The following assumptions hold throughout the entirety of the paper. Let

Rπ > 0 be a fixed parameter: this constant determines which time-grid can be used. The larger Rπ,

the larger the class of admissible time-grids. All subsequent error estimates depend on Rπ.

(Aξ) ξ is in L2(FT ,P),

(AF) i) (ω, y, z) 7→ fi(y, z) is Fti ⊗ B(R) ⊗ B((Rq)>)-measurable for every i < N , and there exist

deterministic parameters θL ∈ (0, 1] and Lf ∈ [0,+∞) such that

|fi(y, z)− fi(y′, z′)| ≤
Lf

(T − ti)(1−θL)/2
(|y − y′|+ |z − z′|),

for any (y, y′, z, z′) ∈ R× R× (Rq)> × (Rq)>.

ii) There exist deterministic parameters θc ∈ (0, 1] and Cf ∈ [0,+∞) such that

|fi(0, 0)| ≤ Cf
(T − ti)1−θc

, ∀0 ≤ i < N.

iii) The time-grid π := {0 = t0 < . . . < tN = T} satisfies

max
0≤i≤N−2

∆i+1

∆i
≤ Rπ.

(AH) For all 0 ≤ i < j ≤ N , the Malliavin weights satisfy

E[H
(i)
j |Fti ] = 0,

[
E[|H(i)

j |
2|Fti ]

]1/2 ≤ CM
(tj − ti)1/2

for a finite constant CM ≥ 0.

Comments. We remark that assumptions (Aξ) and (AF-i-ii) are the same as their equivalents in

[GT13, Section 2]: the usual case of ”Lipschitz” BSDE is covered by θL = θc = 1. As explained in

[GT13], the case of locally Lipschitz driver (θL < 1 or/and θc < 1) is interesting since it allows a large

variety of applications, such as solving BSDEs using proxy methods or variance reduction methods,

and solving quadratic BSDEs. We refer the reader to [GT13, Section 2] for details.

Assumption (AF-iii) is much simpler compared to [GT13]. If Rπ ≥ 1, (AF-iii) is satisfied by any

time grid with non-increasing time-step, such as the grids of [GM10, Ric11, GGG12], which may be

valuable for future work on time-grid optimization.

Assumption (AH) is specific to the dynamic programming equation with Malliavin weights. It is

satisfied for the weights derived in [MZ02], and this can remain true after discretization (see [Tur13]

or [GM05]).

Second set of hypotheses: Markovian assumptions. The following assumptions will mostly

be used in Section 3. They give us a Markov representation for solutions of the discrete BSDEs (see
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Equation (3.1) later). We also include additional assumptions on the terminal condition to obtain

tighter estimates on Zi (see Corollary 2.6 and subsequent remarks).

(AX) X is a Markov chain in Rd (1 ≤ d < +∞) adapted to (Fti)i. For every i < N and j > i, there

exist Gi ⊗B(Rd)-measurable functions V
(i)
j : Ω×Rd → Rd where Gi ⊂ FT is independent of Fti ,

such that Xj = V
(i)
j (Xi).

(A′ξ) i) ξ is a bounded FT -measurable random variable: Cξ := P− ess supω |ξ(ω)| < +∞.

ii) ξ is of form ξ = Φ(XN ) for a bounded, measurable function Φ.

(A′′ξ ) In addition to (A′ξ), for some θΦ ∈ [0, 1] and a finite constant CΦ ≥ 0, we have |ξ − Eiξ|2,i ≤
CΦ(T − ti)θΦ/2 for any i ∈ {0, . . . , N}.

(A′F) For every i < N , the driver is of the form fi(ω, y, z) = fi(Xi(ω), y, z), and (x, y, z) 7→ fi(x, y, z)

is B(Rd)⊗ B(R)⊗ B((Rq)>)-measurable and (AF) is satisfied.

(A′H) In addition to (AH), for every i < N and j > i, there is a function h(i)
j : Ω × Rd → (Rq)> that

is Gi ⊗ B(Rd)-measurable, where Gi ⊂ FT is independent of Fti , such that H
(i)
j = h(i)

j (Xi).

Comments. (AX) is usually satisfied when X is the solution of SDE or its Euler scheme built on the

time grid π.

(A′′ξ ), which is inspired by the fractional smoothness condition of [GM10] although somewhat

stronger, is satisfied, for instance, if the terminal function Φ is θΦ-Hölder and Ei[|XN − Xi|2] ≤
CX(T − ti), which is satisfied by a diffusion process (possibly including bounded jumps) with bounded

coefficients and by the Euler scheme for such a diffussion. Indeed, we have

|ξ − Eiξ|2,i ≤ |Φ(XN )− Φ(Xi)|2,i ≤ CΦ(CX(T − ti))
θΦ
2 .

Regarding (A′H), the Malliavin weights (1.4) satisfy this assumption (under the conditions that the

drift coefficient b, the diffusion coefficient σ, and the inverse of the diffusion coefficient, as well as their

first space-derivatives, are all uniformly bounded) because of the flow property of the diffusion X and

since

DtXr = ∇Xr∇X−1
t σ(t,Xt)1t≤r = ∇xXt,x

r |x=Xtσ(t,Xt)1t≤r

where Xt,x denotes the SDE solution starting from x at time t, and ∇Xt := ∇xX0,x
t .

2 Stability

Suppose that (Y1, Z1) (resp. (Y2, Z2)) solves a MWDP with terminal condition/driver (ξ1, f1,i) (resp.

(ξ2, f2,i)). We are mainly interested in studying the differences (Y1−Y2, Z1−Z2). The driver f1,i(y, z)

is not assumed to be Lipschitz continuous, but we assume that each f1,i(Y1,i+1, Z1,i) is in L2(FT )

so that Y1,i and Z1,i are also square integrable for any i (thanks to (AH)). The driver f2,i(y, z) is

locally Lipschitz continuous w.r.t. (y, z) as in (AF-i), which is crucial for the validity of the a priori

estimates. Additionally, we do not insist that the drivers be adapted, which will be needed in the

setting of sample-dependant drivers.
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2.1 Gronwall type inequalities

Here we gather deterministic inequalities frequently used throughout the paper. They show how

linear inequalities with singular coefficients propagate. They take the form of unusual Gronwall type

inequalities. Their proofs are postponed to Appendix A.1. We assume that π is in the class of time-

grids satisfying (AF-iii).

Lemma 2.1. Let α, β > 0 be finite. There exists a finite constant Bα,β ≥ 0 depending only on Rπ,

α and β (but not on the time-grid) such that, for any 0 ≤ i < k ≤ N ,

k−1∑
j=i

(tk − tj)α−1∆j ≤ Bα,1(tk − ti)α,
k−1∑
j=i+1

(tk − tj)α−1(tj − ti)β−1∆j ≤ Bα,β(tk − ti)α+β−1.

Lemma 2.2 (exponent improvement in recursive equations). Let α ≥ 0, β ∈ (0, 1
2 ] and k ∈ {0, . . . , N−

1}. Suppose that, for a finite constant Cu ≥ 0, the finite non-negative real-valued sequences {ul}l≥k
and {wl}l≥k satisfy

uj ≤ wj + Cu

N−1∑
l=j+1

ul∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

, k ≤ j ≤ N. (2.1)

Then, for two finite constants C(2.2a) ≥ 0 and C(2.2b) ≥ 0 that depend only on Cu, T, α, β and Rπ,

uj ≤ C(2.2a)wj + C(2.2a)

N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

+ C(2.2b)
N−1∑
l=j+1

ul∆l

(T − tl)
1
2−β

, k ≤ j ≤ N.

(2.2)

Lemma 2.3 (intermediate a priori estimates). Let α ≥ 0, β ∈]0, 1
2 ] and k ∈ {0, . . . , N − 1}. Assume

that the finite non-negative real-valued sequences {ul}l≥k and {wl}l≥k satisfy (2.2) for finite constants

C(2.2a) ≥ 0 and C(2.2b) ≥ 0. Then, for any finite γ > 0, there is a finite constant C(γ)
(2.3)≥ 0 (depending

only on C(2.2a), C(2.2b), T , α, β, Rπ and γ) such that

N−1∑
l=j+1

ul∆l

(T − tl)
1
2−β(tl − tj)1−γ

≤ C(γ)
(2.3)

N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β(tl − tj)1−γ

, k ≤ j ≤ N. (2.3)

Plugging (2.3) with γ = 1
2 + α into (2.1) gives a ready-to-use result.

Proposition 2.4 (final a priori estimates). Under the assumptions of Lemma 2.2, (2.1) implies

uj ≤ wj + C( 1
2 +α)

(2.3) Cu

N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

, k ≤ j ≤ N.

2.2 Stability of discrete BSDEs with Malliavin weights

Define:

∆Y = Y1 − Y2, ∆Z = Z1 − Z2, ∆ξ = ξ1 − ξ2,
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∆fi = f1,i(Y1,i+1, Z1,i)− f2,i(Y1,i+1, Z1,i).

Let k ∈ {0, . . . , N − 1} be fixed: throughout this subsection, Ftk -conditional L2-norms are considered

and we recall the notation |U |2,k :=
√
Ek[|U |2] for any square integrable random variable U . For j ≥ k,

define

|Θj |2,k = |∆Yj+1|2,k + |∆Zj |2,k.

Using (AH), we obtain Ei[∆ξH(i)
N ] = Ei[(∆ξ − Ei∆ξ)H(i)

N ] and

|Ei[∆ξH(i)
N ]|2 ≤ Ei[|∆ξ − Ei∆ξ|2]

C2
M

(tN − ti)
, |Ei[∆fjH(i)

j ]|2 ≤ C2
MEi[|∆fj |2]

tj − ti
j ≥ i+ 1. (2.4)

Combining this kind of estimates with (AF-i), our stability equations (for k ≤ i) are

|∆Yi|2,k ≤ |∆ξ|2,k +

N−1∑
j=i

|∆fj |2,k∆j +

N−1∑
j=i

Lf2
|Θj |2,k

(T − tj)(1−θL)/2
∆j , (2.5)

|∆Zi|2,k ≤
CM |∆ξ − Ei∆ξ|2,k√

T − ti
+

N−1∑
j=i+1

CM |∆fj |2,k√
tj − ti

∆j +

N−1∑
j=i+1

Lf2
CM |Θj |2,k

(T − tj)(1−θL)/2
√
tj − ti

∆j . (2.6)

Proposition 2.5. Taking α = 0, β = θL/2 and Cu = Lf2
(CM +

√
T ) in Lemmas 2.2 and 2.3, recall

the constant C(γ)
(2.3). Assume that ξj is in L2(FT ). Moreover, for each i ∈ {0, . . . , N − 1}, assume that

f1,i(Y1,i+1, Z1,i) is in L2(FT ) and f2,i(y, z) is locally Lipschitz continuous w.r.t. y and z as in (AF-i),

with a constant Lf2 . Then, under (AH), we have

|∆Yi|2,k ≤ C(1)
y |∆ξ|2,k + C(2)

y

N−1∑
j=i

|∆fj |2,k∆j , 0 ≤ k ≤ i ≤ N,

|∆Zi|2,k ≤ C(1)
z

|∆ξ − Ei∆ξ|2,k√
T − ti

+ C(2)
z

N−1∑
j=i+1

|∆fj |2,k√
tj − ti

∆j + C(3)
z |∆ξ|2,k(T − ti)

θL
2 , 0 ≤ k ≤ i < N,

where the above constants can be written explicitly:

C(1)
y := 1 + Lf2C

(1)
(2.3)(CMB θL

2 ,1
+B 1

2 +
θL
2 ,1

√
T )T

θL
2 ,

C(2)
y := 1 + Lf2

C(1)
(2.3)(CM +

√
T )B θL

2 ,1
T
θL
2 ,

C(1)
z := CM (1 + Lf2

C( 1
2 )

(2.3)CMB θL
2 , 12

T
θL
2 ),

C(2)
z := CM (1 + Lf2C

( 1
2 )

(2.3)(CM +
√
T )B θL

2 , 12
T
θL
2 ),

C(3)
z := CMLf2

C( 1
2 )

(2.3)B 1
2 +

θL
2 , 12

.

Proof. Using (2.5) and (2.6), we obtain

|Θj |2,k ≤ CM
|∆ξ−Ej∆ξ|2,k√

T − tj
+ |∆ξ|2,k + (CM +

√
T )

N−1∑
l=j+1

|∆fl|2,k∆l√
tl − tj
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+ (CM +
√
T )

N−1∑
l=j+1

Lf2
|Θl|2,k∆l

(T − tl)(1−θL)/2
√
tl − tj

, j ≥ k. (2.7)

Upper bound for (2.7). We apply Lemmas 2.2 and 2.3 under the setting uj = |Θj |2,k, wj =

CM
|∆ξ−Ej∆ξ|2,k√

T−tj
+ |∆ξ|2,k + (CM +

√
T )
∑N−1
l=j+1

|∆fl|2,k∆l√
tl−tj

, α = 0, β = θL
2 , Cu = Lf2(CM +

√
T ). To

make results fully explicit, we first need to upper bound quantities of the form (γ > 0)

I(γ)
j+1 :=

N−1∑
l=j+1

wl∆l

(T − tl)
1
2−

θL
2 (tl − tj)1−γ

.

Using that |∆ξ − El∆ξ|2,k is non-increasing in l and Lemma 2.1, we obtain

I(γ)
j+1 =

N−1∑
l=j+1

CM
|∆ξ−El∆ξ|2,k√

T−tl
+ |∆ξ|2,k + (CM +

√
T )
∑N−1
r=l+1

|∆fr|2,k∆r√
tr−tl

(T − tl)
1
2−

θL
2 (tl − tj)1−γ

∆l

≤ CMB θL
2 ,γ

|∆ξ − Ej+1∆ξ|2,k
(T − tj)1− θL2 −γ

+B 1
2 +

θL
2 ,γ

|∆ξ|2,k
(T − tj)

1
2−

θL
2 −γ

+ (CM +
√
T )B θL

2 ,γ

N−1∑
l=j+2

|∆fl|2,k∆l

(tl − tj)1− θL2 −γ
. (2.8)

Upper bound for |∆Yi|2,k. Starting from (2.5) and applying Lemma 2.3, we get

|∆Yi|2,k ≤ |∆ξ|2,k +

N−1∑
j=i

|∆fj |2,k∆j + Lf2C
(1)
(2.3)I

(1)
i ;

then using the estimate (2.8) and |∆ξ − Ei∆ξ|2,k ≤ |∆ξ|2,k, we obtain the announced inequality.

Upper bound of |∆Zi|2,k. Starting from (2.6) and applying Lemma 2.3, we have

|∆Zi|2,k ≤
CM |∆ξ − Ei∆ξ|2,k√

T − ti
+

N−1∑
j=i+1

CM |∆fj |2,k√
tj − ti

∆j + Lf2
CMC

( 1
2 )

(2.3)I
( 1

2 )
i+1;

therefore using the estimate (2.8), we derive the advertised upper bound on |∆Zi|2,k. �

2.3 Almost sure bounds

The following bounds are needed for the Monte-Carlo scheme.

Corollary 2.6. Assume (A′ξ-i), (AF) and (AH) and recall the constants C
(·)
y and C

(·)
z from Proposi-

tion 2.5 where Lf2
is replaced by Lf . Then, we have

|Yi| ≤ Cy,i := C(1)
y Cξ + C(2)

y CfBθc,1(T − ti)θc , (2.9)

|Zi| ≤ Cz,i := C(1)
z

ess supω |ξ − Eiξ|2,i√
T − ti

+
C

(2)
z CfBθc, 12

(T − ti)
1
2−θc

+ C(3)
z Cξ(T − ti)

θL
2 . (2.10)
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The above upper bounds are able to handle the rather general terminal values ξ admitted by (A′ξ-i).

Without any further information on ξ, we can derive the simple bounds

|Yi|+
√
T − ti|Zi| ≤ Cy,z (2.11)

for an explicit, time uniform constant Cy,z. It may, however, be useful to take advantage of additional

information on ξ. In Section 3.5, we tune the parameters of the MWLS method, and here finer

estimates on Cy,i and Cz,i are useful. Two situations are of particular interest.

• For zero terminal condition, Y and Z get smaller and smaller as ti goes to T as expected:

|Yi|+
√
T − ti|Zi| ≤ C(T − ti)θc for a constant C depending only on C

(2)
y , C

(2)
z , Cf , θc and Rπ.

This result is useful for variance reduction methods like the proxy method of [GT13, Section 2.2],

the method of Martingale basis [BS12], and the multilevel method of [Tur13].

• Under (A′′ξ ), we have |ξ − Eiξ|2,i ≤ CΦ(T − ti)θΦ/2, which leads to an improved estimate for Z:

|Zi| ≤ C(T − ti)−
1
2 +θc∧

θΦ
2 for some constant C depending only on C

(1)
z , C

(2)
z , C

(3)
z , Cf , θc, Rπ,

T , Cξ and CΦ.

This is why in the subsequent analysis, we keep track on the general dependence on i of the constants

Cy,i and Cz,i.

Proof of Corollary 2.6. (0, 0) is the solution of the MWDP with data (ξ1 ≡ 0, f1,i ≡ 0). Applying

Proposition 2.5 with (Y1, Z1) = (0, 0) and (Y2, Z2) = (Y,Z) yields

|Yi|2,k ≤ C(1)
y |ξ|2,k + C(2)

y

N−1∑
j=i

|fj(0, 0)|2,k∆j ,

|Zi|2,k ≤
C

(1)
z |ξ − Eiξ|2,k√

T − ti
+ C(2)

z

N−1∑
j=i+1

|fj(0, 0)|2,k√
tj − ti

∆j + C(3)
z |ξ|2,k(T − ti)

θL
2 ,

for i = 0, . . . , N − 1. Taking k = i, plugging in the almost sure bounds on |ξ| from (A′ξ-i)and |fj(0, 0)|
from (AF-ii), and using Lemma 2.1 then yields the result. �

3 Monte-Carlo regression scheme

Throughout this section, the Markovian assumptions (AX), (A′ξ), (A′F) and (A′H) are in force. The

notation and preliminary results used in this section overlap with [GT13, Section 4], and we recall and

adapt them to the setting of MWLS in Section 3.1 for completeness.

3.1 Preliminaries

Due to the Markovian assumptions, there are measurable, deterministic (but unknown) functions

yi(·) : Rd → R and zi(·) : Rd → (Rq)> for each i ∈ {0, . . . , N−1} such that the solution (Yi, Zi)0≤i≤N−1

of the discrete BSDE (1.1) is given by

(Yi, Zi) :=
(
yi(Xi), zi(Xi)

)
. (3.1)

9



The proof of this is analogous to that of [GT13, Equation (4.1)]: one needs to apply Lemma 3.1

combined with G = Gi – defined in the assumptions (AX) and (A′H) – U = Xi, and

F (x) := Φ(V
(i)
N (x)) +

N−1∑
k=i

fk
(
V

(i)
k (x), yk+1(V

(i)
k+1(x)), zk(V

(i)
k (x))

)
∆k for yi(·),

and F (x) := Φ(V
(i)
N (x))h(i)

N (x) +

N−1∑
k=i+1

fk
(
V

(i)
k (x), yk+1(V

(i)
k+1(x)), zk(V

(i)
k (x))

)
h(i)
k (x)∆k for zi(·).

Lemma 3.1 ([GT13, Lemma 4.1]). Suppose that G and H are independent sub-σ-algebras of F . For

l ≥ 1, let F : Ω× Rd → Rl be bounded and G ⊗ B(Rd)-measurable, and U : Ω→ Rd be H-measurable.

Then, E[F (U)|H] = j(U) where j(h) = E[F (h)] for all h ∈ Rd.

We recall the general notation of [GT13, Section 4.1] for ordinary least-squares regression problems:

Definition 3.2 (Linear least-squares regression). For l, l′ ≥ 1 and for probability spaces (Ω̃, F̃ , P̃) and

(Rl,B(Rl), ν), let S be a F̃ ⊗ B(Rl)-measurable Rl′-valued function such that S(ω, ·) ∈ L2(B(Rl), ν)

for P̃-a.e. ω ∈ Ω̃, and K a linear vector subspace of L2(B(Rl), ν) spanned by deterministic Rl′-valued

functions {pk(.), k ≥ 1}. The least-squares approximation of S in the space K with respect to ν is the

(P̃× ν-a.e.) unique, F̃ ⊗ B(Rl)-measurable function S? given by

S?(ω, ·) := arg inf
φ∈K

∫
|φ(x)− S(ω, x)|2ν(dx). (3.2)

We say that S? solves OLS(S,K, ν).

On the other hand, suppose that νM = 1
M

∑M
m=1 δX (m) is a discrete probability measure on (Rl,B(Rl)),

where δx is the Dirac measure on x and X (1), . . . ,X (M) : Ω̃ → Rl are i.i.d. random variables. For

an F̃ ⊗ B(Rl)-measurable Rl′-valued function S such that
∣∣S(ω,X (m)(ω)

)∣∣ <∞ for any m and P̃-a.e.

ω ∈ Ω̃, the least-squares approximation of S in the space K with respect to νM is the (P̃-a.e.) unique,

F̃ ⊗ B(Rl)–measurable function S? given by

S?(ω, ·) := arg inf
φ∈K

1

M

M∑
m=1

|φ
(
X (m)(ω)

)
− S

(
ω,X (m)(ω)

)
|2. (3.3)

We say that S? solves OLS(S,K, νM ).

From (3.1), the MWDP (1.1) can be reformulated in terms of Definition 3.2: taking for K(l′)
i any

dense subset in the Rl′ -valued functions belonging to L2(B(Rd),P◦(Xi)
−1), for each i ∈ {0, . . . , N−1},

yi(·) solves OLS( SY,i(x
(i)) , K(1)

i , νi ),

for SY,i(x
(i)) := Φ(xN ) +

N−1∑
k=i

fk
(
xk, yk+1(xk+1), zk(xk)

)
∆k,

zi(·) solves OLS( SZ,i(h
(i),x(i)) , K(q)

i , νi ),

for SZ,i(h
(i),x(i)) := Φ(xN )hN +

N−1∑
k=i+1

fk
(
xk, yk+1(xk+1), zk(xk)

)
hk∆k

(3.4)

νi := P ◦ (H
(i)
i+1, . . . ,H

(i)
N , Xi, . . . , XN )−1,
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h(i) := (hi+1, . . . , hN ) ∈ ((Rq)>)N−i, x(i) := (xi, . . . , xN ) ∈ (Rd)N−i+1. (3.5)

However, the above least-squares regressions encounter two computational problems:

(CP1) L2(B(Rd),P ◦ (Xi)
−1) is usually infinite dimensional;

(CP2) (3.2) is computed using the presumably untractable law of (H
(i)
i+1, . . . ,H

(i)
N , Xi, . . . , XN ).

Therefore, the functions yi(·) and zi(·) are to be approximated on finite dimensional function spaces

with the sample-based empirical version of the law, as described below.

3.2 Algorithm

The first computational problem (CP1) is handled using a predetermined finite dimensional vector

spaces.

Definition 3.3 (Finite dimensional approximation spaces). For i ∈ {0, . . . , N − 1}, we are given two

finite functional linear spaces of dimension KY,i and KZ,iKY,i := span{p(1)
Y,i, . . . , p

(KY,i)
Y,i }, for p

(k)
Y,i : Rd → R s.t. E[|p(k)

Y,i(Xi)|2] < +∞,

KZ,i := span{p(1)
Z,i, . . . , p

(KZ,i)
Z,i }, for p

(k)
Z,i : Rd → (Rq)> s.t. E[|p(k)

Z,i(Xi)|2] < +∞.

The function yi(·) (resp. zi(·)) will be approximated in the linear space KY,i (resp. KZ,i). The best

approximation errors are defined by

EYApp.,i :=

√
inf

φ∈KY,i
E
[
|φ(Xi)− yi(Xi)|2

]
, EZApp.,i :=

√
inf

φ∈KZ,i
E
[
|φ(Xi)− zi(Xi)|2

]
.

The second computational problem (CP2) is solved using the empirical measure built from inde-

pendent simulations with distribution νi. The number of simulations is large enough to avoid having

under-determined systems of equations to solve.

Definition 3.4 (Simulations and empirical measures).

For i ∈ {0, . . . , N − 1}, generate Mi ≥ KY,i ∨KZ,i independent copies Ci := {(H(i,m), X(i,m)) : m =

1, . . . ,Mi} of (H(i), X(i)) := (H
(i)
i+1, . . . ,H

(i)
N , Xi, . . . , XN ): Ci forms a cloud of simulations used for

the regression at time i. Denote by νi,M the empirical probability measure of the Ci-simulations, i.e.

νi,M :=
1

Mi

Mi∑
m=1

δ
(H

(i,m)
i+1 ,...,H

(i,m)
N ,X

(i,m)
i ,...,X

(i,m)
N )

. (3.6)

Furthermore, we assume that the clouds of simulations (Ci : 0 ≤ i < N) are independently generated.

All these random variables are defined on a probability space (Ω(M),F (M),P(M)).

Observe that allowing time-dependency in the number of simulations Mi and in the vector spaces

KY,i and KZ,i is coherent with our setting of time-dependent local Lipschitz driver.

Denoting by (Ω,F ,P) the probability space supporting (H(0), . . . ,H(N−1), X), which serves as a

generic element for the clouds of simulations, the full probability space used to analyze our algorithm

is the product space (Ω̄, F̄ , P̄) = (Ω,F ,P) ⊗ (Ω(M),F (M),P(M)). By a slight abuse of notation, we
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write P (resp. E) to mean P̄ (resp. Ē) from now on. The subsequent use of conditioning arguments is

based on the following definition.

Definition 3.5. Define the σ-algebras

F (∗)
i := σ(Ci+1, . . . , CN−1), F (M)

i := F (∗)
i ∨ σ(X

(i,m)
i : 1 ≤ m ≤Mi).

For every i ∈ {0, . . . , N − 1}, let EMi [·] (resp. PMi ) with respect to F (M)
i .

We now come to the definition of the MWLS algorithm: this is merely the finite-dimensional version

of (3.4) plus a soft truncation of the solutions using the truncation function T.(.) (defined in Section

1.2).

Definition 3.6 (MWLS algorithm). Set y
(M)
N (·) := Φ(·). For each i = N − 1, N − 2, . . . , 0, set the

random functions y
(M)
i (·) and z

(M)
i (·) recursively as follows.

(a) First, define z
(M)
i (·) = TCz,i

(
ψ

(M)
Z,i (·)

)
where Cz,i is the almost sure bound of Corollary 2.6 and

where
ψ

(M)
Z,i (·) solves OLS( S

(M)
Z,i (h(i),x(i)) , KZ,i , νi,M )

for S
(M)
Z,i (h(i),x(i)) := Φ(xN )hN +

N−1∑
k=i+1

fk
(
xk, y

(M)
k+1(xk+1), z

(M)
k (xk)

)
hk∆k,

(3.7)

where h(i),x(i), νi,M are defined in (3.5) and (3.6).

(b) Second and similarly, define y
(M)
i (·) := TCy,i

(
ψ

(M)
Y,i (·)

)
where

ψ
(M)
Y,i (·) solves OLS(S

(M)
Y,i (x(i)) , KY,i , νi,M )

for S
(M)
Y,i (x(i)) := Φ(xN ) +

N−1∑
k=i

fk
(
xk, y

(M)
k+1(xk+1), z

(M)
k (xk)

)
∆k.

(3.8)

Before performing the error analysis, we state the following uniform (resp. conditional variance)

bounds on the functions S
(M)
Y,i (·) (resp. the l-th coordinate of S

(M)
Z,i (H(i,m), X(i,m)) for each m and l).

These bounds are used repeatedly in Section 3.3. The proof is postponed to Appendix A.2.

Lemma 3.7. For all i ∈ {0, . . . , N − 1}, there are finite constants C̄y,i ≥ 0 and C̄z,i ≥ 0 such that

|S(M)
Y,i (x(i))| ≤ C̄y,i, ∀x(i),

q∑
l=1

Var
[
S

(M)
l,Z,i(H

(i,m), X(i,m))
∣∣ F (M)

i

]
≤ C̄2

z,i, ∀m ∈ {1, . . . ,Mi}.

We can write a precise time-dependency of the constants C̄y,i and C̄z,i:

C̄y,i := c1Cξ + c2Cf (T − ti)θc , C̄z,i := c3Cξ(T − ti)−1/2 + c4Cf (T − ti)θc−
1
2 , (3.9)

where (cj)1≤j≤4 depend only on (Lf , CM , q, C
(1)
y , C

(2)
y , C

(1)
z , C

(2)
z , C

(3)
z , T,Rπ, θL, θc) (computed explicitely

in the proof).
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The above time-dependency is to be used to derive convergence rates for the complexity analysis.

3.3 Main result: error analysis

We precise the random norms used to quantify the error of MWLS.

Definition 3.8. Let ϕ : Ω(M) × Rd → R or (Rq)> be F (M) ⊗ B(Rd)-measurable. For each i ∈
{0, . . . , N − 1}, define the random norms

‖ϕ‖2i,∞ :=

∫
Rd
|ϕ(x)|2 P ◦X−1

i (dx), ‖ϕ‖2i,M :=
1

Mi

Mi∑
m=1

|ϕ(X
(i,m)
i )|2.

The accuracy of the MWLS algorithm is measured as follows:

Ē(Y,M, i) :=

√
E
[
‖y(M)
i (·)− yi(·)‖2i,∞

]
, Ē(Z,M, i) :=

√
E
[
‖z(M)
i (·)− zi(·)‖2i,∞

]
,

E(Y,M, i) :=

√
E
[
‖y(M)
i (·)− yi(·)‖2i,M

]
, E(Z,M, i) :=

√
E
[
‖z(M)
i (·)− zi(·)‖2i,M

]
.

In our analysis, we will have to switch from errors in true measure Ē(. . . ) to errors in empirical measure

E(. . . ), and vice-versa: this is not trivial since (y
(M)
i (.), z

(M)
i (.)) and the empirical norm ‖.‖i,M depend

on the same sample. However, the switch can be performed using concentration-of-measure estimates

uniformly on a class of functions [GKKW02, Chapter 9]. We directly state the ready-to-use result,

which is a straightforward adaptation of [GT13, Proposition 4.10] to our context.

Proposition 3.9. Recall the constants Cy,i (resp. Cz,i) from Corollary 2.6, and define the interde-

pendence errors

EYDep.,i := Cy,i

√
2028(KY,i + 1) log(3Mi)

Mi
, EZDep.,i := Cz,i

√
2028(KZ,i + 1)q log(3Mi)

Mi
.

For each i ∈ {0, . . . , N − 1}, we have

Ē(Y,M, i) ≤
√

2E(Y,M, i) + EYDep.,i, Ē(Z,M, i) ≤
√

2E(Z,M, i) + EZDep.,i.

The aim is to determine a rate of convergence for E(Y,M, k) = (E‖yk−yMk ‖2k,M )
1
2 and E(Z,M, k) =

(E‖zk − zMk ‖2k,M )
1
2 using the local error terms (E(k))k defined below.

Theorem 3.10 (global error of the MWLS algorithm). For 0 ≤ k ≤ N − 1, define

E(k) := EYApp.,k+1+C̄y,k+1

√
KY,k+1

Mk+1
+ EZApp.,k + C̄z,k

√
KZ,k

Mk
+ Lf

(
EYDep.,k+1 + EZDep.,k

)
. (3.10)

For every k ∈ {0, . . . , N − 1},

[
E(‖yk − yMk ‖2k,M )

]1/2
≤ EYApp.,k + C̄y,k

√
KY,k

Mk
+ C(M)

y

N−1∑
j=k

E(j)∆j

(T − tj)(1−θL)/2
, (3.11)
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[
E(‖zk − zMk ‖2k,M )

]1/2
≤ EZApp.,k + C̄z,k

√
KZ,k

Mk
+ C(M)

z

N−1∑
j=k+1

E(j)∆j

(T − tj)(1−θL)/2
√
tj − tk

, (3.12)

where, recalling the constant C(γ)
(2.3) from Lemma 2.3 (with α = 0, β = θL

2 , γ ∈ { 1
2 , 1} and Cu =

Lf (
√

2CM + 4
√
T )),

C(M)
y := 2 + 4LfC(1)

(2.3)(1 +B θL
2 ,1

T
θL
2 (CM + 2

√
T )),

C(M)
z := CM +

√
2CMLfC

( 1
2 )

(2.3)(1 +B θL
2 , 12

T
θL
2 (CM + 2

√
T )).

Discussion. Observe that owing to Proposition 3.9, similar estimates (with modified constants) are

valid for Ē(Y,M, k) = (E‖yk − yMk ‖2k,∞)
1
2 and Ē(Z,M, k) = (E‖zk − zMk ‖2k,∞)

1
2 . The global error

(3.11-3.12) is a weighted time-average of three different errors.

1) The contributions E .App.,. are the best approximation errors using the vector spaces of functions:

this accuracy is achieved asymptotically with an infinite number of simulations (take Mk → +∞
in our estimates).

2) The contributions
√

K.,.
M.

are the usual statistical error terms: the larger the number of simulations

or the smaller the dimensions of the vector spaces, the better the estimation error.

3) The contributions E .Dep.,. are related to the interdependencies between regressions at different

times: this is intrinsic to the dynamic programming equation with N nested empirical regressions.

However, due to Proposition 3.9, the latter contributions are of same magnitude as statistical error

terms (up to logarithmic factors). Therefore roughly speaking, the global error is of order of the best

approximation errors plus statistical errors, as if there were a single regression problem [GKKW02,

Theorem 11.1]. In this sense, these error bounds are optimal: it is not possible to improve the above

estimates with respect to the convergence rates (but only possibly with respect to the constants). An

optimal tuning of parameters is proposed in Section 3.5.

In comparison to [GT13], where a different Monte-Carlo regression scheme is analyzed, the upper

bound for the global error has a similar shape, but with two important differences.

• Norm on Z. In [GT13] it is a time average of L2-norms, whereas here the norm used is time-wise:

it currently leads to more informative error bounds. This is an advantage of the discrete BSDE

with Malliavin weights against the MDP of [GT13], and we expect a better estimation of the

Z-component.

• Time-dependency. The MWDP yields better estimates on y(.) and z(.) w.r.t. time, which allows

better parameters tuning, and finally better convergence rates (see Section 3.5).

3.4 Proof of Theorem 3.10

3.4.1 Preliminary results

The following proposition is a key tool: the two first properties are of deterministic nature, the two

last are probabilistic.
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Proposition 3.11 ([GT13, Proposition 4.12]). With the notation of Definition 3.2, suppose that K is

finite dimensional and spanned by the functions {p1(.), . . . , pK(.)}. Let S? solve OLS(S,K, ν) (resp.

OLS(S,K, νM )), according to (3.2) (resp. (3.3)). The following properties are satisfied:

(i) linearity: the mapping S 7→ S? is linear.

(ii) contraction property: ‖S?‖L2(B(Rl),µ) ≤ ‖S‖L2(B(Rl),µ), where µ = ν (resp. µ = νM ).

(iii) conditional expectation solution: in the case of the discrete probability measure νM , assume

additionally that the sub-σ-algebra Q ⊂ F̃ is such that
(
pj(X (1)), . . . , pj(X (M))

)
is Q-measurable

for every j ∈ {1, . . . ,K}. Setting SQ(X (m)) := Ẽ[S(X (m))|Q] for each m ∈ {1, . . . ,M}, then

Ẽ[S?|Q] solves OLS
(
SQ,K, νM

)
.

(iv) bounded conditional variance: in the case of the discrete probability measure νM , suppose that

S(ω, x) is G ⊗ B(Rl)-measurable, for G ⊂ F̃ independent of σ(X (1), . . . ,X (M)), there exists

a Borel measurable function g : Rl → E, for some Euclidean space E, such that the random

variables {pj(X (m)) : m = 1, . . . ,M, j = 1, . . . ,K} are H := σ(g(X (m)) : m = 1, . . . ,M)-

measurable, and there is a finite constant σ2 ≥ 0 that uniformly bounds the conditional variances

Ẽ
[
|S(X (m))− Ẽ(S(X (m))|G ∨ H)|2 | G ∨ H

]
≤ σ2 P̃-a.s. and for all m ∈ {1, . . . ,M}. Then

Ẽ
[
‖S?(·)− Ẽ[S?(·)|G ∨ H]‖2L2(B(Rl),νM )

∣∣ G ∨ H] ≤ σ2 K

M
.

Intermediate processes and local error terms. For each k ∈ {0, . . . , N − 1}, recall the functions

SY,k(x(i)) and SZ,k(h(i),x(i)) from (3.4), the linear spaces KY,k and KZ,k from Definition 3.3, and the

empirical measure νk,M from (3.6), and set

ψY,k(·) solves OLS( SY,k(x(i)) , KY,k , νk,M ),

ψZ,k(·) solves OLS( SZ,k(h(i),x(i)) , KZ,k , νk,M ).

}

From Lemma 3.1 and our Markovian assumptions, observe that (EMk [SY,k(X(k,m))] ,

EMk [SZ,k(H(k,m), X(k,m))]) =
(
yk(X

(k,m)
k ), zk(X

(k,m)
k )

)
for each m ∈ {1, . . . ,Mk} where

(
yk(·), zk(·)

)
are the unknown functions defined in (3.1). Proposition 3.11(iii) implies the first statement of the

following lemma. The second statement results from a direct interchange of inf and E, and from the

identical distribution of (X
(k,m)
k ) for all m.

Lemma 3.12. For each k ∈ {0, . . . , N − 1},

EMk [ψY,k(·)] solves OLS( yk(.) , KY,k , νk,M ),

EMk [ψZ,k(·)] solves OLS( zk(.) , KZ,k , νk,M ).

}
In addition, recalling the local error terms EYApp.,k and EZApp.,k from Definition 3.3,

E
[
‖EMk [ψY,k(·)]− yk(·)‖2k,M

]
= E

[
inf

φ∈KY,k
‖φ(·)− yk(·)‖2k,M

]
≤ (EYApp.,k)2,

E
[
‖EMk [ψZ,k(·)]− zk(·)‖2k,M

]
= E

[
inf

φ∈KZ,k
‖φ(·)− zk(·)‖2k,M

]
≤ (EZApp.,k)2.
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3.4.2 Proof of Theorem 3.10

Step 1: decomposition of the error on Y . From TCy,k(yk) = yk and the Lipschitz continuity of TCy,k ,

it follows that ‖yk(·) − y(M)
k (·)‖k,M is less than or equal to ‖yk(·) − ψ(M)

Y,k (·)‖k,M . Using the triangle

inequality for the ‖.‖k,M -norm, it follows that

‖yk(·)− y(M)
k (·)‖k,M ≤ ‖yk(·)− EMk [ψY,k(·)]‖k,M + ‖EMk [ψY,k(·)]− ψ(M)

Y,k (·)‖k,M . (3.13)

Because S
(M)
Y,k (·) depends on z

(M)
k (·) computed with the same cloud of simulations Ck as that used to

define the OLS solution ψ
(M)
Y,k (·), it raises some interdependency issues that we solve by making a small

perturbation to the intermediate processes as follows: for x(k) = (xk, . . . , xN ), define

S̃
(M)
Y,k (x(k)) := Φ(xN ) + fk

(
xk, y

(M)
k+1(xk+1), zk(xk)

)
∆k +

N−1∑
i=k+1

fi
(
xi, y

(M)
i+1 (xi+1), z

(M)
i (xi)

)
∆i,

ψ̃
(M)
Y,k (·) solves OLS(S̃

(M)
Y,k (x(k)) , KY,k , νk,M ).

This perturbation is not needed for the Z-component, because S
(M)
Z,k (h(k),x(k)) depends only on the

subsequent clouds of simulations {Cj , j > k}. Applying the L2-norm | · |2, the triangle inequality in

(3.13), and the first part of Lemma 3.12 yields

E(Y,M, k) ≤ EYApp.,k + |‖EMk [ψ̃
(M)
Y,k (·)− ψY,k(·)]‖k,M |2 + |‖ψ̃(M)

Y,k (·)− EMk [ψ̃
(M)
Y,k (·)]‖k,M |2

+ |‖ψ̃(M)
Y,k (·)− ψ(M)

Y,k (·)‖k,M |2. (3.14)

Let us handle each term in the above inequality separately.

B Term |‖EMk [ψ̃
(M)
Y,k (·)− ψY,k(·)]‖k,M |2. Set

ξ̃∗Y,k(x) := E(S̃
(M)
Y,k (X(k))− SY,k(X(k))|X(k)

k = x,F (M)).

Recalling that S̃
(M)
Y,k (x(k)) − SY,k(x(k)) is built only using the clouds {Cj , j ≥ k + 1}, it follows from

Lemma 3.1 that EMk [S̃
(M)
Y,k (X(k,m))−SY,k(X(k,m))] is equal to ξ̃∗Y,k(X

(k,m)
k ) for every m ∈ {1, . . . ,Mk}.

Then, using Proposition 3.11(i)(iii), EMk [ψ̃
(M)
Y,k (·)−ψY,k(·)] solves OLS(ξ̃∗Y,k(·), KY,k , νk,M ). By Propo-

sition 3.11(ii),

E
[
‖EMk [ψ̃

(M)
Y,k (·)− ψY,k(·)]‖2k,M

]
≤ E

[
‖ξ̃∗Y,k(·)‖2k,M

]
= E

[
(ξ̃∗Y,k(Xk))2

]
,

where the final equality follows from the fact that ξ̃∗Y,k(·) is generated only using the simulations in

the clouds {Cj : j > k} and {Xk, X
(k,1)
k , . . . , X

(k,Mk)
k } are identically distributed. Defining

ξ∗Y,k(x) := E[S
(M)
Y,k (X(k))− SY,k(X(k))|X(k)

k = x,F (M)], (3.15)

the triangle inequality yields

|ξ̃∗Y,k(Xk)|2 ≤ |S̃(M)
Y,k (X(k))− S(M)

Y,k (X(k))|2 + |ξ∗Y,k(Xk)|2

16



≤ |fk(Xk, y
(M)
k+1(Xk+1), z

(M)
k (Xk))− fk(Xk, y

(M)
k+1(Xk+1), zk(Xk))|2∆k + |ξ∗Y,k(Xk)|2

≤ Lf∆k

(T − tk)
1
2−

θL
2

Ē(Z,M, k) + |ξ∗Y,k(Xk)|2.

B Term |‖ψ̃(M)
Y,k (·) − EMk [ψ̃

(M)
Y,k (·)]‖k,M |2. Since S̃

(M)
Y,k (.) depends only on the clouds {Cj , j > k} and

is bounded above by C̄y,k (like S
(M)
Y,k (.), see Lemma 3.7), it follows from Proposition 3.11(iv) that

|‖ψ̃(M)
Y,k (·) − EMk [ψ̃

(M)
Y,k (·)]‖k,M |2 is bounded above by C̄y,k

√
KY,k/Mk: this is similar to the statistical

error term in usual regression theory.

B Term |‖ψ̃(M)
Y,k (·)−ψ(M)

Y,k (·)‖k,M |2. Owing to Proposition 3.11(i)(ii), ‖ψ̃(M)
Y,k (·)−ψ(M)

Y,k (·)‖2k,M is bounded

above by ‖S̃(M)
Y,k (·)− S(M)

Y,k (·)‖2k,M , which equals

∆2
k

Mk

Mk∑
m=1

|fk(X
(k,m)
k , y

(M)
k+1(X

(k,m)
k+1 ), z

(M)
k (X

(k,m)
k ))− fk(X

(k,m)
k , y

(M)
k+1(X

(k,m)
k+1 ), zk(X

(k,m)
k ))|2

≤
L2
f∆2

k‖zk(·)− z(M)
k (·)‖2k,M

(T − tk)1−θL
.

Collecting the bounds on the three terms, substituting them into (3.14) and applying Proposition 3.9

yields

E(Y,M, k) ≤ EYApp.,k + |ξ∗Y,k(Xk)|2 + C̄y,k

√
KY,k

Mk
+

Lf∆k

(T − tk)
1
2−

θL
2

{
(1 +

√
2)E(Z,M, k) + EZDep.,k

}
.

(3.16)

Step 2: decomposition of the error on Z. Analogously to (3.14), one obtains the upper bound

E(Z,M, k) ≤ EZApp.,k + |‖EMk [ψ
(M)
Z,k (·)− ψZ,k(·)]‖k,M |2 + |‖ψ(M)

Z,k (·)− EMk [ψ
(M)
Z,k (·)]‖k,M |2.

Since S
(M)
Z,k (.) depends only on the clouds {Cj , j > k} and the F (M)

k -conditional variance of S
(M)
Z,k (H(k,m), X(k,m))

is bounded above by C̄2
z,k for all m (see Lemma 3.7), it follows from Proposition 3.11(iv) that

|‖ψ(M)
Z,k (·)− EMk [ψ

(M)
Z,k (·)]‖k,M |2 is bounded above by C̄z,k

√
KZ,k/Mk. Defining

ξ∗Z,k(x) := E[S
(M)
Z,k (H(k), X(k))− SZ,k(H(k), X(k))|X(k)

k = x,F (M)], (3.17)

it follows that EMk [ψ
(M)
Z,k (·)− ψZ,k(·)] solves OLS(ξ∗Z,k(·), KZ,k , νk,M ). Therefore,

E(Z,M, k) ≤ EZApp.,k + |ξ∗Z,k(Xk)|2 + C̄z,k

√
KZ,k

Mk
. (3.18)

Step 3: error propagation and a priori estimates. Observe that (ξ∗Y,k(Xk), ξ∗Z,k(Xk)) defined in

(3.15,3.17) solves a MWDP with terminal condition 0 and driver fξ∗,k(y, z) := fk(Xk, y
(M)
k+1(Xk+1), z

(M)
k (Xk))−

fk(Xk, yk+1(Xk+1), zk(Xk)). Applying Proposition 2.5 with Lf2
= 0 and local Lipschitz continuity of
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fj(.) yields

|ξ∗Y,k(Xk)|2 ≤ Lf
N−1∑
j=k

Ē(Y,M, j + 1) + Ē(Z,M, j)

(T − tj)
1
2−

θL
2

∆j ,

|ξ∗Z,k(Xk)|2 ≤ CMLf
N−1∑
j=k+1

Ē(Y,M, j + 1) + Ē(Z,M, j)

(T − tj)
1
2−

θL
2
√
tj − tk

∆j .

Next, introducing the notation Θj := E(Y,M, j + 1) + E(Z,M, j) and applying Proposition 3.9, it

follows that

|ξ∗Y,k(Xk)|2 ≤
√

2Lf

N−1∑
j=k

Θj∆j

(T − tj)
1
2−

θL
2

+ Lf

N−1∑
j=k

(EYDep.,j+1 + EZDep.,j)∆j

(T − tj)
1
2−

θL
2

,

|ξ∗Z,k(Xk)|2 ≤
√

2CMLf

N−1∑
j=k+1

Θj∆j

(T − tj)
1
2−

θL
2
√
tj − tk

+ CMLf

N−1∑
j=k+1

(EYDep.,j+1 + EZDep.,j)∆j

(T − tj)
1
2−

θL
2
√
tj − tk

.

Substituting the above into (3.16) and (3.18), and merging together the terms in Z, it follows that

E(Y,M, k) ≤ EYApp.,k + C̄y,k

√
KY,k

Mk
+ 2Lf

N−1∑
j=k

(EYDep.,j+1 + EZDep.,j)∆j

(T − tj)
1
2−

θL
2

+ 4Lf

N−1∑
j=k

Θj∆j

(T − tj)
1
2−

θL
2

≤ EYApp.,k + C̄y,k

√
KY,k

Mk
+ 2

N−1∑
j=k

E(j)∆j

(T − tj)
1
2−

θL
2

+ 4Lf

N−1∑
j=k

Θj∆j

(T − tj)
1
2−

θL
2

, (3.19)

E(Z,M, k) ≤ EZApp.,k + C̄z,k

√
KZ,k

Mk
+ CM

N−1∑
j=k+1

E(j)∆j

(T − tj)
1
2−

θL
2
√
tj − tk

+
√

2CMLf

N−1∑
j=k+1

Θj∆j

(T − tj)
1
2−

θL
2
√
tj − tk

. (3.20)

Step 4: final estimates. Now, summing (3.20) and (3.19), one obtains an estimate for Θk:

Θk ≤ E(k) + (CM + 2
√
T )

N−1∑
j=k+1

E(j)∆j

(T − tj)
1
2−

θL
2
√
tj − tk

+ Lf (
√

2CM + 4
√
T )

N−1∑
j=k+1

Θj∆j

(T − tj)
1
2−

θL
2
√
tj − tk

.

Thus, using Lemmas 2.2 and 2.3 with α = 0, β = θL
2 , Cu = Lf (

√
2CM + 4

√
T ), wk := E(k) + (CM +

2
√
T )
∑N−1
j=k+1

E(j)∆j

(T−tj)
1
2
− θL

2
√
tj−tk

, we can control weighted sums involving (Θk)k using weighted sums

of (wk)k, which is exactly what we need to complete the upper bounds (3.19-3.20) for E(Y,M, k) and
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E(Z,M, k). Namely, let γ > 0:

N−1∑
j=k+1

wj∆j

(T − tj)
1
2−

θL
2 (tj − tk)1−γ

≤
N−1∑
j=k+1

E(j)∆j

(T − tj)
1
2−

θL
2 (tj − tk)1−γ

+ (CM + 2
√
T )

N−1∑
l=k+2

E(l)∆l

(T − tl)
1
2−

θL
2

l−1∑
j=k+1

∆j

(tl − tj)1− θL2 (tj − tk)1−γ

≤ (1 +B θL
2 ,γ

T
θL
2 (CM + 2

√
T ))

N−1∑
l=k+1

E(l)∆l

(T − tl)
1
2−

θL
2 (tl − tk)1−γ

,

where we have applied Lemma 2.1. Then, we obtain

N−1∑
j=k+1

Θj∆j

(T − tj)
1
2−

θL
2 (tj − tk)1−γ

≤ C(γ)
(2.3)(1 +B θL

2 ,γ
T
θL
2 (CM + 2

√
T ))

N−1∑
l=k+1

E(l)∆l

(T − tl)
1
2−

θL
2 (tl − tk)1−γ

.

Plug the above inequality into (3.19) and (3.20) to derive (3.11) and (3.12). �

3.5 Complexity analysis

We discuss the complexity in different cases according to the regularity of the value functions

(yi(·), zi(·)) and the choice of the grid π. In order to have a fair comparison with other numerical

schemes, we revisit the setting of [GT13, Section 4.4], which we partly recall for completeness, and

extend the analysis to include more general settings.

• We perform an asymptotic complexity analysis as the number N of grid times goes to +∞. We

are concerned with time-dependent bounds: thus in the following, the order convention, O(.) or

o(.), is uniform in ti.

• The grids under consideration are of the form π(θπ) := {ti = T − T (1 − i
N )

1
θπ } for θπ ∈ (0, 1]

(inspired by [GM10, GGG12]). Observe that their time-step ∆i is not-increasing in i, hence they

all satisfy (AF-iii) with the same parameter Rπ = 1.

• The magnitude of the final accuracy is denoted by N−θconv for some parameter θconv > 0. This is

usually related to time-discretization errors between the continuous-time BSDE and the discrete-

time one, θconv may range from 0+ (for non smooth data [GM10, Theorem 1.1]) to 1 (in the case

of smooth data [GL07, Theorems 7 and 8]).

• The approximation spaces are given by local polynomials of degree n (n ≥ 0) defined on hy-

percubes with edge length δ > 0, covering the set [−R,R]d (R > 0): we denote it by Pn,δ,Rloc. .

The functions in Pn,δ,Rloc. take values in R for the y-component and in (Rq)> for z (using local

polynomials component-wise), but we omit this in the notation. The best-approximation errors

are easily controled (using the Taylor formula):

inf
ϕ∈Pn,δ,Rloc.

|ϕ(Xi)− u(Xi)|2 ≤ |u|∞(P(|Xi|∞ > R))1/2 + cn|Dn+1u|∞δn+1 (3.21)
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for any function u that is bounded, n+ 1-times continuously differentiable with bounded deriva-

tives, and where the constant cn does not depend on (R, u, δ). The dimension of the vector space

Pn,δ,Rloc. is bounded by c̃n(2R/δ)d where c̃n depends on d and n.

A significant computational advantage of local polynomial basis is that the cost of computing the

regression coefficients associated to a sample of size M ≥ dim(Pn,δ,Rloc. ) is O(M) flops [GVL96],

and the cost of evaluating pointwise the approximated function is cd,n (a constant that does not

depend on the number of hypercubes).

On the other hand, the cost of generating the clouds of simulations and computing the simulated

functionals (S
(M)
Y,i (X(i,m)), S

(M)
Z,i (H(i,m), X(i,m)))i,m is O(

∑N−1
i=0 NMi), which is clearly dominant

in the computational cost C of the MWLS algorithm. To summarize, the computational cost is

C = O(

N−1∑
i=0

NMi).

Another advantage of the local polynomial basis is that there is substantial potential for parallel

computing.

• To make the tail contributions (outside [−R,R]d) small enough, we assume that Xi has exponen-

tial moments (uniformly in i), i.e. supN≥1 sup0≤i≤N E(eλ|Xi|∞) < +∞ for some λ > 0, so that

the choice R := 2θconvλ
−1 log(N + 1) is sufficient to ensure (P(|Xi|∞ > R))1/2 = O(N−θconv).

To simplify the discussion, we assume θL = θc = 1.

Smooth functions. Assume that yi(·), zi(·) are respectively of class Cl+1
b (Rd,R) and Clb(Rd, (Rq)>)

(bounded with bounded derivatives) for some l ∈ N\{0}: this is similar to the discussion of [GT13, Sec-

tion 4.4]. In fact, this is usually valid for the continuous-time limit (a priori estimates on the semi-linear

PDE, see [DG06, CD12]) provided that the data are smooth enough. In particular, we may assume

(A′′ξ ) with θΦ = 1. This leads to time-uniform bounds on the quantities Cy,i, Cz,i, C̄y,i,
√
T − tiC̄z,i.

Set

δy,i := N−
θconv
l+1 , δz,i := N−

θconv
l , Mi := (log(N + 1))d+1Nθconv(2+ d

l ),

take KY,i := P l,δy,i,Rloc. and KZ,i := P l−1,δz,i,R
loc. . From Proposition 3.9, Theorem 3.10 and the inequality

(3.21), it is easy to check that

EYApp.,i = O(N−θconv), EYDep.,i = o(N−θconv), C̄y,i

√
KY,i

Mi
= o
(
N−θconv/

√
log(N + 1)

)
,

EZApp.,i = O(N−θconv), EZDep.,i = O(N−θconv), C̄z,i

√
KZ,i

Mi
= (T − ti)−

1
2O
(
N−θconv/

√
log(N + 1)

)
.

Consequently, using Lemma 2.1, we finally obtain

[
E(‖yi − yMi ‖2i,M )

]1/2
= O(N−θconv),

[
E(‖zi − zMi ‖2i,M )

]1/2
= O(N−θconv)

(
1 +

(T − ti)−
1
2√

log(N + 1)

)
.

For any time-grid π = π(θπ), we get sup0≤i≤N E(‖yi − yMi ‖2i,M ) +
∑N−1
i=0 ∆iE(‖zi − zMi ‖2i,M ) =

O(N−2θconv). The computational cost is C = O
(

log(N + 1))d+1Nθconv(2+ d
l )+2

)
. Ignoring the loga-
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rithmic factors, we obtain a final accuracy in terms of the computational cost:

C
− 1

(2+ d
l

)+ 2
θconv .

It should be compared with the rate C
− 1

(2+ d
l

)+ 3
θconv which is valid for the LSMDP algorithm [GT13].

This shows a small improvement on the rate. Moreover the controls are stated in stronger norms.

The ratio d/l is the usual balance between dimension and smoothness, arising when approximating a

multidimensional function.

Hölder terminal condition. We investigate the case of non-smooth terminal condition, where

nevertheless there is a smoothing effect of the conditional expectation yielding smooth value func-

tions (yi(·), zi(·)). Namely, assume that Φ is bounded and θΦ-Hölder continuous (in particular with

(A′′ξ )), and that, for all i, the function yi(·) (resp. zi(·)) is (l + 1)-times (resp. l-times) continuously

differentiable with highest derivatives bounded by

|Dl+1
x yi|∞ ≤ C(T − ti)(θΦ−l)/2, |Dl

xzi|∞ ≤ C(T − ti)(θΦ−(l+1))/2. (3.22)

These qualitative assumptions are related to the works of [DG06, CD12], who have determined similar

estimates for the gradients of quasi-linear PDEs under quite general conditions on the driver, terminal

condition, and differential operator: their estimates cover the case l = 0 [DG06, Theorem 2.1] or θΦ = 0

and l ≥ 1 [CD12, Theorem 1.4], but the Hölder continuous setting is not investigated. We therefore

extrapolate these results in the assumptions (3.22) for the purposes of this discussion.

In this setting, we have time-uniform bounds on the quantities Cy,i, (T−ti)
1−θΦ

2 Cz,i, C̄y,i,
√
T − tiC̄z,i.

Set

δy,i :=
√
T − tiN−

θconv
l+1 , δz,i :=

√
T − tiN−

θconv
l , Mi := (log(N + 1))d+1Nθconv(2+ d

l )(T − ti)−d/2,

take KY,i := P l,δy,i,Rloc. and KZ,i := P l−1,δz,i,R
loc. . Similarly to before, using in particular (3.21), we

eventually obtain

EYApp.,i = O(N−θconv), EYDep.,i = o(N−θconv), C̄y,i

√
KY,i

Mi
= o
(
N−θconv/

√
log(N + 1)

)
,

EZApp.,i = (T − ti)
θΦ−1

2 O(N−θconv), EZDep.,i = (T − ti)
θΦ−1

2 O(N−θconv),

C̄z,i

√
KZ,i

Mi
= (T − ti)−

1
2O
(
N−θconv/

√
log(N + 1)

)
.

Consequently, using Lemma 2.1, we finally obtain[
E(‖yi − yMi ‖2i,M )

]1/2
= O(N−θconv),[

E(‖zi − zMi ‖2i,M )
]1/2

= O(N−θconv)
(

(T − ti)
θΦ−1

2 +
(T − ti)−

1
2√

log(N + 1)

)
.
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The computation cost is given by (under the assumption π = π(θπ))

C = O
(N−1∑
i=0

NMi

)
= O

(
log(N + 1))d+1N1+θconv(2+ d

l )
)N−1∑
i=0

(1− i

N
)−

d
2θπ .

Up to possibly a log(N)-factor, the last sum is O(N
d

2θπ
∨1), and ignoring the logarithmic factors,

we obtain C = O(N1+ d
2θπ
∨1+θconv(2+ d

l )). Equivalently, as a function of the computational cost, the

convergence rate of the final accuracy equals

C
− 1

(2+ d
l

)+ 1
θconv

(1+ d
2θπ
∨1) .

Following [GM10] (under suitable assumptions), two time-grid choices are possible for solving the same

BSDE.

• The uniform grid π = π(1) gives θconv = θΦ/2 (at least). The convergence order becomes
1

2+ d
l + 2

θΦ
(1+ d

2∨1)
.

• The grid π = π(θ) (for θ < θΦ) gives θconv = 1/2. Taking θ ↑ θΦ, the convergence order is
1

2+ d
l +2(1+ d

2θΦ
∨1)

.

The grid π(θ) exhibits a better convergence rate compared to the uniform grid. This corroborates

the interest in time grids that are well adapted to the regularity of the data. These features will be

investigated in subsequent more experimental works.

A Appendix

A.1 Proof of Lemmas 2.1, 2.2 and 2.3

A.1.1 Proof of Lemmas 2.1

The first inequality, for α ≤ 1, follows by bounding the sum by
∫ tk
ti

(tk − t)α−1dt, whence Bα,1 = 1/α.

The case α > 1 is obvious with Bα,1 = 1. For the second inequality, there are two main cases:

B If α ≥ 1 and β ≥ 1, the advertised inequality is obvious with Bα,β = 1.

B Now, assume α < 1 or β < 1, and first consider the case ti = 0 and tk = 1. We set ϕ(s) =

(1−s)α−1sβ−1 and we use the integral
∫ 1

0
ϕ(s)ds (equivalent to the usual beta function with parameters

(α, β)) to bound the sum. A simple but useful property is that ϕ is either monotone or has a unique

minimum on (0,1), whence

(1− tj)α−1tβ−1
j ∆j ≤ Rπ

∫ tj

tj−1

ϕ(s)ds+

∫ tj+1

tj

ϕ(s)ds.

Summing up over j and defining Bα,β = (1 + Rπ)
∫ 1

0
ϕ(s)ds concludes the proof for the simple case.

For general ti and tk one can use the bounds on the simple case by rearranging the j-sum which is
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equal to

(tk − ti)α+β−1
k−1∑
j=i+1

(1− tj − ti
tk − ti

)α−1(
tj − ti
tk − ti

)β−1 ∆j

tk − ti
≤ Bα,β(tk − ti)α+β−1.

�

A.1.2 Proof of Lemma 2.2

If α ≥ 1
2 , the result trivially holds with C(2.2a) = 1 and C(2.2b) = CuT

α− 1
2 .

Now, assume α < 1
2 : if (2.1) holds, of course we also have

uj ≤ wj +

N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

+ Cu

N−1∑
l=j+1

ul∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

. (A.1)

By substituting (A.1) into the last sum, and using Lemma 2.1 we observe

N−1∑
l=j+1

ul∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

≤
N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

+

N−1∑
l=j+1

∑N−1
r=l+1

wr∆r

(T−tr)
1
2
−β(tr−tl)

1
2
−α∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

+ Cu

N−1∑
l=j+1

∑N−1
r=l+1

ur∆r

(T−tr)
1
2
−β(tr−tl)

1
2
−α∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

≤
N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

+Bα+β, 12 +α

N−1∑
r=j+2

wr∆r

(T − tr)
1
2−β(tr − tj)

1
2−2α−β

+ CuBα+β, 12 +α

N−1∑
r=j+2

ur∆r

(T − tr)
1
2−β(tr − tj)

1
2−2α−β

.

Substituting into (A.1), we observe that we have an equation of similar form to (A.1), except that,

in the sum involving u, α 7→ 2α + β and Cu 7→ C2
uBα+β, 12 +α, and, in the sum involvung w, w 7→

(1 + Cu(1 + Tα+βBα+β, 12 +α))w.

After κ iterations of the previous step, we obtain α 7→ 2κ(α+β)−β =: ακ. Hence, for κ sufficiently

large so that ακ ≥ 1
2 , i.e. κ ≥ log2

(
1
2 +β

α+β

)
, we obtain the bound advertised in the Lemma statement.

�
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A.1.3 Proof of Lemma 2.3

W.l.o.g we can assume for the proof that C(2.2a) = 1 in (2.2), up to redefining w as C(2.2a)w. We first

prove the case γ = 1. Define

ζs = 2C(2.2b)
∫ s

0

dr

(T − r) 1
2−β

≤ 2

1 + 2β
2C(2.2b)T (1+2β)/2, (A.2)

and write ζj = ζtj for brevity. Using (2.2) and switching the order of summation, we obtain

N−1∑
j=i+1

uje
ζj∆j

(T − tj)
1
2−β

≤
N−1∑
j=i+1

wje
ζj∆j

(T − tj)
1
2−β

+

N−1∑
j=i+1

∑N−1
l=j+1

wl∆l

(T−tl)
1
2
−β(tl−tj)

1
2
−α e

ζj∆j

(T − tj)
1
2−β

+ C(2.2b)
N−1∑
j=i+1

∑N−1
l=j+1

ul∆l

(T−tl)
1
2
−β e

ζj∆j

(T − tj)
1
2−β

≤ eζT
N−1∑
j=i+1

wj∆j

(T − tj)
1
2−β

+ eζTBα+β,1

N−1∑
l=i+2

wl∆l

(T − tl)
1
2−β(tl − ti)−α−β

+ C(2.2b)
N−1∑
l=i+2

ul∆l

(T − tl)
1
2−β

l−1∑
j=i+1

eζj∆j

(T − tj)
1
2−β

≤ eζT (1 +Bα+β,1T
α+β)

N−1∑
l=i+1

wl∆l

(T − tl)
1
2−β

+
1

2

N−1∑
l=i+1

ule
ζl∆l

(T − tl)
1
2−β

where we have used (because ζ is non-decreasing and β ≤ 1
2 )

C(2.2b)
l−1∑
j=i+1

eζj∆j

(T − tj)
1
2−β

≤
∫ tl

ti+1

C(2.2b)eζs

(T − s) 1
2−β

ds ≤ eζl

2
.

By subtracting the term with factor 1
2 , the result for γ = 1 follows. Moreover, plugging the result into

(2.2), and returning to general C(2.2a), gives

uj ≤ C(A.3)wj + C(A.3)

N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β(tl − tj)

1
2−α

+ C(A.3)

N−1∑
l=j+1

wl∆l

(T − tl)
1
2−β

(A.3)

for a constant C(A.3) := 2C(2.2a)e
ζT (1 + Bα+β,1T

α+β). Now for the general case γ > 0, observe that,

for any δ ≥ 0, one obtains by change of the order of summation that

N−1∑
j=i+1

∑N−1
l=j+1

wl∆l

(T−tl)
1
2
−β(tl−tj)

1
2
−δ ∆j

(T − tj)
1
2−β(tj − ti)1−γ

≤ Bβ+δ,γ

N−1∑
l=i+2

wl∆l

(T − tl)
1
2−β(tl − ti)1−β−δ−γ

. (A.4)
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Thus, (A.3) yields

N−1∑
j=i+1

uj∆j

(T − tj)
1
2−β(tj − ti)1−γ

≤ C(A.3)

N−1∑
j=i+1

wj∆j

(T − tj)
1
2−β(tj − ti)1−γ

+ C(A.3)Bβ+α,γ

N−1∑
l=i+2

wl∆l

(T − tl)
1
2−β(tl − ti)1−β−α−γ

+ C(A.3)Bβ+ 1
2 ,γ

N−1∑
l=i+2

wl∆l

(T − tl)
1
2−β(tl − ti)

1
2−β−γ

≤ C(A.3)(1 +Bβ+α,γT
α+β +Bβ+ 1

2 ,γ
T

1
2 +β)

N−1∑
j=i+1

wj∆j

(T − tj)
1
2−β(tj − ti)1−γ

.

�

A.2 Proof of Lemma 3.7

Using the bounds Cy,i and Cz,i on y
(M)
i (·) and z

(M)
i (·), respectively, one applies the local Lipschitz

continuity and boundedness properties of fj given in (AF) to obtain the bound

|fj(xj , y(M)
j+1 (xj+1), z

(M)
j (xj))| ≤

Lf (Cy,j+1 + Cz,j)

(T − tj)
1
2−

θL
2

+
Cf

(T − tj)1−θc
. (A.5)

Substituting this into the definition S
(M)
Y,i (x(i)), it follows that

|S(M)
Y,i (x(i))| ≤ Cξ +

N−1∑
j=i

(Lf (Cy,j+1 + Cz,j)

(T − tj)
1
2−

θL
2

+
Cf

(T − tj)1−θc

)
∆j .

Substituting the value of Cy,j and Cz,j given in Equations (2.9) and (2.10), respectively, using the

crude bound |ξ − Eiξ|2,i ≤ Cξ and Lemma 2.1, we obtain the bound C̄y,i, with the form (3.9).

To obtain the bound C̄z,i, apply first the triangle inequality on the conditional standard deviation

of S
(M)
l,Z,i(H

(i,m), X(i,m)); second use the bound (A.5) on the driver, and the bound (AH) to obtain√
Var

[
S

(M)
l,Z,i(H

(i,m), X(i,m))
∣∣∣ F (M)

i

]
≤ CξCM√

T − ti
+

N−1∑
j=i+1

(Lf (Cy,j+1 + Cz,j)

(T − tj)
1
2−

θL
2

+
Cf

(T − tj)1−θc

) CM√
tj − ti

∆j .

Then, the computation of C̄z,i follows again from Equations (2.9) and (2.10), and Lemma 2.1. The

form (3.9) is also derived. We skip details. �
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