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Abstract:  

This study investigated the effects of seawater pH (i.e. 8.10, 7.85 and 7.60) and temperature (16 and 

19°C) on (i) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), 

(ii) growth, development and (iii) cuttlebone calcification of embryonic and juvenile stages of the 

cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, 

leading to an increase in egg surface while the interactive effects suggested a limited plasticity of 

the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid 

(> 3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even 

under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, 

whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both 

temperatures. This phenomenon of hypercalcification is limited to only a number of animals but 

does not guarantee functional performance and calls for better mechanistic understanding of 

calcification processes. 
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INTRODUCTION 

Marine calcifying organisms were expected to be particularly impacted by ocean acidification-

driven changes in marine carbonate chemistry (Seibel and Fabry 2003; Orr et al. 2005; Langdon and 

Atkinson 2005; Kleypas et al. 2006). Our current knowledge supports the hypothesis that a broad 

range of them indeed undergo reduced calcification or increased dissolution rates in response to 

predicted atmospheric pCO2 increases (see review by Kroeker et al. 2010): corals (see review by 

Hoegh-Guldberg et al. 2007), planktonic foraminifera (e.g. Spero et al. 1997; Bijma et al. 2002), 

coccolithophores (e.g. Riebesell et al. 2000; Zondervan et al. 2001), bivalves (e.g. Gazeau et al. 

2010, 2011; Waldbusser et al. 2010; Thomsen et al. 2010), pteropods (e.g. Comeau et al. 2011) or 

echinoderms (reviewed by Dupont et al. 2010). Some studies however reported unchanged or 

increased calcification rates under high seawater pCO2 in echinoderms (Wood et al. 2008; Gooding 

et al. 2009; Ries et al. 2009), decapod crustaceans (Ries et al. 2009), juvenile cephalopods 

(Gutowska et al. 2010a,b), and teleost fish (otholiths: Checkley et al. 2009; Munday et al. 2011). 

Seibel and Walsh (2001, 2003) and Seibel and Fabry (2003) hypothesized that adults or juveniles of 

active species with high metabolic rates are not impaired as negatively by ocean acidification as 

species with lower metabolic rates. Highly mobile and active marine organisms (teleost fish, 

cephalopods and many brachyuran crustaceans) need a powerful ion regulatory apparatus to 

maintain constant blood pH despite fluctuations in blood / haemolymph and seawater pCO2. This 

ability to efficiently regulate extracellular pH could be one explanation for the increased tolerance 

of some organisms to projected increases in future pCO2 (Melzner et al. 2009). These processes, 

controlled by ion-transporter fueled by ATP-dependent pumps, may be energetically costly to 

maintain in acidified conditions (Hu et al. 2011a). Yet, ocean acidification will act simultaneous 

with other climate-related variables, including a global temperature rise. The interaction between 

these two co-occurring stressors could have a larger effect on animals by accumulating metabolic 

additional requirements (Pörtner 2008; Blackford 2010). As an example, regarding cephalopods, 

Rosa and Seibel (2008) showed that the effects of hypercapnia (~1000 μatm, pHNBS ~7.62) on the 

jumbo squid metabolism were more pronounced at elevated temperatures (-15 to -20% of oxygen 

consumption during resting periods at 20-25°C respectively vs. no effect of hypercapnia at 10°C). 

In organisms possessing complex life-cycles, it is often assumed that early-life stages may be the 

most vulnerable to environmental perturbations, including high pCO2 (Pörtner and Farell 2004; 

Pörtner 2008; Kurihara 2008), especially in invertebrates (e.g. Kurihara 2008; Dupont and 

Thorndyke 2009). Even though this view is discussed controversly (Dupont and Thorndyke 2009; 

Byrne 2011), projected changes in seawater abiotic conditions could have strong effects on the 

development of embryos, larvae and juveniles and their calcification capacities. Until now however, 



studies on the effects of high pCO2 on the calcification capacities of water-breathing marine 

organisms’ early life stages are still scarce. On the common cuttlefish Sepia officinalis for instance, 

Gutowska et al. (2008) showed maintained calcification and growth in juveniles after 40 days of 

exposure to high pCO2. In a second study, Gutowska et al. (2010b) showed a 20-50% increase of 

the CaCO3 fraction in juvenile’s cuttlebones along with a structural change of the calcified matrix. 

It should be noted that both studies were done at much higher pCO2 than the IPCC predictions for 

2100 (i.e. ~4000 μatm, pHNBS ~7.23 and ~6000 μatm, pHNBS ~7.10; compared to 900 μatm, 7.70 pH 

units predicted for 2100; IPCC 2007). Additionally, very few studies have considered the impacts of 

global change on several successive life-stages (e.g. Parker et al. 2012, Dupont et al. 2012), while 

the transition from one stage to another (e.g. metamorphosis, hatching) can be radical. It has been 

demonstrated that, for example, juvenile performances can be impaired by stressful experiences 

during larval or embryonic life (Pechenik 2006).  

Among the class Cephalopoda, the Sepiida (or cuttlefish) are characterized by an internal cuttlebone 

(Rodhouse 1998), i.e. an aragonitic-organic composite structure used as a structural skeleton that 

also serves as a buoyancy control device (Denton and Gilpin-Brown 1959). It is composed of a 

calcareous phragmocone containing several septae (i.e. delimiting lamellae), separated by small 

vertical pillars and walls forming chambers (Birchall and Thomas 1983). These chambers contain 

gas (Denton and Taylor, 1964) and are used to regulate the animal’s vertical position in the water 

column. Cuttlefish buoyancy is adjusted by moving liquid in or out of the shell chambers via an 

osmotic pump (Denton and Gilpin-Brown 1961, Denton et al. 1961). The first chambers of the 

cuttlebone are synthesized during the embryonic phase within the egg case. Cuttlebone and 

associated buoyancy mechanism have to be functional upon hatching, as these necto-benthic 

predators immediately start to move and feed in complex three-dimensional environments 

(Boletzky 2003). The cuttlebone is produced rapidly, in accordance with the high, exponential 

growth rates observed in embryonic and juvenile cephalopods (ca. 3.5% of the bodyweight per day 

in 1.5 g cuttlefish at 17°C, Forsythe et al. 2002, Melzner et al. 2005).  

Among Sepiida, S. officinalis is one of the most abundant cephalopods along the European coasts, 

including the Mediterranean sea (Boletzky 1983). This species is commercially important in this 

area with landings 50,000 tons per year in Europe (Pierce et al. 2010). After a relative short life 

(one to two years), adults spawn and lay their eggs in shallow waters (< 30-40 m, Guerra, 2006) 

from late winter to early summer (Rodhouse 1998). In the Ligurian Sea (NW Mediterranean), water 

temperatures fluctuate around 15-17°C when cuttlefish spawning reaches its peak (March-May, 0-

50 m, DYFAMED: http://www.obs-vlfr.fr/sodyf/). The lecithotrophic embryos then develop for a 

relatively long time inside the eggs (two months at 16°C). Development ends with hatchlings that 



resume a necto-benthic life-style and are essentially isometric copies of adults (Melzner et al. 2007). 

These juveniles experience warmer waters from May to July although temperature does not yet 

exceed 20°C. Regarding carbonate chemistry conditions, recent data in Ligurian Sea estimated a 

monthly average of surface seawater pCO2 varying throughout the year in a limited range from 300 

µatm (January-May) to 420 µatm (July-September; Bégovic and Copin-Montégut 2002; Touratier 

and Goyet 2011).  

In the egg, the embryo bathes in the perivitelline fluid (PVF) and is protected by a flexible eggshell, 

which serves as a protective layer against the surrounding environment (Boletzky 1986). Exchange 

between seawater and PVF is limited and selective in terms of water and molecules (Gomi et al. 

1986; de Leersnyder and Lemaire 1972), including pollutants (Bustamante et al. 2002, 2004, 2006, 

Lacoue-Labarthe et al. 2009, 2010a, 2010b, 2011a, 2011b). Due to the egg case serving as a 

diffusion barrier for respiratory gases (CO2, O2), embryos are exposed to low PVF pO2 (pO2 < 6 

kPa, Cronin and Seymour 2000, Gutowska and Melzner 2009) and to high pCO2 in turn (pCO2 > 

0.4 kPa i.e. > 2000-4000 µatm, Gutowska and Melzner 2009). PVF is also slightly hypertonic when 

compared to seawater (de Leersnyder and Lemaire 1972), which enables the characteristic egg 

swelling process (Cronin and Seymour 2000). In addition, the eggshell was shown to display a trace 

element selective permeability (Bustamante et al. 2002, 2004, 2006; Lacoue-Labarthe et al. 2008, 

2009, 2010a, 2011a). Consequently, the embryo grows under abiotic conditions in the PVF that are 

very different from those that hatchlings and juveniles encounter in the seawater. 

pCO2-driven ocean warming and seawater carbonate chemistry change are likely to differently 

affect embryonic cuttlebone formation inside the PVF and juveniles living in seawater. To examine 

the effects of pH and temperature on the calcification capacity of S. officinalis successive early life 

stages (embryo and juveniles), this study investigated (1) the incorporation of the radiotracer 45Ca 

into the cuttlebone in relation to (2) the abiotic conditions surrounding embryo and juveniles. 

Cuttlefish were reared during embryonic development and a significant part of early juvenile life 

(19 days) both at current pH (8.10) and at two lower pH treatment levels (7.85 and 7.60, as 

predicted for 2100); all three pH conditions were studied at two temperatures (16 and 19°C).  

 

MATERIALS AND METHODS 

Animals:  

Eight S. officinalis adults were obtained from a fisherman in the Principality of Monaco in both 

April 2008 (“Experiment 1”) and February 2009 (“Experiment 2”). Male and female cuttlefish were 



acclimated by pairs and kept in flow-through seawater aquarium systems (600L; temperature from 

16 to 18°C) in the IAEA-EL premises. They were daily fed on living shore crabs Carcinus maenas 

or frozen fish. After mating, fertilized eggs laid by one single female were immediately separated to 

optimize oxygenation and randomly distributed to the appropriate experimental treatments (2 

temperature x 3 pH treatments). All animals - adults, eggs and juveniles - were reared in 0.45 µm 

filtrated, UV sterilized and continuously aerated Mediterranean seawater (salinity: 38; light/dark 

cycle: 12h/12h). 

Experimental design: 

Experiment 1: approximately 300 newly laid eggs were randomly assigned in 6 plastic containers 

(one bottle per treatment) containing 5L of seawater being maintained under controlled conditions 

of temperature and pH through a crossed (2x3) experiment. Three incubation containers were kept 

in a bath maintained at 16°C and three in a bath at 19°C, based on the average warming of 3°C of 

the ocean surface waters expected for the end of the century (Levitus et al. 2005). Within each 

temperature treatment, one container was maintained at ambient pH (8.10; pCO2 ~390 µatm) while 

the two others were maintained at pH values predicted to occur following optimistic and pessimistic 

future scenarios (IPCC, 2007): 7.85 (pCO2 ~800 µatm) and 7.60 (pCO2 ~1400 µatm). Water was 

renewed weekly during the first week and then every second day to maintain water quality constant 

([NH4
+] < 0.1 mg L-1, [NO2

-] < 0.1 mg L-1, [NO3
-] < 5 mg L-1). Eggs from this incubation were used 

to follow egg mass accretion and embryonic growth (see below Embryonic and juvenile 

development), cuttlebone weight and 45Ca accumulation (see below 45Ca radiolabelling and sample 

treatment). 

Experiment 2: egg batches were maintained during the whole embryonic development under similar 

conditions as described above (2 temperature x 3 pH treatments). A sub-sample was used for abiotic 

conditions measurements in the PVF (see below Egg perivitelline fluid (PVF) abiotic conditions) 

while the remaining eggs were left to hatch. Ten days after hatching, juveniles were transferred and 

reared in plastic 4-L flat-bottom tanks in the same treatments as the eggs. Seawater was changed 

every day in all containers to maintain constant water quality and animals were fed ad libitum twice 

per day with live brine shrimp (Artemia salina), and juvenile shore crabs (C. maenas).  

Culture maintenance and seawater carbonate chemistry assessment:  

Temperatures were controlled in each bath to within ± 0.5°C (Table 1) using temperature 

controllers connected to 300 W submersible heaters. In each container, pH was controlled within ± 

0.05 pH units (Table 1) by bubbling pure CO2, using a continuous pH-stat system (IKS, Karlsbad). 

The pH values of the pH-stat system were adjusted every two days from measurements of pH on the 



total scale (pHT). pH was measured in each bottle using a pH meter (Metrohm, 826 pH mobile) with 

a glass electrode (Metrohm, electrode plus) calibrated on the total scale using Tris/HCl (TRIS) and 

2-aminopyridine/HCl (AMP) buffer solutions with a salinity of 38 and prepared according to 

Dickson et al. (2007). Total alkalinity (AT) shifts between two seawater renewals were assessed in 

non-radiolabelled seawater of similar conditions (pH, temperature, number of living individuals). 

AT was measured on seawater samples filtered through 0.7µm membranes, immediately poisoned 

with mercuric chloride and stored in a cool dark place pending analyses. AT was determined 

potentiometrically using a home-made titration system, an Orion 8103SC pH electrode calibrated 

on the National Bureau of Standards scale and a computer-driven Metrohm 665 Dosimat titrator. AT 

was calculated using a Gran function applied to pH values ranging from 3.5 to 3.0 as described by 

Dickson et al. (2007). The pCO2 and the aragonite saturation state (Ωar) were determined from pHT 

and AT using the R package Seacarb (Lavigne and Gattuso 2009), with dissociation constants from 

Mehrbach et al. (1973) as refitted by Dickson and Millero (1987).  

Egg perivitelline fluid (PVF) abiotic conditions:  

Eggs used for pO2, pHSWS (SWS scale) and total dissolved inorganic carbon (CT) measurements 

inside the egg fluid were reared in the same temperature and pH cross treatments as previously 

described. During Experiment 2, at the end of development (stage 30 according to Lemaire 1970; 

i.e. days after spawning = 65 at 16°C and 47 for 19°C, Fig. 1), eggs (n = 8 to 12 per conditions) 

were gently lifted out of the tank, weighted and measurements started immediately afterwards. PVF 

sampling was realized within 15s, thus minimizing the artificial increase of the pCO2 values caused 

by stressed embryos. Measurements were obtained using a 1 mL plastic syringe equipped with fiber 

optic micro-sensors (optodes, tip diameter 140 µm, Presens GmbH, Regensburg, Germany). Stable 

PVF pO2 values were obtained within 10s in the syringe filled with 200–300 µL of PVF (as 

previously described in Gutowska and Melzner 2009). PVF pH (SWS scale) values were measured 

in 0.5 mL plastic tubes using a pH electrode (WTW Mic and WTW pH340i pH meter), with stable 

values reached within 1min. During the measurement period, the syringe and sensors were placed in 

a thermostatted water bath at the appropriate temperature (i.e. 16 or 19°C). The oxygen optode was 

calibrated according to the manufacturer’s instructions with water vapor saturated air and a Na2SO3 

solution. The pH optode was calibrated using TRIS and AMP as described above. CT was measured 

in 100 µL of PVF with a Corning 965 CO2 analyzer in triplicates. Carbonate system parameters, i.e. 

pCO2, Ωar, were calculated from CT and pHSWS using CO2SYS software (Lewis and Wallace 

1998), with dissociation constants from Mehrbach et al. (1973) as refitted by Dickson and Millero 

(1987). 

 



Embryonic and juvenile development: 

During embryonic development, egg growth due to egg swelling was determined measuring the 

whole egg fresh weight, in both Experiment 1 and 2. The development course was followed by 

determination of the embryonic stages according to Lemaire (1970). At stage 30 during Experiment 

1, embryos (n = 10) body dry weights (65°C overnight) were measured on a fine-scale balance (i.e. 

days after spawning = 61 and 42, at respectively 16°C and 19°C, Fig. 1). Similarly, during 

Experiment 2, 19-days old juveniles (n = 5 to 12; see Fig. 1) were immediately frozen at -20°C after 

sampling and dry body masses were measured after 12 h at 65°C. 

45Ca radiolabelling and samples treatment: 

Experiment 1: Seawater in each bottle was spiked with 45Ca (10 kBq L-1). Radiotracers were 

purchased from Radioisotope Centre Polatum, Poland, 45Ca [as 45CaCl2; T½ = 163 d]. Stock 

solutions were prepared in H2O to obtain radioactivities that allowed the use of spikes of only a few 

microliters (typically 5-10 µL). The radiotracer spikes were renewed at each water change, in order 

to maintain radiotracer concentrations. Radiotracer activities in seawater were checked before and 

after each water renewal in 5-mL samples, in order to determine the time-integrated radiotracer 

activities (Rodriguez y Baena et al. 2006). When stage 30 was reached, 5 eggs were weighted and 

sampled to determine the radiotracer incorporation in the embryo. Eggs exposed to dissolved 45Ca 

were dissected and the different egg compartments were separated among the eggshell, the vitellus, 

the PVF and the embryo.  The cuttlebone was then separated from the embryo flesh, dried at 65°C 

for 24 h and weighted.  

Experiment 2: to follow the incorporation of 45Ca in the juvenile cuttlebone, 10-days old juveniles 

were exposed to 45Ca (25 kBq L-1) after the transfer from bottles to tanks for a maximum of three 

weeks. The radioactive exposure procedure was carried out as described above (see Experiment 1). 

After 9 days of exposure, 5 to 12 19-days old juveniles were sampled in each condition to determine 

the radiotracer concentration in their cuttlebone. Juveniles were sampled, frozen at -20°C and dried 

for one night at 65°C. In order to individualize cuttlebones from flesh, dried juveniles bodies were 

individually dissolved with 8 mL of NaOH (2N), heated at 40°C (5 hours) and continuously 

agitated until cuttlebones were completely free from flesh. Cuttlebones were collected, rinsed into 

clear distilled water and dried (24 h at 65°C) before dry mass was measured. 

Radioactive sample treatment: Radioactive isolated calcareous structures were dissolved adding 

300 µL of hydrochloric acid (HCl, 37%) at 80°C. After evaporation, the residues were dissolved in 

1 mL of distilled water. Biological and seawater samples were counted after adding 10 mL of 

scintillation liquid, Ultima GoldTM XR (Perkin Elmer). Emissions were measured with a liquid 



scintillation analyzer (Tri-Carb, Packarb 1600 TR or Perkin Elmer 2900 TR) calibrated with an 

appropriate standard for each counting that was used. Counting times were adapted to obtain 

relative propagated errors less than 5% (from 10 min to 24 h). Corrections for the physical half-life 

time and background noise were done in order to determine the 45Ca concentrations at the sampling 

time (Bq). Uptake of 45Ca in the cuttlebone was expressed as the amount of Ca incorporated (QCa, in 

µmol 45Ca cuttlebone-1) according to Martin et al. (2011) and following the equation:  

QCa = [(Acut / Asw) x Csw] x 103 

where Acut is the total 45Ca activity in each cuttlebone (in Bq), Asw is the time-integrated activity (in 

Bq g-1) in seawater during the time of exposure and Csw is the total Ca concentration in 

Mediterranean seawater (0.0114 mmol g-1). 

Data analyses:  

Results are presented for both the end of embryonic development (stage 30) and day 19 of juvenile 

life and are given as mean ± SD. Statistical analyses were conducted using the software R (R 

Development Core Team, 2008). To test the effect of pH and temperature treatments and their 

interaction, two-ways ANOVAs were performed. Prior to analyses, the data was checked for 

normality distribution and homogeneity of variances. When necessary, post-hoc test and interaction 

plots were used to determine the factors’ interactions. All the test decisions were taken at a 

threshold of α=0.05.  

 

RESULTS  

Seawater carbonate chemistry conditions: seawater carbonate chemistry parameters in the different 

pH and temperature conditions are reported in Table 1. Mean AT of the seawater was 2.597 ± 0.012 

mmol kg-1 and 2.549 ± 0.065 mmol kg-1 in the egg and juvenile experiments, respectively; in both 

experiments, AT changed by less than 0.030 mmol kg-1 between two seawater renewals. Seawater 

temperature and pH were stable over the experiments, showing variations lower than 2.5% from the 

mean of each measured parameter. Both eggs and juveniles were maintained at pCO2 of ca. 380 

µatm (pHT = 8.09), ca. 750 µatm (pHT = 7.84) and ca. 1430 µatm (pHT = 7.60) irrespective of the 

temperature (16 or 19°C), consistently with the actual and predicted pH values for the end of the 

century (IPCC 2007). In all experimental conditions, eggs and juveniles were reared in super-

saturated seawater with respect to aragonite (Ωar > 1.15; Table 1). 



PVF abiotic conditions (Experiment 2): the egg development duration was logically shortened by 

temperature increase, and hatchling delay caused by increasing pCO2 was not observed in our 

experimental conditions (stage 30 reached 65 days and 47 days after spawning, at respectively 16°C 

and 19°C, irrespectively of the pCO2 treatment). The embryos develop inside the protective 

eggshell, bathing in the PVF which abiotic conditions (i.e. carbonate chemistry parameters and pO2) 

were determined at the end of the development (stage 30). At this stage, PVF pO2 was very low 

with ~25% of air saturation, all conditions merged (Fig. 2). At 16°C, the PVF pO2 was 25.28 ± 

2.95% vs. 23.73 ± 2.45% air sat. at 19°C, revealing a slightly but significantly higher oxygen 

consumption of the embryo at warmer temperature (Table 2; P = 0.02), especially visible in control 

pH conditions (8.10: 27.1 ± 2.4% at 16°C vs. 22.9 ± 3.0% air sat. at 19°C). Seawater pH did not 

significantly influence PVF pO2 in eggs close to hatching (P = 0.285) but had a significant 

combined effect with the temperature (P = 0.012), revealing a slender decrease of the PVF pO2 with 

decreasing pH only at 16°C (27.1 ± 2.4%, 25.4 ± 3.1% and 23.4 ± 2.2% air sat. in pH conditions of 

respectively 8.10, 7.85 and 7.60). 

At stage 30, the embryo bathed in an environment with lower pH than that of the surrounding 

seawater (7.05 ≤ PVF pHSWS ≤ 7.51 units, Fig. 2). The lowest values were reached in eggs exposed 

to pH 7.60 treatment (PVF pHSWS = 7.07 ± 0.01 at 16°C and 7.10 ± 0.03 at 19°C). Besides, PVF pH 

was significantly lower at 16°C (pHSWS = 7.07 ± 0.01, 7.21 ± 0.02 and 7.35 ± 0.03 units, in pH 

treatments of 8.10, 7.85 and 7.60 respectively) than at 19°C (7.10 ± 0.03, 7.22 ± 0.03 and, 7.45 ± 

0.03 units, respectively, P < 0.001, Table 2).  

In control pH condition, embryos were exposed to a ca. 5 to 6 times higher pCO2 compared to 

external conditions, whatever the temperature (PVF vs. seawater: 2311 µatm vs. 376 µatm at 16°C 

and 1822 µatm vs. 370 µatm at 19°C). PVF pCO2 increased with lower seawater pH (Fig. 2), 

reaching maximum values of ca. 4700 µatm in the lowest pH treatment (i.e. seawater pCO2 of 

ca.1400 µatm). CO2 gradient between PVF and seawater (∆pCO2 - i.e. pCO2 inside the PVF minus 

seawater pCO2) thus increased with higher seawater pCO2 (Table 2, P < 0.001). Respective ∆pCO2 

values in pH treatments of 8.10, 7.85 and 7.60 were of 1863 ± 142, 2391 ± 192 and 2852 ± 178 

µatm at 16°C and 1458 ± 164, 2217 ± 231 and 2794 ± 249 µatm at 19°C. The pCO2 gradient and 

hence the difference of pCO2 between the exterior and the interior of the egg, was also diminished 

under warmer treatments (P < 0.001). Alongside with the extremely high PVF pCO2, the PVF was 

always under-saturated with respect to aragonite, even under control conditions (Fig. 2: Ωar = 0.644 

± 0.038 units at 16°C and 0.886 ± 0.039 units at 19°C). As expected, the Ωar values dropped with 

decreasing pH (Table 2, P < 0.001), leading to extremely low values in seawater pH treatment of 

7.60 (Ωar = 0.335 ± 0.011 units at 16°C and Ωar = 0.418 ± 0.032 units at 19°C). Our results revealed 



an interaction of both seawater pH and temperature with respect to PVF carbonate chemistry. 

Acidification rapidly worsen conditions advantageous to calcium precipitation in the embryonic 

fluid (Ωar PVF = 0.771 ± 0.130, 0.487 ± 0.062 and 0.372 ± 0.047 units at respectively 8.10, 7.85 and 

7.60), while this effect appeared counterbalanced by seawater warming (Table 2: pH PVF: P < 0.001; 

pCO2PVF: P < 0.01; Ωar PVF: P < 0.001; ∆pCO2 PVF: P < 0.05) leading to more under-saturated fluids 

at low temperature. 

Embryonic and juvenile development: the egg swelling was followed in Experiment 1 (2008) and 2 

(2009) by measuring the whole egg weight. Because egg size is a female-dependent property, the 

egg weights were clearly different between the two experiments. However, it is noteworthy that egg 

weights within each group were affected by temperature at the end of development (Fig. 3; Table 2; 

P < 0.001 for both years), with heavier eggs at 19°C than at 16°C (respectively 2.28 ± 0.10 g vs. 

1.71 ± 0.16 g in 2008 and 3.69 ± 0.33 g vs. 2.95 ± 0.25 g in 2009). pH treatment also influenced 

significantly the egg weight (P < 0.001 in 2008 and P = 0.007 in 2009; Table 2) highlighting an 

enhanced egg swelling phenomenon under acidified conditions. This pH effect was however 

weaken at warmer temperature, with similar egg weights for all pH at 19°C (Fig. 3; Table 2: P < 

0.001 in 2008 and P = 0.028 in 2009). 

At the end of the development (Experiment 1), the whole body dry weight of the embryo was only 

affected by the temperature treatment (P < 0.001; Table 3). Embryos raised at 16°C during 61 days 

were significantly heavier than those that developed at 19°C during 42 days (Fig. 4; 32.39 ± 1.38 

mg vs. 26.30 ± 1.65 mg respectively). Hatching success has not been significantly affected by 

treatments (< 5% of eggs were undeveloped, as usually observed in similar conditions). Survival 

rates of juveniles reared during the Experiment 2 was > 90 % in all conditions during the first 3 

weeks of incubation. The health of animal strongly decreased posterior to this date and high 

mortality was observed along the following days (~80% mortality reached by 36 and 30 days post-

hatching in 16 and 19°C treatments respectively). Therefore, we focused on measures of 45Ca 

uptake collected in healthy juveniles (showing hunting activities when fed, standing on the bottom 

of the tank) sampled after 19 days of incubation in the six treatments. According to these data, 

neither temperature nor pH had an effect on body dry weight after 19 days of incubation (see above: 

10 days of maintenance post-hatching and 9 days of exposure; Fig. 4).  

Cuttlebone growth and calcification: at the end of development, the weight of embryo’s cuttlebone 

was not significantly affected by the pH treatment (Experiment 1, P = 0.59; Table 3 and Fig. 4) but 

was heavier in animals maintained at 19°C compared to 16°C (3.24 ± 1.28 mg vs. 1.43 ± 0.30 mg 

respectively; P < 0.001). In 19-days old juveniles, the cuttlebones were slightly heavier at 19°C 

than at 16°C (Experiment 2, 3.66 ± 0.86 mg vs. 3.00 ± 0.44 mg respectively; P < 0.05). Cuttlefish 



calcification was assessed through 45Ca incorporation in cuttlebones both during the whole 

embryonic development (42 or 61 days) and 9 days of juvenile life. This difference of incubation 

time explains the contrasting quantity of calcium (QCa: in µmol) precipitated in embryo and juvenile 

calcareous structure (Fig. 5). Temperature also had an effect on 45Ca incorporation, however, only 

at the embryonic stage: a seawater warming of 3°C reduced QCa by a factor of 1.6 irrespective of pH 

treatment (Fig. 5; P < 0.001). Comparisons within each experiment indicated that accumulation of 

CaCO3 (QCa) was greater with decreasing pH both in embryo and juvenile stages (Fig. 5; P < 

0.001). The lowest pH treatment led to an increase of calcium incorporation in cuttlebone from ca. 

17% in embryo to up 80% in juvenile in our experimental conditions. 

 

DISCUSSION 

According to our results, a decrease of seawater pH by 0.25 to 0.50 units, as expected in average for 

the end of the century in global oceans, would increase the accumulation of calcium in the internal 

calcareous structure by 17% to 80% in embryonic and juvenile cuttlefish respectively. This study 

corroborates with the observation of Gutowska et al. (2010b) where cuttlebones of Sepia officinalis 

juveniles displayed a significant increase in CaCO3 mass (hypercalcification) under very high pCO2 

(~6000 µatm for 40 days). Here, using 45Ca ß-emitting radiotracer, a very sensitive nuclear detection 

method that allows for calcification rate estimation in early life stages (Fabry and Balch 2010), we 

demonstrate that such hypercalcification also occurs under realistic scenarios of increased 

temperature and pCO2 in early life stages of Sepia. 

In cephalopods, the requirements in essential elements are poorly known and only few studies have 

examined the elemental content of early stages (Craig and Overnell 2003, Villanueva and 

Bustamante 2006, Miramand et al. 2006). Calcium reserves needed for metabolic processes could 

be contained in the rich yolk of the cuttlefish egg (Boletzky 1974, 1989; e.g. Lacoue-Labarthe et al. 

2009). In the octopod Octopus vulgaris however, calcium concentration increases during the oocyte 

development, suggesting that this essential element could be obtained from seawater intake 

(Villanueva and Bustamante 2006). It has been previously demonstrated that the eggshell displays a 

selective permeability to dissolved trace elements, independently of their essential or non-essential 

character (Bustamante et al. 2002, 2004, 2006, Lacoue-Labarthe et al. 2008, 2009, 2010a), and that 

changes in seawater pCO2 conditions could affect these properties (Lacoue-Labarthe et al. 2009). In 

this study, it is worth noting that, whatever the treatment, 45Ca was detected in embryos’ cuttlebones 

revealing that 1) the eggshell is permeable to calcium and 2) the cuttlebone formation is dependent 

on calcium uptake from seawater. If external seawater is the only source of calcium, approximately 



2.7 mL of seawater ([Ca2+] = 411 mg LSW
-1) would need to be depleted of calcium in order to build 

a cuttlebone at the end of development at 19°C (dry weight = 3.0 mg, composed of 95% CaCO3). 

Both embryos and juveniles hypercalcified when exposed to elevated pCO2, although the 

surrounding medium became less favorable to CaCO3 precipitation (i.e. decreasing Ωar). Numerous 

studies on bivalve molluscs showed reduced rates of calcification in response to ocean acidification 

(e.g. Miller et al. 2009; Thomsen et al. 2010). Marine organisms display a species-specific ability to 

calcify (Ries et al. 2009, Findlay et al. 2011), probably linked to their ability to maintain favorable 

chemical condition for CaCO3 precipitation at the calcification site when exposed to high pCO2 

(e.g. Venn et al. 2011). Protective organic layers covering the calcareous structure are a key to 

determine species vulnerability against corrosive seawater that can lead to external CaCO3 

dissolution (Tunnicliffe et al. 2009, Ries et al. 2009; Rodolfo-Metalpa et al. 2010, Thomsen et al. 

2010). The cuttlefish is a unique mollusc model as it is characterized by a fully internal calcareous 

structure. This latter is bathed in extracellular fluids with their particular controlled carbonate 

chemistry and surrounded by the shell forming an epithelium (Appellöf 1893). Similarly, 

hypercalcification has also been observed in the internal otoliths of fish (Checkley, 2009), a 

structure bathing inside a fluid chamber and regulating fish equilibrium. Shiao et al. (2005) 

postulate that calcification conditions are maintained around the otolith by the ion-transporters 

discovered on the external membrane. The specificity of an internal structure in S. officinalis could 

thus be one reason for the ability to calcify even under the drastic abiotic conditions within the PVF 

as observed in this study.  

The higher calcification observed under acidified conditions of both embryos and juveniles should 

be considered in relation to the abiotic conditions in which the animals developed, i.e. the PVF vs. 

seawater. Within the egg at the end of development, PVF pO2 was low due to the metabolic 

requirements of the growing embryo, as previously demonstrated (Cronin and Seymour 2000; 

Gutowska and Melzner 2009). In turn, aerobic metabolism produces CO2, ultimately resulting in a 

very high PVF pCO2, even in ambient conditions (Gutowska and Melzner 2009; this study). PVF 

pCO2 was affected by increasing seawater pCO2, with PVF pCO2 rising up to ca. 4000 µatm when 

eggs were incubated at a seawater pCO2 of ca. 1400 µatm (see Fig. 2). This additive effect of ocean 

acidification on the PVF hypercapnic conditions is necessary to maintain rates of CO2 excretion 

from the PVF to the seawater (Hu et al. 2011a). Diffusive flux of metabolic CO2 out of the egg 

(MCO2) is proportional to the surface of the eggshell (A), the pCO2 gradient between PVF and 

seawater (∆pCO2) and inversely proportional to the thickness (d) of the eggshell. It also depends on 

the specific material properties of the barrier (Krogh’s gas diffusion coefficient, K):  

MCO2 = ∆pCO2 x A/d x K 



While maintenance of the ∆pCO2 seems to be crucial for cuttlefish embryos exposed to elevated 

seawater pCO2, our work also suggests that other responses are facilitating CO2 (O2) diffusion from 

the egg to the seawater (and vice versa). A temperature increase of 3°C induces an egg weight 

increase of ca. 20-30%, resulting in an estimated egg surface area increase of 15-20% (Lacoue-

Labarthe et al. 2009; this study). Although the mechanism controlling the swelling process is not 

fully understood (see Lacoue-Labarthe et al. 2009), the osmotic gradient driven water entry in the 

perivitelline space (de Leersnyder and Lemaire 1972) might be closely coupled to physiological 

processes of the developing embryo. The enhanced swelling of the egg, as shown in Fig. 3, directly 

increases the surface area (A) of the eggshell and reduces its thickness (d) (see Cronin and Seymour 

2000). This process therefore contributes to facilitate CO2 exchanges in order to maintain low PVF 

pCO2, especially when metabolic rates are increased with elevated temperature and pCO2 (Melzner 

et al. 2006). For example, at pH 8.10, the PVF pCO2 was lower at 19°C than at 16°C whereas a 

higher value would be expected at warmer temperature, due to increased metabolic activities. We 

postulate that the enhanced egg swelling at 19°C and the subsequent increased surface / reduced 

thickness of the eggshell allows a ∆pCO2 decrease and hence a lower PVF pCO2. This higher gas 

exchange at higher temperature could also explain the slightly lower pO2 at 19°C than at 16°C at the 

end of development. Nevertheless, the effect of pCO2 on egg volume was weaken at high 

temperature, suggesting that swelling plasticity could be limited and that, at the end of 

development, the egg capsule probably reached its maximum stretching capacity at 19°C, 

irrespective of the pH treatment. Under such conditions, additive effects of pCO2 and temperature 

might be hidden by structural limitation of the eggshell. 

These adverse abiotic conditions in the PVF have implications regarding 1) the calcification 

capacities of the embryo and 2) the developmental conditions for the subsequent juvenile life. First, 

despite the under-saturation of the PVF, even under normal pH conditions (0.58 ≤Ωar≤ 0.96), 

embryos are able to precipitate aragonite. They furthermore increased calcium accumulation in a 

PVF medium extremely under-saturated with CaCO3 (0.32 ≤Ωar≤ 0.47 when seawater pH = 7.60). 

In juvenile animals exposed to 6000 µatm of pCO2, the higher rates of calcification were 

hypothetically linked to their efficient acid-base regulation capacities (Gutowska et al. 2010a). 

More precisely, cuttlefish were observed to rapidly increase blood bicarbonate (HCO3
-) 

concentrations from 3.3 to 10.4 mM in the blood to compensate hypercapnia-induced extracellular 

acidosis (Gutowska et al. 2010b). Increases in extracellular [HCO3
-] raises the calcium carbonate 

saturation state in extracellular fluids, potentially facilitating calcium precipitation at the site of 

biomineralization, or increasing HCO3
- transport into calcifying epithelial cells (Gutowska et al. 

2010a). Such process could also be at work in embryos since Hu et al. (2010, 2011a) demonstrated 

that the gills of late cuttlefish embryos are characterized by an active ion regulatory machinery 



capable of acid-base regulation. In addition, Hu et al. (2011b) could establish the presence of 

ionocytes on skin and yolk epithelium even in earlier embryonic stages that lack gills. These authors 

revealed net proton excretory fluxes from the embryo to the surrounding medium, suggesting that 

even early cephalopod embryos are able to regulate body fluid pH by means of bicarbonate 

accumulation / net proton excretion. Hypermineralization was observed predominantly in species 

that are characterized by efficient blood / haemolymph accumulation capacities (crustacea: Ries et 

al. 2009, teleost fish: Checkley et al. 2009, Munday et al. 2011). In echinoderms, hypercalcification 

under acidified conditions has only been noted in adults (Wood et al. 2008 and Ries et al. 2009), 

stage at which abilities to regulate the internal coelomic fluid pH by modulating bicarbonate 

accumulation were observed (sea urchin: Stumpp et al. 2012). In this same group (Beniash et al. 

1997, 1999, Politi et al. 2004) and recently in bivalves (Weiss et al. 2002, Jacob et al. 2011), it was 

shown that the initial stages of calcification are intracellular processes: an amorphous calcium 

carbonate (ACC) precursor phase is formed in vesicles and later exocytosed to be incorporated into 

the skeleton (see Addadi et al. 2006 for a review of current concepts). It is not unlikely that elevated 

blood bicarbonate concentrations, as encountered during hypercapnia in cuttlefish, increase the rates 

of import of this substrate for biomineralization into calcifying epithelial cells: ACC formation and 

calcification in general could be increased this way. The mechanisms behind cuttlefish calcification 

will be a beneficial topic for further research. 

The ability of cuttlefish embryos to calcify under extremely high seawater pCO2 raises the question 

of whether this high physiological performance is associated with increased metabolic costs. Recent 

studies have measured increased metabolic costs associated with experimentally elevated seawater 

pCO2 (Wood et al. 2008; Thomsen and Melzner 2010; Stumpp et al. 2011), more particularly 

suggesting energetic trade-offs that impact growth rate - a situation similar to that encountered in 

many echinoderm larval stages (see Dupont et al. 2010 for a review, Stumpp et al 2011). Active 

compensation for acidosis and hypercapnia did not induce measureable additive costs in subadult S. 

officinalis exposed to a pCO2 of 6000 µatm (Gutowska et al. 2008). However, PVF hypercapnia led 

to a decrease of embryo weight and a delay in embryonic development when eggs were incubated at 

3700 µatm (Hu et al. 2011a) or at 1500 µatm (Lacoue-Labarthe et al. 2009). In this study, the pCO2 

did not significantly impact embryos weight before hatching (Fig. 4 and Table 3) contrasting with 

previous observations (Lacoue-Labarthe et al. 2009a; Hu et al. 2011a). Without obvious 

explanation, these results have to be considered with caution and would need confirmation in the 

future. Nevertheless, the lowest weight value, recorded at the highest temperature and pCO2, 

suggests synergetic effects of both parameters as previously demonstrated in corals and molluscs 

(e.g. Rodolfo-Metalpa et al. 2011) and that combined ocean acidification and warming may reduce 

the efficiency of yolk utilization through an energy budget modulation (Pörtner 2008). Therefore, 



on one side, under elevated seawater pCO2, combined hypoxia and hypercapnia in the PVF would 

slow down the developmental rate, explaining the delay in hatching time observed by Hu et al. 

(2011a), and on the other side, extreme seawater and PVF pCO2 would lead to an increased 

allocation of energy to acid-base and other cellular homeostatic processes (including ion 

movements associated with ACC formation for example) at the expense of animal growth. 

Enhanced egg swelling with increasing hypercapnia and temperature could as well worsen the 

energy loss for the embryo if the osmotic gradient maintenance between the PVF and seawater 

required active metabolic processes (Gomi et al. 1986).  

The hatching event constitutes a harsh shock for the animal, as the embryo leaves the medium 

protecting it against direct predation and microbial attacks (Barbieri et al. 1997); however, the 

juvenile encounters a higher pH and lower pCO2, resulting in a lower requirement for blood pH 

regulation. Still, 45Ca incorporation in the cuttlebone was found to be increased even in juveniles 

under acidified conditions, indicating that similar mechanisms as described must be operative in 

juveniles as well. In contrary to Gutowska et al. (2010b), we were not able to measure a difference 

in cuttlebone mass in response to pCO2 or temperature, however our animals were younger and 

smaller. The cuttlebone is mainly composed of CaCO3 (92 to 95 % mass) embedded in an organic 

matrix, giving the organ structure; therefore, in this study, it is not possible to infer conclusion on 

the impact of the experimental treatments on the organic matrix. Nevertheless, it should be 

mentioned that a high seawater pCO2 could modify the cuttlebone size, its internal structure, its 

organization or composition, resulting in an increase of calcium incorporation but no alteration of 

the weight. For example, under acidified conditions, along with 20-55% increase in the cuttlebone 

mass, Gutowska et al. (2010b) observed a strong increase in the number of shell-chambers 

constituting the cuttlebone, including an increase in the number of CaCO3 structure such as pillars 

and walls. This last study also demonstrated that the mass of the non-acid-soluble organic matrix (or 

chitin), was significantly decreased under high pCO2. In other words: even if cuttlebones were 

heavier, organic material synthesis in the cuttlebone was decreased. Possibly, and in contrast to 

calcium carbonate precipitation, synthesis of organic components is complex and energetically 

costly (Palmer 1992). In conclusion, both higher calcium and lower chitin incorporation could result 

in altering cuttlebone properties like its buoyancy, by increasing its density, or implosion resistance 

properties (Sherrard 2000). Further studies should be carried out to determine the consequences of 

enhanced calcification under increased pCO2 in the cuttlefish early life stages on the microstructure 

of the cuttlebone and on the animal swimming abilities. 

The results of this study demonstrate the particularities of the response to acidification in both in 

embryos and juveniles cuttlefish, in comparison to other invertebrates. Calcification processes 



under elevated pCO2 in cephalopods need to be better characterized in order to clarify the 

mechanisms leading to hypercalcification in this group. Although the combined effects of ocean 

acidification and temperature did not decrease calcium accumulation during the formation of the 

calcareous endoskeleton in S. officinalis embryos and juveniles, the functional properties of the 

cuttlebone as buoyancy device could be affected. The effect of raised pCO2 should be investigated 

on the animal entire life cycle considering possible carry-over effects (e.g. Parker et al. 2012, 

Dupont et al. 2012) and not only from the calcification point of view. Linked to buoyancy abilities, 

further studies on feeding behavior under projected scenarios of future environmental change would 

be required in order to assess CO2 impacts on population dynamics of the cuttlefish S. officinalis. 
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Fig. 1 Experimental design scheme (Experiments 1 and 2) set up to study the impact of temperature and pH along the embryonic and juvenile 
development of the cuttlefish (Sepia offcinalis). Dotted lines represent the exposure of animals to dissolved 45Ca in seawater. For each “45Ca 
sampling”, measurements of the cuttlebone dry weight, body dry weight, 45Ca content in the cuttlebone (Qca) have been carried out. Fresh eggs 
were weighted at the end of the embryonic development (�; stage 30). 



 

Table 1 Carbonate system parameters during the experimental set-up in both 2008 (Experiment 1) and 2009 (Experiment 2). Results are 

expressed as mean ± SD. The partial pressure of CO2 (pCO2) and aragonite saturation state (Ωar) were calculated for a seawater salinity of 38, 

using the measured parameters in bold. 

Experiment AT 
(µmol kg-1) 

Temperature 
(°C) 

pHT pCO2 

(µatm) 
Ωar 

Experiment 1 2597 ± 12 

16.0 ± 0.1 
7.60 ± 0.08 1433 ± 208 1.21 ± 0.31 

7.84 ± 0.05 775 ± 83 1.97 ± 0.20 

8.11 ± 0.09 378 ± 65 3.35 ± 0.63 

18.9 ± 0.3 
7.58 ± 0.08 1517 ± 273 1.30 ± 0.26 

7.86 ± 0.12 766 ± 181  2.32 ± 0.73 

8.14 ± 0.09 393 ± 83 3.56 ± 0.67 

Experiment 2 2549 ± 65 

16.0 ± 0.4 
7.60 ± 0.09 1381 ± 30 1.16 ± 0.03 

7.81 ± 0.04 739 ± 15 1.97 ± 0.04 

8.06 ± 0.08 376 ± 11 3.17 ± 0.09 

19.1 ± 0.5 
7.60 ± 0.03 1395 ± 38 1.30 ± 0.04 

7.83 ± 0.02 741 ± 22 2.19 ± 0.06 

8.03 ± 0.06 370 ± 7 3.46 ± 0.06 

 



Fig. 2 Abiotic conditions in the perivitelline fluid (PVF) of S. officinalis eggs during Experiment 2 (stage 30; n = 8 to 12) including pO2 (% air 
saturation), pH (SWS scale), pCO2 (µatm) and Ωar in the different experimental conditions (pH = 7.60, 7.85 and 8.10; temperature = 16°C and 
19°C). Results of the statistical analyses are reported in Table 2. 



  

Fig. 3 Weights of S. officinalis nearly hatched eggs (g; stage 30; n = 10) in the different experimental conditions (pH = 7.60, 7.85 and 8.10; 
temperature = 16°C and 19°C). Data are issued from two experiments carried out in 2008 (Experiment 1; left) and 2009 (Experiment 2; right; 
note the different scales). Results of the statistical analyses are reported in Table 2. 



Table 2 Two-way ANOVA analyses testing the influence of temperature (T; 16 vs. 19°C), pH (pH; 7.60, 7.85 and 8.10) and their interactions 

(T×pH) on nearly hatched eggs (stage 30) regarding: i. the perivitelline-fluid (PVF) abiotic conditions (pO2, pH, pCO2, and Ωar) and the pCO2 

gradient (∆pCO2 = PVF pCO2 - seawater pCO2) during Experiment 2 (n=8 to 12) and ii. eggs fresh weight (Eggs FW) both during Experiments 1 

(2008) and 2 (2009) (n=10). Results in bold are significant. 

 

 

T pH T×pH 

df MS F P df MS F P df MS F P 

PVF pO2 1 35.88 5.57* 0.02 2 8.27 1.28 ns 0.29 2 31.01 4.81* 0.01 

PVF pH 1 0.067 112.70*** 1.10-14 2 0.48 816.45*** < 2.10-16 2 0.010 16.81*** 2.10-6 

PVF pCO2 1 1747381 46.69*** 8.10-9 2 23995501 641.18*** < 2.10-16 2 281779 7.53** 0.001 

PVF Ωar 1 0.38 283.46*** < 2.10-16 2 0.80 596.65*** < 2.10-16 2 0.042 31.34*** 1.10-9 

∆ pCO2 1 1162398 31.06*** 9.10-7 2 6558119 175.26*** < 2.10-16 2 153672 4.11* 0.02 

Eggs FW2008 1 2.37 346.51*** 9.10-16 2 0.09 13.02*** 1.10-4 2 0.069 10.06*** 6.10-4 

Eggs FW2009 1 8.49 125.31*** 7.10-16 2 0.37 5.43** 0.007 2 0.26 3.80* 0.028 

 

df= degree of freedom; MS= mean squares; F=F-value. P < 0.001 (***), P < 0.01 (**), P < 0.05 (*), P < 0.1 (†), ns= non-significant. 



Fig. 4 Body (g; upper figures) and cuttlebone (mg; bottom figures) dry weight of S. officinalis embryos (left figures; stage 30; n = 5) and 
juveniles (right figures; 19-days; n = 5) in the different experimental conditions (pH = 7.60, 7.85 and 8.10; temperature = 16°C and 19°C). 
Results of the statistical analysis are reported in Table 3. 



Fig. 5. Calcium-45 content (QCa: µmol cuttlebone-1; n = 5 to 12) in cuttlebones of S. officinalis embryos (left; stage 30) and juveniles (right; 19-
days old) following incubation to 45Ca in the different experimental con(pH = 7.60, 7.85 and 8.10; temperature = 16°C and 19°C). Note the 
different scales for embryos and juveniles. Results of the statistical analysis are reported in Table 3.



Table 3 Two-way ANOVA analyses testing the influence of Temperature (T), pH (pH) conditions and their interactions (T×pH) on body and 
cuttlebone dry weight and cuttlebone 45Ca content (QCa, µmol cuttlebone-1) at both the end of egg development (Embryo, 61 d at 16°C and 42 d at 
19°C) and after 19 days of juvenile life (Juvenile). Results in bold are significant. 

 

 

T pH T×pH 

df MS F P df MS F P df MS F P 

Body Dry  
Weight 

Embryo 1 269.22 131.37*** 5.10-11 2 4.58 2.24 ns 0.13 2 2.92 1.43 ns 0.26 

Juvenile 1 93.92 3.34† 0.08 2 8.06 0.29 ns 0.75 2 0.38 0.013 ns 0.99 

Cuttlebone   
 Dry Weight 

Embryo 1 23.71 25.38*** 4.10-5 2 0.50 0.54 ns 0.59 2 0.038 0.040 ns 0.96 

Juvenile 1 3.29 6.88* 0.015 2 0.16 0.32 ns 0.73 2 0.71 1.48 ns 0.25 

Cuttlebone 
 QCa 

Embryo 1 249.76 224.66*** 2.10-13 2 13.93 12.53*** 2.10-4 2 2.29 2.06 ns 0.15 

Juvenile 1 0.83 1.45ns 0.24 2 7.85 13.71*** 1.10-4 2 1.06 1.85 ns 0.18 

 

df= degree of freedom; MS= mean squares; F=F-value. P < 0.001 (***), P < 0.01 (**), P < 0.05 (*), P < 0.1 (†), ns= non-significant. 


