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Degenerate parabolic equation with zero flux
boundary condition and its approximations

Mohamed Karimou Gazibo

Abstract. We study a degenerate parabolic-hyperbolic equation with zero flux
boundary condition. The aim of this paper is to prove convergence of numeri-
cal approximate solutions towards the unique entropy solution. We propose an
implicit finite volume scheme on admissible mesh.We establish fundamental es-
timates and prove that the approximate solution converge towards an entropy-
process solution. Contrarily to the case of Dirichlet conditions, in zero-flux prob-
lem unnatural boundary regularity of the flux is required to establish that entropy-
process solution is the unique entropy solution. In the study of well-posedness of
the problem, tools of nonlinear semigroup theory (stationary, mild and integral
solutions) were used in [Andreianov, Gazibo, ZAMP, 2013] in order to overcome
this difficulty. Indeed, in some situations including the one-dimensional setting,
solutions of the stationary problem enjoy additional boundary regularity. Here,
similar arguments are developed based on the new notion of integral-process
solution that we introduce for this purpose.

Mathematics Subject Classification (2010). Primary 65N08; Secondary 47H06.

Keywords. Hyperbolic-parabolic equation, Finite volume scheme; Zero-flux
boundary condition; Convergence, Boundary regularity, Entropy solution; Non-
linear semigroup theory; Mild solution; Integral-process solution.

1. Introduction
Let Ω be a bounded open set of R`, ` ≥ 1, with a Lipschitz boundary ∂Ω and η
the unit normal to ∂Ω outward to Ω. We consider the zero-flux boundary problem

(P)


ut + div f (u) − ∆φ(u) = 0 in Q = (0,T ) ×Ω,

u(0, x) = u0(x) in Ω,
( f (u) − ∇φ(u)).η = 0 on Σ = (0,T ) × ∂Ω.

This work began during a brief stay in LATP (Laboratoire d’Analyse Topologie, Probabilité) at Marseille.
The author thanks the members of Laboratory for the warm welcomes. The work on this paper has been
supported by the French ANR project CoToCoLa.
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The function f is continuous and satisfy:

f (0) = f (umax) = 0 for some umax > 0. (H1)

We suppose that the initial data u0 takes values in [0, umax]. In this case [0, umax] will
be an invariant domain for the solution of (P) (see [6]). The function φ is non de-
creasing Lipschitz continuous in [0, umax]. Formally ∆(φ(u)) = div(φ′(u)∇u). Then,
if φ′(u) = 0 for some (t, x) ∈ Q, the diffusion term vanishes so that (P) is a de-
generate parabolic-hyperbolic problem. In our context, we suppose as in [6] that
there exists a real value uc with 0 ≤ uc ≤ umax such that for u ≤ uc, the problem
(P) is hyperbolic. This means that φ ≡ 0 on [0, uc] and φ is strictly increasing in
[uc, umax]. Also as in [6], we assume that the couple ( f , φ) is non-degenerate, this

means that for all ξ ∈ R`, ξ , 0, the functions λ 7−→
∑̀
i=1

ξi fi(λ) is not affine on

the non-degenerate sub intervals of [0, uc]. It is well know that uniqueness of weak
solution of degenerate hyperbolic-parabolic problem is not ensured, and one has to
define a notion of entropy solution in the sense of Carrillo [17] (see in the strictly
hyperbolic case Kruzhkov [26]) to recover uniqueness. Inspired by [14], we defined
in [6], a suitable notion of entropy solution for (P). A measurable function u taking
values on [0, umax] is called an entropy solution of the initial-boundary value prob-
lem (P) if φ(u) ∈ L2(0,T ; H1(Ω)) and ∀k ∈ [0, umax], ∀ξ ∈ C∞([0,T ) × R`)+, the
following inequality hold∫ T

0

∫
Ω

{
|u − k|ξt + sign(u − k)

[
f (u) − f (k) − ∇φ(u)

]
.∇ξ

}
dxdt

+

∫ T

0

∫
∂Ω

| f (k).η(x)| ξ(t, x)dH `−1(x)dt +

∫
Ω

|u0 − k|ξ(0, x)dx ≥ 0. (1.1)

Let us recall the main theoretical results on problem (P) obtained in [6]. We prove
existence of solution satisfying (1.1), for any space dimension in the case 0 <
uc < umax. Uniqueness is obtained for one space dimension. Remark that unique-
ness is also true in multi-dimensional situation in two extreme cases: uc = 0 (non-
degenerate parabolic case, see [4]) and uc = umax (pure hyperbolic case, (see [14])).
We refer to Appendix 2 for some explanations.
In this paper, we choose an implicit finite volume scheme for the discretization of
the parabolic equation (P). Under suitable assumptions on the numerical fluxes, it is
shown that the considered schemes are L∞ stable and the discrete solutions satisfy
some weak BV inequality and H1 estimates. We prove also space and time transla-
tion estimates on the diffusion fluxes, which are the keys to the proof of convergence
of the scheme. We prove existence of discrete solution by using Leray-Schauder
topological degree. The approximate solutions are shown to satisfy the appropriate
discrete entropy inequalities. Using the weak BV and H1 estimates, the approxi-
mate solutions are also shown to satisfy continuous entropy inequalities. It remains
to prove that the sequence of approximate solutions satisfying this continuous en-
tropy inequalities converge towards an unique entropy solution. In [30], Michel and
Vovelle use the concept of ’entropy-process solution’ introduced by Gallouët and al
(see e.g. [21, 30, 23]) for Dirichlet boundary problem which is similar to the notion
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of measure valued solutions of Diperna [19]. They proved that approximate solu-
tions converge towards an entropy-process solution as the mesh size tends to zero.
Using doubling of variables method, they showed that the entropy-process solution
is unique and is also a entropy solution of Dirichlet problem. In the case of zero flux
boundary condition, some difficulty due to lack of regularity for the boundary flux
appears (see [6]). We are not able to obtain uniqueness by the doubling of variables
method. Thus, the only notion of entropy-process solution is not enough to prove
convergence towards the entropy solution. To solve this difficulty, we found it useful
to consider the general evolution problem of the form:

(E)
{

v′(t) + A(v(t)) = 0 on (0,T );
v(0) = u0.

We propose a new notion of solution called integral-process solution for the abstract
evolution problem (E). This notion is presented in detail in the appendix 1. We prove
that this new notion of integral-process solution coincides with the unique integral
solution. Then, we apply this notion to the problem (P1) and prove that the approxi-
mate solutions converge to an integral-process solution. Then we conclude that it is
an entropy solution.

The rest of this paper is organized as follows. In Section 2, we present our
implicit scheme. In Section 3, we prove a priori estimates, the discrete entropy in-
equalities and existence of discrete solution in Section 4. We propose in Section
5 a continuous entropy inequality, and the convergence result follows in Section
6. Finally, in Appendices we study the abstract evolution equation (E) and prove
uniqueness of entropy solution in one space dimension for degenerate parabolic
equation.

2. Presentation of a finite volume scheme for degenerate
parabolic problem with zero flux boundary condition

In this section, we consider the problem (P1) and construct a monotone finite volume
scheme to approximate the solution. Let δt > 0 be the time step. Let O be a family
of disjoint connected polygonal subsets called control volumes of Ω such that Ω is
the union of the closures of the elements of this family and such that the common
interface of two control volumes is included in the hyperplane of R`. Let h be the
upper bound for maximum size of the mesh: h = sup{Diam(K),K ∈ O}. We suppose
that there exists α > 0 such that:

αh` ≤ m(K), m(∂K) ≤
1
α

h`−1, ∀K ∈ O, (2.1)

then the estimate on the number |O| of control volumes is

|O| ≤
m(Ω)
α

h−`, (2.2)

where m(K) is the `− dimensional Lebesgue measure of K and m(∂K) is the (`−1)−
dimensional Lebesgue measure of ∂K. If K and L are two control volumes having
an edge σ in common, we say that L is a neighbor of K and we write L ∈ N(K).
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Figure 1. Control volumes, centre, diamonds

We sometimes denote by K|L the common edge σ between K and L and by nK,σ the
unit normal to σ, oriented from K to L. Moreover, ε̄K denotes the set of all edges for
any control volumes K. If K has at least one common edge with boundary ∂Ω, we
denote by εext

K the set of these boundaries edges, that can be regarded as εext
K = {σ ∈

ε̄K ,m(σ∩∂Ω) > 0}. Eventually, if the control volume K has no common edges with a
part of boundary ∂Ω then εext

K = ∅. In all case, for all control volume K ∈ O, we have
εK = ε̄K\ε

ext
K . Because we consider the zero-flux boundary condition, we don’t need

to distinguish between interior and exterior control volumes, only inner interfaces
between volumes are needed in order to formulate the scheme. We consider here
the admissible mesh of Ω ( see for e.g. [30]), we mean that there exists a family of
points (xK)K∈O such that the straight line xK xL is orthogonal to the interface K|L. We
denote by dK,L = |xK − xL| the distance between xK and xL and by dK,σ the distance
between xK and the interface σ (see Figure 1). The point xK is referred as the centre
of K. To simplify the analysis, we consider that xK ∈ K (in general, this assumption
can be relaxed, e.g., one can consider so called Delaunay simplicial meshes). We
denote by τK,σ the ’transmissibility’ through σ defined by τK,σ =

m(σ)
dK,σ

if σ ∈ εext
K ,

in addition we denote τK|L =
m(K|L)

dK,L
. The diamond denoted by K̂|L is a convex hull

constructed from neighbor centers xK , xL and K|L. The diamonds are disjoint and
cover Ω up to an h-neighborhood of ∂Ω. Notice that the `− dimensional measure
m(K̂|L) of K̂|L equals to dK,L

`
m(K|L) (see Figure 1).

A discrete function w on the mesh O is a set (wK)K∈O. If wK , vK are discrete
functions, the corresponding L2(Ω) scalar product and norm can be computed as

(wO, vO)L2(Ω) =
∑
K∈O

m(K)wKvK ; ||wO||2L2(Ω) =
∑
K∈O

m(K)|wK |
2.
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In addition, we can define the positive (but not definite) product and the correspond-
ing ”discrete H1

0 semi-norm” by

(wO, vO)HO = `
∑
K∈O

∑
L∈N(K)

m(K|L)
dK,L

(wL − wK)(vL − vK); |wO|2HO =

(
(wO,wO)HO

)
.

(2.3)

We define the discrete gradient ∇OwO of a constant per control volume function wO
as the constant per diamond K̂|L, R`-valued function with values

(∇OwO)K̂|L = ∇K̂|LwO := `
wL − wK

dK,L
ηK,L. (2.4)

For the approximation of the convective term, we consider the numerical convection
fluxes FK,σ : R2 −→ R for K ∈ O, σ ∈ ε̄K

The numerical convection fluxes are monotone:

FK,σ : [0, umax]2 −→ R; (a, b) 7−→ FK,σ(a, b)
is nondecreasing with respect to a and nonincreasing with respect to b. (2.5)

The numerical convection fluxes are conservative:

For all σ = K|L, for all a, b ∈ [0, umax]; FK,L(a, b) = −FL,K(b, a). (2.6)

The numerical convection fluxes are regular:

FK,σ is Lipschitz continuous and admits m(σ)M as Lipschitz constant on
[0, umax]. (2.7)

The numerical convection fluxes are consistent:

For all s ∈ [0, umax], FK,σ(s, s) = m(σ) f (s).nK,σ. (2.8)

The Godunov, the splitting flux of Osher and Rusanov schemes may be the
most common examples of schemes with fluxes satisfying (2.5)-(2.8).
Notice that the hypothesis (2.7) and (2.8) entail the bound

∀a, b ∈ [0, umax], |FK,σ(s, s)| ≤ (|| f ||L∞ + Mumax)m(σ) (2.9)

The discrete unknowns un+1
K for all control volume K ∈ O, and n ∈ N are defined

thanks to the following relations: first we initialize the scheme by

u0
K =

1
m(K)

∫
K

u0(x)dx ∀K ∈ O, (2.10)

then, we use the implicit scheme for the discretization of problem (P):
∀n > 0, ∀K ∈ O,

m(K)
un+1

K − un
K

δt
+

∑
σ∈εK

FK,σ(un+1
K , un+1

K,σ) −
∑
σ∈εK

τK,σ

(
φ(un+1

K,σ) − φ(un+1
K )

)
= 0. (2.11)

If the scheme has a solution, we will say that the piecewise constant function uO,δt(t, x)
defined by:

uO,δt(t, x) = un+1
K for x ∈ K and t ∈]nδt, (n + 1)δt], a.e. (2.12)

is an approximate solution to (P).
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Remark 2.1. 1. Notice that using relation (2.8) and the fact that for all s ∈ R
divx f (s) = 0, one gets

∀s ∈ [0, umax],∀K ∈ O,
∑
σ∈ε̄K

FK,σ(s, s) = 0. (2.13)

This is equivalent to:

∀s ∈ [0, umax],∀K ∈ O,
∑
σ∈εK

FK,σ(s, s) +
∑
σ∈εext

K

FK,σ(s, s) = 0. (2.14)

2. Notice that the prescribed zero flux boundary condition is in fact included in
(2.11). One can extend the summation over σ ∈ ε̄K , and by convention regard
the fluxes as:

FK,σ(un+1
K , un+1

K,σ) =

{
FK,σ(un+1

K , un+1
L ) if σ ∈ K|L,

0 if σ ∈ εext
K .

(2.15)

τK,σ

(
φ(un+1

K,σ) − φ(un+1
K

)
=

 τK|L

(
φ(un+1

L ) − φ(un+1
K )

)
if σ ∈ K|L,

0 if σ ∈ εext
K .

(2.16)

3. Discrete entropy inequalities
This part is devoted to discrete entropy inequalities. We recall some notations ([21]):
Denote by a⊥b = min(a, b) and a>b = max(a, b). We define η+

k (s) = (s − k)+ =

s>k−k, (respectively η−k (s) = (s−k)− = s⊥k−k) and the associated fluxes-functions
Φ±k called entropy fluxes

Φ+
k (s) = sign+(s − k)( f (s) − f (k)) = f (s>k) − f (k);

Φ−k (s) = sign−(s − k)( f (s) − f (k)) = f (s⊥k) − f (k);
Φk(s) = sign(s − k)( f (s) − f (k)).

Therefore, the numerical sub and super entropy fluxes functions are defined by the
formulas

Φ+
K,σ,k(a, b) = FK,σ(a>k, b>k) − FK,σ(k, k);

Φ−K,σ,k(a, b) = FK,σ(k, k) − FK,σ(a⊥k, b⊥k);
ΦK,σ,k(a, b) = FK,σ(a>k, b>k) − FK,σ(a⊥k, b⊥k).

From now, we have the following the discrete entropy inequalities.

Lemma 3.1. Assume that (2.2), (2.5)- (2.8) hold. Let uO,δt be an approximate solu-
tion of the problem (P) defined by (2.10), (2.11), . Then for all k ∈ [0, umax], for all
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K ∈ O, n ≥ 0 the following discrete sub-entropy inequalities hold:

η+
k (un+1

K ) − η+
k (un

K)
δt

m(K) +
∑
σ∈εK

Φ+
K,σ,k(un+1

K , un+1
K,σ)

−
∑
K|L

τK|L

(
η+
φ(k)(φ(un+1

L )) − η+
φ(k)(φ(un+1

K ))
)

≤
∑
σ∈εext

K

sign+(un+1
K − k)m(σ) f (k)nK,σ. (3.1)

Also the discrete super-entropy inequalities are satisfied (i.e., η+
k , Φ+

K,σ,k, sign+ can
be replaced by η−k , and Φ−K,σ,k, sign− in (3.1).

Notice that, if for all K ∈ O, un+1
K satisfy both discrete sub-entropy inequality

and discrete super-entropy inequality, then un+1
K can be seen as a discrete entropy

solution in K×]nδt, (n + 1)δt].

Proof. Thanks to the Remark 2.1, the constant k ∈ [0, umax] is solution of:

m(K)
k − k
δt

+
∑
σ∈εK

FK,σ(k, k) −
∑
K|L

τK|L

(
φ(k) − φ(k)

)
= −

∑
σ∈εext

K

FK,σ(k, k). (3.2)

Substracting from the equality (2.11) the equality (3.2), we obtain:

1
δt

(
(un+1

K − k) − (un
K − k)

)
m(K) +

∑
σ∈εK

(
FK,σ(un+1

K , un+1
K,σ) − FK,σ(k, k)

)
−

∑
L∈N(K)

τK|L

[(
φ(un+1

L ) − φ(k)
)
−

(
φ(un+1

K ) − φ(k)
)]

=
∑
σ∈εext

K

FK,σ(k, k). (3.3)

Multiply (3.3) by (η+
k )′(un+1

K ) = sign+(un+1
K −k). We recall that for all convex function

J, we have for all z1, z2 ∈ R, the convexity inequality (z1 − z2)J′(z1) ≥ J(z1) − J(z2).
(Here, we may consider J′ as being multivalued, in the sense of sub differential of
J). First, we use this convexity inequality to obtain

sign+(un+1
K − k)

(
(un+1

K − k) − (un
K − k)

)
≥

(
(un+1

K − k)+ − (un
K − k)+

)
. (3.4)

Second, due to the monotony of the numerical fluxes, we see that

sign+(un+1
K − k)

(
FK,σ(un+1

K , un+
K,σ) − FK,σ(k, k)

)
≥ Φ+

K,σ,k(un+1
K , un+1

K,σ). (3.5)

Finally, using the convexity inequality and the monotonicity of φ, we have:

−(η+
k )′(un+1

K )
[(
φ(un+1

L ) − φ(k)
)
−

(
φ(un+1

K ) − φ(k)
)]
≥ −

(
η+
φ(k)(φ(un+1

L ) − η+
φ(k)(φ(un+1

K )
)
.

(3.6)
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Then, we get

1
δt

(
(un+1

K − k)+ − (un
K − k)+

)
m(K) +

∑
σ∈εK

Φ+
K,σ,k(un+1

K , un+1
K,σ)

−
∑
K|L

τK|L

(
η+
φ(k)(φ(un+1

L )) − η+
φ(k)(φ(un+1

K ))
)

≤
∑
σ∈εext

K

sign+(un+1
K − k)m(σ) f (k)nK,σ.

This prove (3.1). In the same way, we prove the discrete super-entropy inequalities.
Finally, we deduce that un+1

K satisfies the discrete entropy inequality in this sense:

ηk(un+1
K ) − ηk(un

K)
δt

m(K) +
∑
σ∈ε̄K

ΦK,σ,k(un+1
K , un+1

K,σ)

−
∑
K|L

τK|L

(
ηφ(k)(φ(un+1

L ) − ηφ(k)(φ(un+1
K )

)
≤

∑
σ∈εext

K

sign(un+1
K − k)m(σ) f (k)nK,σ. (3.7)

�

4. Estimates of discrete solution and existence
We wish to prove that the approximate solution uO,δt satisfies the continuous en-
tropy inequalities (see section 5). To this purpose, we give fundamental estimates
useful for proving convergence of the scheme. First, we prove the L∞ stability of
the scheme, this comes from discrete entropy inequalities and the boundedness of
the flux f with the relation (H1).

4.1. L∞ bound on discrete solutions
Proposition 4.1. Suppose that K ∈ O, the assumptions (2.2), (2.5)- (2.8) hold.
Assume that u0 ∈ [0, umax]. Then the approximate solution uO,δt(t, x) of problem (P)
defined by (2.10), (2.11) satisfies:

0 ≤ un
K(t, x) ≤ umax ∀K ∈ O. (4.1)

Proof. Summing (3.1) over K ∈ O, we get∑
K∈O

m(K)
η+

k (un+1
K ) − η+

k (un
K)

δt
+

∑
K∈O

∑
σ∈ε̄K

Φ+
K,σ,k(un+1

K , un+1
K,σ)

−
∑
K∈O

∑
L∈N(K)

τK|L

(
η+
φ(k)(φ(un+1

L )) − η+
φ(k)(φ(un+1

K ))
)

≤
∑
K∈O

∑
σ∈εext

K

m(σ)| f (k)nK,σ|. (4.2)
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In inequality (4.2), take k = umax and use (H1) to obtain:∑
K∈O

m(K)
δt

(
un+1

K − umax

)+

−
∑
K∈O

m(K)
δt

(
un

K − umax

)+

+
∑
K∈O

∑
σ∈εK

Φ+
K,σ,umax

(un+1
K , un+1

K,σ)

−
∑
K∈O

∑
L∈N(K)

τK|L

(
η+
φ(umax)(φ(un+1

L )) − η+
φ(umax)(φ(un+1

K ))
)
≤ 0.

From now, remark that due to the conservativity of the scheme we have∑
K∈O

∑
σ∈εK

Φ+
K,σ,umax

(un+1
K , un+1

K,σ)=
∑
K∈O

∑
L∈N(K)

Φ+
K,L,umax

(un+1
K , un+1

L ) = 0

∑
K∈O

∑
K|L

(
η+
φ(k)(φ(un+1

L )) − η+
φ(k)(φ(un+1

K ))
)
=
∑
K∈O

∑
L∈N(K)

(
η+
φ(k)(φ(un+1

L )) − η+
φ(k)(φ(un+1

K ))
)

= 0.

Therefore ∑
K∈O

m(K)
δt

(
(un+1

K − umax)+ − (un
K − umax)+

)
≤ 0. (4.3)

Since 0 ≤ u0
K ≤ umax, by induction we prove (un+1

K − umax)+ ≤ 0. In the same
way, in the super-entropy inequality, taking k = 0, use (H1), we also prove that
(un+1

K )− ≤ 0. �

4.2. Weak BV and L2(0,T,H1(Ω)) estimates
Now, we give the weak BV and L2(0,T,H1(Ω)) estimates. The L2(0,T,H1(Ω)) as
the L∞ estimate are necessary for justifying compactness properties of discrete solu-
tions. The weak BV-stability does not give directly any compactness result, however,
it plays a crucial role in the proof of continuous entropy inequality (see section 5).
To start with, we recall a Lemma which is one ingredient of the proof of Lemma 4.3
below.

Lemma 4.2. Let G : [a, b] −→ R be a monotone Lipschitz continuous function with
Lipschitz constant L > 0 and a, b ∈ R. Then for all c, d ∈ [a, b], one has∣∣∣∣∣∣

∫ d

c

(
G(x) −G(c)

)
dx

∣∣∣∣∣∣ ≥ 1
2L

(
G(d) −G(c)

)2
.

Proof. In order to prove this result, we assume, for instance, that G is nondecreasing
and c < d (the other cases are similar). Then, ones has G(s) ≥ H(s), for all s ∈ [c, d],
where H(s) = G(c) for s ∈ [c, d − l] and H(s) = G(c) + (s− d + l)L for s ∈ [d − l, d],
with lL = G(d) −G(c), and therefore:∫ d

c
(G(s) −G(c))ds ≥

∫ d

c
(H(s) −G(c))ds =

l
2

(G(d) −G(c)) =
1

2L
(G(d) −G(c))2.

�

Now, we establish the weak BV-stability of the scheme.

Lemma 4.3. (Weak BV-Estimate) Suppose that (2.2),(2.5)-(2.8) hold. Let uO,δt be
an approximate solution of problem (P) defined by (2.10), (2.11). Let T > 0, and set
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N = max{n ∈ N, n < T
δt } and L ∈ N(K) (with convention un+1

K ≥ un+1
L ). Then there

exists C = C(|| f ||L∞ , umax,T, |Ω|) ≥ 0 such that
N∑

n=0

δt
∑
K|L

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(d, d)

)]

+

N∑
n=0

δt
∑
K|L

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(c, c)

)]
≤

C
√

h
. (4.4)

Proof. Multiplying (2.11) by δtun+1
K and summing over K ∈ O and n = 0, ...,N

yields AEvol + AConv + ADi f f = 0 with

AEvol =

N∑
n=0

∑
K∈O

m(K)(un+1
K − un

K)un+1
K ;

AConv =

N∑
n=0

δt
∑
K∈O

∑
σ∈εK

FK,σ(un+1
K , un+1

K,σ)un+1
K ;

ADi f f = −

N∑
n=0

δt
∑
K∈O

∑
K|L

τK|L

(
φ(un+1

L ) − φ(un+1
K )

)
un+1

K .

Let us first estimate AEvol. We use the fact that:

∀a, b ∈ R, (a − b)a =
1
2

(a − b)2 +
1
2

a2 −
1
2

b2,

we get:

AEvol =

N∑
n=0

∑
K∈O

m(K)(un+1
K − un

K)un+1
K

=
1
2

N−1∑
n=1

∑
K∈O

m(K)(un+1
K − un

K)2 +
1
2

∑
K∈O

m(K)
[
(uN+1

K )2 − (u0
K)2

]
. (4.5)

The two first terms are non negative and due to (4.1) there exists C ≥ 0 (that only
depends on |Ω| and umax) such that −C is a lower bound for the last term, then

AEvol ≥ −C. (4.6)

Secondly, using summation by parts

ADi f f =

N∑
n=0

δt
∑
K∈O

∑
K|L

τK|L

(
φ(un+1

L ) − φ(un+1
K )

)(
un+1

L − un+1
K

)
≥ 0. (4.7)

Now, we study the term AConv. Due to (2.14), it can be rewritten as the sum between
Aint

Conv and Aext
Conv:

Aint
Conv =

N∑
n=0

∑
K|L

δt
(
FK,σ(un+1

K , un+1
L ) − FK,σ(un+1

K , un+1
K )

)
un+1

K

−

N∑
n=0

∑
K|L

δt
(
FK,σ(un+1

K , un+1
L ) − FK,σ(un+1

L , un+1
L )

)
un+1

L ; (4.8)
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Aext
Conv = −

N∑
n=0

δt
∑
K∈O

un+1
K

∑
σ∈εext

K

FK,σ(un+1
K , un+1

K )

= −

N∑
n=0

δt
∑
K∈O

un+1
K

∑
σ∈εext

K

m(σ) f (un+1
K ).ηK,σ.

We can estimate the boundary term Aext
Conv by

|Aext
Conv| ≤ C(|| f ||L∞ , umax,T, |∂Ω|). (4.9)

Let us assign:

ΨK,L(a) =

∫ a

0
s
(∂FK,L

∂u
(s, s) +

∂FK,L

∂v
(s, s)

)
ds =

∫ a

0
s

d
ds

FK,L(s, s)ds.

Then

ΨK,L(b) − ΨK,L(a) =

∫ b

0
s

d
ds

FK,L(s, s)ds −
∫ a

0
s

d
ds

FK,L(s, s)ds,

= b
(
FK,L(b, b) − FK,L(a, b)

)
− a

(
FK,L(a, a) − FK,L(a, b)

)
−

∫ b

a

(
FK,L(s, s) − FK,L(a, b)

)
ds. (4.10)

Take a = un+1
K and b = un+1

L in (4.10) and multiply by δt. Summing over n = 0, ....,N
and L ∈ N(K), we obtain Aint

Conv = Aint,1
Conv + Aint,2

Conv, where:

Aint,1
Conv =

n+1∑
n=0

∑
K|L

δt
∫ un+1

K

un+1
L

(
FK,L(un+1

K , un+1
L ) − FK,L(s, s)

)
ds

Aint,2
Conv = −

n+1∑
n=0

∑
K|L

δt
(
ΨK,L(un+1

K ) − ΨK,L(un+1
L )

)
.

We have
∑
σ∈ε̄K

ΨK,L(s) = 0, for all s ∈ [0, umax]; then it appears that Aint,2
Conv reduces to

the sum of σ ∈ εext
K , and it satisfies |Aint,2

Conv| ≤ C similar to the estimate of Aext
Conv.

Now, consider a, b, c, d ∈ R such that a ≤ c ≤ d ≤ b. Using the monotonicity of
FK,L and Lemma 4.2, we deduce∫ b

a

(
FK,L(b, a) − FK,L(s, s)

)
ds ≥

∫ c

d

(
FK,L(d, c) − FK,L(d, s)

)
≥

1
2m(K|L)M

(
FK,L(d, c) − FK,L(d, d)

)2
, (4.11)

∫ b

a

(
FK,L(b, a) − FK,L(s, s)

)
ds ≥

∫ c

d

(
FK,L(d, c) − FK,L(d, s)

)
≥

1
2m(K|L)M

(
FK,L(d, c) − FK,L(c, c)

)2
. (4.12)
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Therefore, we get:∫ un+1
K

un+1
L

(
FK,L(un+1

K , un+1
L )−FK,L(s, s)

)
ds ≥

1
2m(K|L)M

max
un+1

L ≤c≤d≤un+1
K

(
FK,L(d, c)−FK,L(d, d)

)2

∫ un+1
K

un+1
L

(
FK,L(un+1

K , un+1
L )−FK,L(s, s)

)
ds ≥

1
2m(K|L)M

max
un+1

L ≤c≤d≤un+1
K

(
FK,L(d, c)−FK,L(c, c)

)2
.

Then, we have

Aint,1
Conv ≥

N∑
n=0

δt
∑
K|L

1
4m(K|L)M

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(d, d)

)2]

+

N∑
n=0

δt
∑
K|L

1
4m(K|L)M

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(c, c)

)2]
. (4.13)

Recalling the equality AConv = Aext
Conv + Aint,1

Conv + Aint,2
Conv, we find

AConv ≥

N∑
n=0

δt
∑
K|L

1
4m(K|L)M

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(d, d)

)2]

+

N∑
n=0

δt
∑
K|L

1
4m(K|L)M

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(c, c)

)2]
− 2C. (4.14)

Set

ĀConv =

N∑
n=0

δt
∑
K|L

1
4m(K|L)M

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(d, d)

)2]

+

N∑
n=0

δt
∑

(K,L)∈εn+1
int

1
4m(K|L)M

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(c, c)

)2]
.

Now, as the equality AEvol + AConv + ADi f f = 0 holds and as (4.6) and (4.15) are
satisfied, we have ĀConv ≤ C.
Moreover, using the Cauchy-Schwarz inequality, we deduce

N∑
n=0

δt
∑
K|L

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(d, d)

)]

+

N∑
n=0

δt
∑
K|L

[
max

un+1
L ≤c≤d≤un+1

K

(
FK,σ(d, c) − FK,σ(c, c)

)]

≤
1

4M

√√√ N∑
n=0

δt
∑
K|L

m(K|L)
√

ĀConv. (4.15)

At the end, take into account the regularity on the mesh (2.2) to deduce that:
N∑

n=0

δt
∑
K|L

m(K|L) ≤ T
1
α

h`−1
∑
K|L

1 ≤ T
1
α

h`−1m(Ω)
1
α

h−` ≤
C
h
.
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Lemma 4.4. (L2(0,T,H1(Ω)) Estimate) Suppose that (2.2),(2.5)-(2.8) hold. Let
uO,δt be the approximate solution of problem (P) defined by (2.10), (2.11), (2.15). Let
T > 0, and set N = max{n ∈ N, n < T

δt }. Then there exists C = C(|| f ||L∞ , umax,T ) ≥ 0
such that

1
2

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

τK|L

∣∣∣∣∣φ(un+1
K ) − φ(un+1

L )
∣∣∣∣∣2 ≤ C. (4.16)

Proof. Multiplying (2.11) by δtφ(un+1
K ) and summing over K ∈ O and n = 0, ...,N

yields BEvol + BConv + BDi f f = 0 with

BEvol =

N∑
n=0

∑
K∈O

m(K)(un+1
K − un

K)φ(un+1
K ),

BDi f f = −

N∑
n=0

δt
∑
K∈O

∑
K|L

τK|L

(
φ(un+1

L ) − φ(un+1
K )

)
φ(un+1

K ),

BConv =

N∑
n=0

δt
∑
K∈O

∑
σ∈εK

FK,σ(un+1
K , un+1

K,σ)φ(un+1
K ).

Let ϑ(r) =
∫ r

0 φ(s)ds. From the convexity inequality, we have:

BEvol ≥

N∑
n=0

∑
K∈O

m(K)
(
ϑ(un+1

K ) − ϑ(un
K)

)
=

∑
K∈O

m(K)
(
ϑ(uN+1

K ) − ϑ(u0
K)

)
. (4.17)

Further, in the term BDi f f , for every edge K|L the terms involving K and L appear
twice. Thanks to the conservativity of the scheme, we find

BDi f f = −

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

τK|L

∣∣∣∣∣φ(un+1
K ) − φ(un+1

L )
∣∣∣∣∣2. (4.18)

The term BConv can be rewritten as

BConv =

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

δtFK,K|L(un+1
K , un+1

L )
(
φ(un+1

L ) − φ(un+1
K )

)
.
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Using the weighted Young inequality and (2.9), we deduce

|BConv| ≤

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

dK,L

2m(K|L)

(
FK,σ(un+1

K , un+1
L )

)2

+
1
2

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

m(K|L)
dK,L

∣∣∣∣∣φ(un+1
K ) − φ(un+1

L )
∣∣∣∣∣2

≤ C
∑
L|K

m(K̂|L) +
1
2

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

τK|L

∣∣∣∣∣φ(un+1
K ) − φ(un+1

L )
∣∣∣∣∣2.

Collecting the previous inequalities we readily deduce (4.16). This concludes the
proof of the Lemma 4.4. �

4.3. Estimates of space and time translates
Recall the following result.

Theorem 4.5. (Riesz-Frechet-Kolmogorov) Let an open Q ⊂ R`+1 and let ω ⊂⊂ Q.
Consider K a bounded set of Lp, with 1 ≤ p < ∞. we suppose that: ∀ε > 0, there
exists δ > 0, δ < dist(ω,R`+1\Q) such that || f (x + h)− f (x)||Lp(ω) ≤ ε ∀h ∈ R`+1 with
|h| < δ and ∀ f ∈ K . Then K is relatively compact in Lp(ω).

Now, we derive estimates of space and time translates of the function φ(uO,δt)
which imply that the sequence is relatively compact in L2(Q).
Notice that because (φ(uO,δt)O,δt obey a uniform L∞ bound, the local compactness in
Q is enough to deduce the L2 compactness.

Lemma 4.6. Let, uO,δt be the approximate solution of problem (P) defined by (2.10),
(2.11). There exists a constant C1 depending on Ω, T , |φ|HO that∫ T

0

∫
Ωη

∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))
∣∣∣∣∣2dxdt ≤ C1|η| (4.19)

for all η ∈ Rl, where Ωη =
{
x ∈ Ω, [x + η, x] ⊂ Ω

}
and there exists C2 depending on

Ω, T , φ, f such that

∀τ > 0,
∫ T−τ

0

∫
Ω

∣∣∣∣∣φ(uO,δt(t + τ, x)) − φ(uO,δt(t, x))
∣∣∣∣∣2dxdt ≤ C2τ (4.20)

for all τ ∈ (0,T ).

Proof. • First, we prove (4.19)
Let η ∈ Rl with η , 0 and set Ωη =

{
x ∈ Ω, [x+η, x] ⊂ Ω

}
. For all K ∈ O and σ ∈ εK ,

define χσ : Ωη × Ωη −→ {0, 1} by χσ(x, y) = 1 if [x, y] ∩ σ , ∅ else χσ(x, y) = 0.
One has∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))

∣∣∣∣∣ ≤ ∑
L∈N(K)

χK|L(x, x + η)|DK|Lφ|; for a.e. x ∈ Ωη

(4.21)

where DK|Lφ is defined as

DK|Lφ = |φ(un+1
K ) − φ(un+1

L )|.
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We integrate (4.21) over Ωη, and get:∫
Ωη

∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))
∣∣∣∣∣dx ≤

∑
L∈N(K)

∫
Ωη

χK|L(x, x + η)|DK|Lφ|dx.

(4.22)

Remark that, for all σ = K|L ∈ εK ,
∫

Ωη
χK|L(x, x + η)dx is the measure of the set of

points of Ω which are located inside the cylinder whose basis is K|L and generator
vector is −η. Thus ∫

Ωη

χK|L(x, x + η)dx ≤ m(K|L)|η|. (4.23)

The relation (4.22) gives∫
Ωη

∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))
∣∣∣∣∣dx ≤ |η|

∑
L∈N(K)

m(K|L)|DK|Lφ|

≤ |η|
∑

L∈N(K)

m(K|L)|DK|Lφ|. (4.24)

From now, integrate (4.24) over [0,T ]∫ T

0

∫
Ωη

∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))
∣∣∣∣∣dxdt ≤ |η|

N∑
n=0

δt
∑

L∈N(K)

m(K|L)dK,L

∣∣∣∣∣DK|Lφ

dK,L

∣∣∣∣∣.
(4.25)

Remark that:∣∣∣∣∣∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))
∣∣∣∣∣∣∣∣∣∣2

L2(Qη)
≤ 2||φ||L∞

∣∣∣∣∣∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))
∣∣∣∣∣∣∣∣∣∣

L1(Qη)
.

(4.26)

Then (4.25) and (4.27) give∫ T

0

∫
Ωη

∣∣∣∣∣φ(uO,δt(t, x + η)) − φ(uO,δt(t, x))
∣∣∣∣∣2dxdt ≤ C1|η|. (4.27)

• Finally, we prove (4.20).
Let τ ∈ (0,T ) and t ∈ (0, t − τ). Set n0 = [t/δt] and n1 = [(t + τ)/δt], let

It,τ = {n ∈ N, such that t < (n + 1)δt ≤ t + τ}

Jt,τ = {n ∈ N, such that (n + 1)δt − τ ≤ t < (n + 1)δt}.

Since φ is Locally continuous with constant φLip = sup
0<a<b≤umax

φ(a) − φ(b)
a − b

, one has:

∫ T−τ

0

∫
Ω

∣∣∣∣∣φ(uO,δt(t + τ, x)) − φ(uO,δt(t, x))
∣∣∣∣∣2dxdt ≤ φLip

∫ T−τ

0
S (t)dt (4.28)
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where, for almost every t ∈ (0,T − τ)

S (t) =

∫
Ω

(
φ(uO,δt(t + τ, x)) − φ(uO,δt(t, x))

)(
uO,δt(t + τ, x) − uO,δt(t, x))

)
dxdxdt

=
∑
K∈O

m(K)
(
φ(un1

K ) − φ(un0
K )

)(
un1

K − un0
K

)
=

∑
K∈O

(
φ(un1

K ) − φ(un0
K )

)∑
It,τ

m(K)
(
un+1

K − un
K

)
.

Use (2.11) and gather by edges. We get

S (t) =
∑
K∈O

(
φ(un1

K ) − φ(un0
K )

)∑
It,τ

δt
[ ∑

L∈N(K)

m(K|L)
dK,L

(
φ(un+1

L ) − φ(un+1
K )

)
− FK,L(un+1

K , un+1
L )

]
=

∑
It,τ

δt
∑
K|L

m(K|L)
dK,L

(
φ(un1

K ) − φ(un1
L ) − φ(un0

K ) + φ(un0
L )

)(
φ(un+1

L ) − φ(un+1
K )

)
+

∑
It,τ

δt
∑
K|L

(
φ(un1

K ) − φ(un1
L ) − φ(un0

K ) + φ(un0
L )

)
FK,L(un+1

L , un+1
K ).

We can then use the inequality 2ab ≤ a2 + b2. We get S (t) ≤ 1
2 S 0(t) + 1

2 S 1(t) +

S 2(t) + S 3(t) + S 4 with:

S 0(t) =
∑
It,τ

δt
∑
K|L

m(K|L)
dK,L

(
φ(un0

K ) − φ(un0
L )

)2

S 1(t) =
∑
It,τ

δt
∑
K|L

m(K|L)
dK,L

(
φ(un1

K ) − φ(un1
L )

)2

S 2(t) =
∑
It,τ

δt
∑
K|L

m(K|L)
dK,L

(
φ(un+1

K ) − φ(un+1
L )

)2

S 3(t) =
∑
It,τ

δt
∑
K|L

(
φ(un1

K ) − φ(un1
L )

)
FK,L(un+1

L , un+1
K )

S 4(t) =
∑
It,τ

δt
∑
K|L

(
φ(un0

L ) − φ(un0
K )

)
FK,L(un+1

L , un+1
K ).

We introduce the function χt such that χt(1) = 1 and χt(0) = 0. We have, for all
t ∈ R+ and n ∈ N, χt(It,τ) = χt(Jt,τ). Therefore∫ T−τ

0
S 0(t)dt ≤

[T/δt]∑
n=0

δt
∑
K|L

m(K|L)
dK,L

(
φ(un0

K ) − φ(un0
L )

)2 ∫ (n0+n)δt+τ

n0δt

∑
n∈N

χt(It,τ)dt

≤

[T/δt]∑
n=0

δt
∑
K|L

m(K|L)dK,L

∣∣∣∣∣φ(un0
K ) − φ(un0

L )
dK,L

∣∣∣∣∣2 ∫ (n0+n)δt+τ

n0δt

∑
n∈N

χt(It,τ)dt

≤

[T/δt]∑
n=0

δt
∑
K|L

`m(K̂|L)
∣∣∣∣∣φ(un0

K ) − φ(un0
L )

dK,L

∣∣∣∣∣2 ∫ (n0+n)δt+τ

n0δt

∑
n∈N

χt(It,τ)dt.

(4.29)
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Notice the following property:∫ (n0+1)δt

n0δt

∑
n∈N

χt(Jt,τ)dt =
∑
n∈N

∫ (n0−n)δt+τ

(n0−n−1)δt+τ
χt(0 ≤ t < τ)dt = τ. (4.30)

Using (4.16), we find: ∫ T−τ

0
S 0(t)dt ≤ Cτ. (4.31)

We get in the same way ∫ T−τ

0
S 1(t)dt ≤ Cτ. (4.32)

We now turn to the study of the third term:∫ T−τ

0
S 2(t)dt ≤

[T/δt]∑
n=0

δt
∑
K|L

m(K|L)
dK,L

(
φ(un+1

K ) − φ(un+1
L )

)2 ∫ T−τ

0
χt(Jt,τ)dt

≤

[T/δt]∑
n=0

δt
∑
K|L

`m(K̂|L)
∣∣∣∣∣φ(un+1

K ) − φ(un+1
L )

dK,L

∣∣∣∣∣2 ∫ (n0+n)δt+τ

n0δt

∑
n∈N

χt(Jt,τ)dt.

Because∫ T−τ

0
χt(Jt,τ)dt = min(T − τ, (n + 1)δt) −max(0, (n + 1)δt − τ) ≤ τ,

we get ∫ T−τ

0
S 2(t)dt ≤ Cτ. (4.33)

Recall that due to (2.9) ∣∣∣∣∣FK,L(a, b)
m(K|L)

∣∣∣∣∣ ≤ (|| f ||L∞ + M). (4.34)

We have in the same way∫ T−τ

0
S 3(t)dt ≤

[T/δt]∑
n=0

δt
∑
K|L

(
φ(un1

K ) − φ(un1
L )

)
FK,L(un+1

L , un+1
K )

∫ T−τ

0
χt(Jt,τ)dt

≤

[T/δt]∑
n=0

δt
∑
K|L

m(K|L)dK,L

∣∣∣∣∣φ(un1
K ) − φ(un1

L )
dK,L

∣∣∣∣∣∣∣∣∣∣FK,L(un+1
L , un+1

K )
m(K|L)

∣∣∣∣∣τ
≤

(
(|| f ||L∞ + M)

√
Tm(Ω)|φ(u)|HO

)
τ. (4.35)

In the same way we prove:∫ T−τ

0
S 4(t)dt ≤

(
(|| f ||L∞ + M)

√
Tm(Ω)|φ(u)|HO

)
τ. (4.36)

From (4.31), (4.32), (4.33), (4.35) and (4.36), we get:∫ T−τ

0

∫
Ω

|φ(uO,δt(t + τ, x)) − φ(uO,δt(t, x))|2dxdt ≤ C2τ. (4.37)
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�

4.4. Existence of a discrete solution
The proof of existence for the scheme (2.10), (2.11) is obtained by applying the
Leray-Schauder topological degree theorem. The idea is to modify continuously the
scheme to obtain a system which admits a solution and if the modification preserves
in the same time the estimates (in our case this can get easily by the L∞ norm on
uO,δt), then the scheme also has a solution.

Definition 4.7. Let E be a real Banach space. We denote byA the set of (Id−g, B, y)
where g : B̄ −→ E is a compact with B ⊂ E and y ∈ E such that y < {g(x), x ∈ ∂B}.

Lemma 4.8. Suppose (H1) is satisfied. Then for all K ∈ O, there exist un+1
K satisfying

(3.1).

Proof. For the proof, we consider for every α ∈ [0, 1] the following problem:
vK − α

[
u0

K −
δt

m(K)

∑
σ∈εK

FK,σ(vK, vK,σ) +
δt

m(K)

∑
σ∈εK

τK,σ

(
φ(vK,σ) − φ(vK)

)]
= 0

∀K ∈ O,

with notation analogous to that of (2.11).
We consider the continuous function F with respect to each of its variables defined
by:

F (α, v) = vK − α
[
u0

K −
δt

m(K)

∑
σ∈ε̄K

FK,σ(vK, vK,σ) +
δt

m(K)

∑
σ∈ε̄K

τK,σ

(
φ(vK,σ) − φ(vK)

)]
.

(4.38)

The function F (α, .) is a continuous homotopy between F (0, .) and F (1, .). First,
remark that un+1

K = 0 is solution of F (0, un+1
K ) = 0 for all (n,K) ∈ [0,N] × O. If

B is a ball with a sufficiently large radius in the space of solution of the system,
the equation F (., .) = 0 has no solution on the boundary ∂B. Indeed replacing u0,
f , φ by αu0, α f , αφ we can apply the argument of Proposition 4.1 to solutions of
equation F (α, v) = 0. Then it is enough to supply the finite dimensional set Rθ of
discrete functions by the norm || · ||L∞ and take B of radius larger than umax. Therefore

degree(F (0, .), B) = degree(F (1, .), B) , 0. (4.39)

Thus there exists at least a solution to equation F (1, .) = 0. This solution is a solu-
tion to our scheme. �

5. Continuous entropy inequality
We prove in this section that the approximate solutions fulfill a continuous entropy
inequality in the sense of Theorem 5.2 below. Before, we recall a result that will
serve us in the proof of this Theorem.
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Lemma 5.1. ( see e.g. J .Droniou [18]) Let K be a non empty open convex polygonal
set in R`. For σ ∈ ε̄K , we denote by xσ the center of gravity of σ; we also denote by
nK,σ the unit normal vector to σ outward to K. Then, for all vector ~V ∈ R` and for
all point xK ∈ K, we have:

m(K)~V =
∑
σ∈ε̄K

m(σ)~V .nK,σ(xσ − xK). (5.1)

Proof. We denote by a superscript i, the i− th coordinate of vectors and points in
R`. By Stokes formula, we have:

m(K)V i =

∫
K

div((xi − xi
K)~V)dx =

∫
∂K

(xi − xi
K)~V .nKdγ(x)

=
∑
σ∈ε̄K

∫
σ

(xi − xi
K)~V .nK,σdγ(x). (5.2)

Hence, by the definition of the center of gravity, we have:∫
σ

(xi − xi
K)dγ(x) =

∫
σ

xidγ(x) − m(σ)xi
K = m(σ)xi

σ − m(σ)xi
K . (5.3)

Remplace (5.3) in (5.2); we find (5.1). �

From now on, as the approximate solutions satisfy the discrete entropy in-
equalities (3.7), we prove that its satisfies a continuous form of these inequalities.

Theorem 5.2. Assume that (2.1), (2.5)-(2.8) hold. Let uO,δt be the approximate solu-
tion of the problem (P) defined by (2.10),(2.11). Then the following continuous ap-
proximate entropy inequalities hold: for all k ∈ [0, umax], for all ξ ∈ C∞([0,T )×R`),
ξ ≥ 0,∫ T

0

∫
Ω

{
ηk(uO,δt)ξt +

(
Φk(uO,δt) − ∇Oηφ(k)(φ(uO,δt))

)
.∇ξ

}
dxdt

+

∫
Ω

ηk(u0)ξ(0, x)dx +

∫ T

0

∫
∂Ω

| f (k).η(x)| ξ(t, x)dH `−1(x)dt ≥ −υO,n(ξ); (5.4)

where: ∀ξ ∈ C∞([0,T ) × R`), υO,n(ξ)→ 0 when h→ 0. Here

∇Oηφ(k)(φ(uO,δt)) =

N∑
n=0

1[tn,tn+1]

∑
K|L

1K̂|L∇K̂|Lηφ(k)(φ(uO,δt)).

Remark 5.3. In the same case, if we replace in (5.4) ηk by η+
k (resp η−k ) and | f (k).η(x)|

by ( f (k).η(x))+ (resp ( f (k).η(x))−) we obtain sub entropy inequalities (resp super
entropy inequalities). Obviously, the approximate solution uO,δt is an approximate
entropy solution if and only if uO,δt is aproximate entropy sub-solution and entropy
super-solution simultaneously.

Proof of Theorem 5.2. Let ξ ∈ C∞([0,T ) × Rl)+ and k ∈ [0, umax], we fix T ≥ 0 and
set N = T

δt + 1. It is enough to suppose that ξ(t, x) = θ(t)ζ(x), this mean that ξn+1
K =

θn+1ζK . By density in C∞([0,T [×R`) of linear combinations of such functions, the
general case will follow. Depending on the circumstances, ζK =

>
K ζ or ζK = ζ(xK)

with xK the center of control volume K.
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Multiplying inequality (3.7) by δtξn+1
K and summing over K ∈ O and n ∈ {0, ...,N},

yields the inequality IDisc
Evol + IDisc

Conv + IDisc
Di f f ≤ 0, where:

IDisc
Evol =

N∑
n=0

∑
K∈O

m(K)
(
ηk(un+1

K ) − ηk(un
K)

)
ξn+1

K , (5.5)

IDisc
Conv =

N∑
n=0

δt
∑
K∈O

∑
σ∈εK

ΦK,σ,k(un+1
K , un+1

K,σ)ξn+1
K

−

N∑
n=0

δt
∑
K∈O

∑
σ∈εext

K

sign(un+1
K − k)FK,σ,k(k, k)ξn+1

K , (5.6)

IDisc
Di f f = −

N∑
n=0

δt
∑
K∈O

∑
K|L

τK|L

(
ηφ(k)(φ(un+1

L )) − ηφ(k)(φ(un+1
K ))

)
ξn+1

K . (5.7)

To prove inequality (5.4), we have to prove that ICont
Evol + ICont

Conv + ICont
Di f f ≤ υO,n(ξ) where

ICont
Evol , ICont

Conv and ICont
Di f f are defined by:

ICont
Evol = −

∫ T

0

∫
Ω

ηk(uO,δt)ζ(x)θt(t)dxdt −
∫

Ω

ηk(u0)θ(0)ζ(x)dx,

ICont
Conv = −

∫ T

0
θ

∫
Ω

Φk(uO,δt).∇ζdxdt −
∫ T

0
θ

∫
∂Ω

| f (k).η(x)| ζ(x)dH `−1(x)dt,

ICont
Di f f =

∫ T

0
θ

∫
Ω

∇Oηφ(k)(φ(uO,δt)).∇ζdxdt.

Then, we have to compare IDisc
Evol with ICont

Evol ; IDicr
Conv with ICont

Conv; and IDisc
Di f f with ICont

Di f f .
Firstly, we have to estimate |IDisc

Evol − ICont
Evol |. Using the definition of uO,δt, the quantity

IDisc
Evol reads:

IDisc
Evol = −

N−1∑
n=0

∑
K∈O

m(K)ηk(un+1
K )

(
ξn+1

K − ξn
K

)
−

∑
K∈O

m(K)
(
ηk(u0

K)ξ1
K − ηk(uN+1

K )ξN+1
K

)

= −

N−1∑
n=0

δt
∑
K∈O

m(K)ηk(un+1
K )

ξn+1
K − ξn

K

δt
−

∑
K∈O

m(K)ηk(u0
K)ξ1

K

= −

N−1∑
n=0

δt
∑
K∈O

m(K)ηk(un+1
K )

θn+1 − θn

δt
ζK −

∑
K∈O

m(K)ηk(u0
K)θ1ζK

= −

N−1∑
n=0

δt
∑
K∈O

m(K)ηk(un+1
K )(θn)t

?
K
ζ(x)dx −

∑
K∈O

m(K)ηk(u0
K)θ1
?

K
ζ(x)dx,

(5.8)

with (θn)t =

∫ tn+1

tn
θtdt. We deduce that

|IDisc
Evol − ICont

Evol | ≤ υ
1
O,k(ξ) + υ2

O,k(ξ), (5.9)
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where:

υ1
O,k(ξ) =

N−1∑
n=1

δt
∑
K∈O

m(K)ηk(uO,δt)1K1[tn,tn+1](θn)t

∣∣∣∣∣?
K
ζ(x)dx − ζK

∣∣∣∣∣, (5.10)

υ2
O,k(ξ) =

∑
K∈O

m(K)ηk(u0
K)θ1

∣∣∣∣∣?
K
ζ(x)dx − ζK

∣∣∣∣∣. (5.11)

As ξ ∈ C∞, then we have: ∣∣∣∣∣?
K
ζ(x)dx − ζK

∣∣∣∣∣ ≤ ||ζ ||C1 h. (5.12)

Then, the quantities υ1
O,k(ξ), υ2

O,k(ξ), tend to zero when h→ 0.
Secondly, we study the difference between IDisc

Conv and ICont
Conv. We take care separately

of what happens inside and what happens on the boundary of Ω. Therefore we write
ICont
Conv has the sum of ICont,int

Conv , and ICont,ext
Conv .

ICont,int
Conv = −

∫ T

0
θ

∫
Ω

Φk(uO,δt).∇ζdxdt

ICont,ext
Conv = −

∫ T

0
θ

∫
∂Ω

| f (k).η(x)| ζ(x)dH `−1(x)dt. (5.13)

Further, introduce auxiliary values (ζK|L)L∈N(K) by ζK|L = ζ(xK|L), where xK|L is the
barycenter of K|L. The term IDisc

Conv, which can be rewritten as the sum between IDisc,int
Conv

and IDisc,ext
Conv :

IDisc,int
Conv =

N∑
n=0

δt
∑
σ∈K|L

ΦK,K|L,k(un+1
K , un+1

L )
[
(ξn+1

K − ξn+1
K|L ) − (ξn+1

L − ξn+1
K|L )

]

=

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

ΦK,K|L,k(un+1
K , un+1

L )(ξn+1
K − ξn+1

K|L )

=

N∑
n=0

θn+1δt
∑
K∈O

∑
L∈N(K)

ΦK,K|L,k(un+1
K , un+1

L )(ζK − ζK|L)

= −

N∑
n=0

θn+1δt
∑
K∈O

∑
L∈N(K)

ΦK,K|L,k(un+1
K , un+1

L )(ζK|L − ζK) (5.14)

IDisc,ext
Conv = −

N∑
n=0

δt
∑
K∈O

∑
σ∈εext

K

sign(un+1
K − k)FK,σ(k, k)ξn+1

K

= −

N∑
n=0

θn+1δt
∑
K∈O

∑
σ∈εext

K

sign(un+1
K − k)FK,σ(k, k)ζK . (5.15)



22 Gazibo M

Now, we compare ICont,int
Conv and IDisc,int

Conv . As the numerical fluxes, the numerical en-
tropy fluxes are consistent:

ΦK,σ,k(un+1
K , un+1

K ) =

∫
σ

Φk(un+1
K ).nK,σdγ(x)dt = m(K|L)Φk(un+1

K ).nK|L.

Simultaneously, for each K ∈ O, we approach ζ by the affine function ζ̃K in a neigh-
borhood of K, with ζ̃K = ζ̃(xK), we set ζ̃K|L = ζ̃(xK|L). Then

ζ(x)1K = ζ̃K + 0(|x − xK |
2); ζK|L − ζ̃K|L = 0(h2); ∇ζ̃K = cst on K

||∇ζ − ∇ζ̃ ||L∞(K) = 0(h) and ∇ζ̃K .(xK − xK|L) = ζ̃K − ζ̃K|L. (5.16)

We denote the resulting expression by ĨDisc,int
Conv , we have

ĨDisc,int
Conv = −

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

ΦK,K|L,k(un+1
K , un+1

K )(ξ̃n+1
K|L − ξ̃

n+1
K )

= −

N∑
n=0

δt
∑
K∈O

∑
L∈N(K)

m(K|L)Φk(un+1
K ).nK|L(ξ̃n+1

K|L − ξ̃
n+1
K )

= −

N∑
n=0

δtθn+1
∑
K∈O

∑
L∈N(K)

m(K|L)Φk(un+1
K ).nK|L(ζ̃K|L − ζ̃K)

= −

N∑
n=0

δtθn+1
∑
K∈O

∑
L∈N(K)

m(K|L)Φk(un+1
K ).nK|L∇ζ̃K .(xK|L − xK)

= −

N∑
n=0

δtθn+1
∑
K∈O

Φk(un+1
K ).

∑
L∈N(K)

m(K|L)∇ζ̃K .(xK|L − xK)nK|L.

From now, using Lemma 5.1, which states that∑
K|L

m(K|L)∇ζ̃K .nK|L(xK|L − xK) = m(K)∇ζ̃K , (5.17)

we find:

ĨDisc,int
Conv = −

N∑
n=0

δtθn+1
∑
K∈O

Φk(un+1
K )m(K)∇ζ̃K .

It is easy to see that

ĨDisc,int
Conv = −

∫ T

0
θ

∫
Ω

Φk(uO,δt).∇ζ̃Kdxdt =: ĪDisc,int
Conv

|IDisc,int
Conv − ICont,int

Conv | ≤|I
Disc,int
Conv − ĨDisc,int

Conv | + |Ī
Disc,int
Conv − ICont,int

Conv |

= υ3
O,k(ξ) + υ4

O,k(ξ) (5.18)
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with:

υ3
O,k(ξ) =

N∑
n=0

δtθn+1
∑
K|L

∣∣∣∣∣(ΦK,L,k(un+1
K , un+1

K ) − ΦK,L,k(un+1
K , un+1

L )
)(
ζK − ζK|L

)∣∣∣∣∣;
υ4
O,k(ξ) =

∫ T

0
θ

∫
Ω

Φk(uO,δt).|∇ζ − ∇ζ̃K |dxdt. (5.19)

Let us show that υ3
O,k(ξ) and υ4

O,k(ξ) tend to zero as h→ 0. Thanks to (5.16), υ4
O,k(ξ)

as h→ 0. Now, we write:

ξ(t, x) − ξ̂n+1
K|L =

1
δtm(K|L)

∫ (n+1)δt

nδt

∫
K|L

(ξ(t, x) − ξ(s, y))dγ(y)ds. (5.20)

For all (x, y) ∈ K|L × K|L,

|ζ(x) − ζ(y)| ≤ h||∇ζ ||L∞ . (5.21)

We exploit the BV-weak estimates on space derivatives to prove that υ3
O,k(ξ) tend to

zero when h goes to zero. Indeed, we have

|ΦK,L,k(un+1
K , un+1

K ) − ΦK,L,k(un+1
K , un+1

L )| ≤ max
un+1

L ≤c≤d≤un+1
K

(FK,σ(d, c) − (FK,σ(d, d))

and thanks to (5.21), we get an estimate on the difference between the average value
of ζ and a control volume and on one of its edges: there exists Cζ depending only
upon ζ, such that

∀K|L, |ζK − ζ
n+1
K|L | ≤ Cζh.

Therefore, the following estimate on υ3
O,k(ξ) holds:

υ3
O,k(ζ) = Cζ(h)

N∑
n=0

δt
∑
K|L

[
max

un+1
L ≤c≤d≤un+1

K

(FK,σ(d, c) − FK,σ(d, d))
]

+ Cζ(h)
N∑

n=0

δt
∑
K|L

[
max

un+1
L ≤c≤d≤un+1

K

(FK,σ(d, c) − FK,σ(c, c))
]

≤ Cζ
h
√

h

where the constant Cξ is given by (4.4). Now, it remains to notice that

−IDisc,ext
Conv =

N∑
n=0

θn+1δt
∑
K∈O

∑
σ∈εext

K

sign(un+1
K − k)FK,σ(k, k)ζK

≤

N∑
n=0

θn+1δt
∑
K∈O

∑
σ∈εext

K

|FK,σ(k, k)|ζK = −ICont,ext
Conv . (5.22)

Then, we have:

ICont,ext
Conv − IDisc,ext

Conv ≤ 0. (5.23)



24 Gazibo M

The last step is to compare ICont,ext
Di f f to IDisc,ext

Di f f . We rewrite the term IDisc
Di f f as

IDisc
Di f f = −

N∑
n=0

δt
∑
σ∈K|L

τK|L

(
ηφ(k)(φ(un+1

L )) − ηφ(k)(φ(un+1
K ))

)(
ξn+1

K − ξn+1
L

)

= −

N∑
n=0

δtθn+1
∑
σ∈K|L

m(K|L)
dK,L

(
ηφ(k)(φ(un+1

L )) − ηφ(k)(φ(un+1
K ))

)(
ζK − ζL

)
.

= −

N∑
n=0

δtθn+1
∑
σ∈K|L

m(K|L)dK,L

`

(
`∇K̂|Lηφ(k)(φ(un+1

O
))
)
.
(
ζK − ζL

dK,L
.nK|L

)

= −

N∑
n=0

δtθn+1
∑
σ∈K|L

m(K̂|L)∇K̂|Lηφ(k)(φ(un+1
O

))∇̃K̂|Lζ (5.24)

where: ∇̃K̂|Lζ =
> xL

xK
∇ζ. Notice that

||∇ζ − ∇̃K̂|Lζ ||L∞(K̂|L) = o(h).

Therefore we have

|IDisc
Di f f − ICont

Di f f | ≤ υ
5
O,k(ξ), (5.25)

with:

υ5
O,k(ξ) =

∫ T

0
θ

∫
Ω

|∇Oηφ(k)(φ(uO,δt))|.|∇ζ − ∇̃K̂|Lζ |dxdt. (5.26)

To conclude, we prove that υ5
O,k(ξ) → 0 as h → 0. Using Cauchy-Schwarz inequal-

ity, we find

υ5
O,k(ξ) ≤ ||θ||L∞ ||∇Oηφ(k)(φ(uO,δt))||L2 0(h).

Then, using the fact that η is 1−Lipschitz, and the estimate (4.16) we prove that
υ5
O,k(ξ)→ 0 as h→ 0. �

6. Convergence of the scheme
The main result of this paper is the following theorem.

Theorem 6.1. (Convergence of the approximate solution towards the entropy solu-
tion). Assume that one of the following hypotheses is satisfied

` = 1 and Ω = (a, b) an interval of R; (H`=1)

` ≥ 1 uc = 0, and f ◦ φ−1 ∈ C0,α, α > 0; (Huc=0)

` ≥ 1 uc = umax. (Huc=umax )

Let, (uO,δt)O,δt be a family of approximate solutions of problem (P) defined by (2.10),
(2.11). Then, under hypotheses (2.2)-(2.8), we have:

∀p ∈ [1,+∞) uO,δt −→ u in Lp(Q) as max(δt, h) −→ 0; (6.1)
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∇Oφ(uO,n) ⇀ ∇φ(u) in L2(Q) as max(δt, h) −→ 0

where u is the unique entropy solution of (P), i.e u satisfies (1.1).

Remark 6.2. It is possible to replace in the Theorem 6.1 all the three hypotheses
(H`=1), (Huc=0), (Huc=umax ) by the following one, which is much more general:{

` ≥ 1 and u0 is such that there exist an entropy solution u of (P) such that
( f (u) − ∇φ(u)).η(x) possess a strong trace in L1 sense.

(Hreg(u0))

Such kind of function u satisfying (Hreg(u0)), will be called trace regular entropy
solution (see [2]). The idea to prove uniqueness of entropy solution is to compare
any entropy solution of (P) with trace regular entropy solution and break the sym-
metry in the application of doubling of variables method by taking test function that
is zero on the boundary Q × ((0,T ) × ∂Ω) of Q × Q but non zero on the boundary
((0,T ) × ∂Ω) × Q (see the method of [4, 6]). If (Hreg(u0)) is satisfied for all u0 that

belong to a certain subset X such that X
||.||L1

= L1(Ω; [0, umax]), then uniqueness is
true for all u0.
Presently to our knowledge the only results which establish that (Hreg(u0)) hold for
a dense subset X is proved for the case (Huc=umax ) (see [14, 32]).
In this pure hyperbolic case existence of the strong trace of the flux is established
in [14, 32]. Then uniqueness of entropy solution follows by standard doubling of
variable methods and it is enough to take a symmetric test function.
In the case where hypotheses (Huc=0) or (H`=1) are satisfied, it is more easy to prove
existence of trace regular entropy solution for the stationary problem with L∞ source
term. In this case, we even have sense that the total flux is continuous up to the
boundary, i.e ( f (u)−∇φ(u)).η ∈ C(Ω) (see [27]), [11]). Then we can adopt the same
strategy as in the case where (Hreg(u0)) hold , but in the doubling of variable method
we compare entropy solution of (P) with trace regular entropy solution of (S ). Then
using nonlinear semigroup approach, we prove that entropy solution of (P) is the
unique mild solution (see [6, 4]). The same strategy is adopted here to prove that
entropy-process solution (see Definition 6.3) is the unique entropy solution ( see
Appendix 1 and 2).

Proof of Theorem 6.1. The proof of Theorem 6.1 is in two steps. First in Proposition
6.8 , we prove that the approximate solutions converge towards an entropy-process
solution. Then in Appendix 2 (see Theorem 8.4, and Proposition 8.5, 8.6, 8.7) we
prove that entropy-process solution is in fact the unique entropy solution using the
intermediate notion of integral-process solution developed for this purpose in the
Appendix 1. �

6.1. Entropy process solution
Definition 6.3. Let µ ∈ L∞(Q × (0, 1)). The function µ = µ(t, x, α) taking values
in [0, umax] is called an entropy-process solution to problem (P) if ∀k ∈ [0, umax],
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∀ξ ∈ C∞([0,T ) × R`), with ξ ≥ 0, the following inequality holds :∫ T

0

∫
Ω

∫ 1

0

{
|µ(α)u − k|ξt + sign(µ(α) − k)

[
f (µ) − f (k)

]
.∇ξ

}
dxdtdα

−

∫ T

0

∫
Ω

∇|φ(u) − φ(k)|.∇ξdxdt +

∫ T

0

∫
∂Ω

| f (k).η(x)| ξ(t, x)dH `−1(x)dt

+

∫
Ω

|u0 − k|ξ(0, x)dx ≥ 0, (6.2)

where u(t, x) =

∫ 1

0
µ(t, x, α)dα.

Remark 6.4. If µ ∈ L∞(Q × (0, 1)) is entropy process solution then, it satisfies for
all ξ ∈ L2(0,T ; H1(Ω)) such that ξt ∈ L1(Q) and ξ(T, .) = 0∫ 1

0

∫ T

0

∫
Ω

{
µξt +

(
f (µ) − ∇φ(u)

)
.∇ξ

}
dxdtdα +

∫
Ω

u0ξ(0, x)dx = 0. (6.3)

We recall the nonlinear weak star convergence for (uO,δt)O,δt which is equiva-
lent to the notion of convergence towards a Young measure as developed in [19].

Theorem 6.5. ( R. Eymard, T. Gallouët, and R. Herbin, [20]) (Nonlinear weak
star Convergence) Let (un)n∈N be a bounded sequence in L∞(Q). Then, there exists
µ ∈ L∞(Q × (0, 1)), such that up to a subsequence, un tends to µ in the nonlinear
weak star sense as n −→ ∞, i.e:

∀h ∈ C(R,R), h(un)⇀
∫ 1

0
h(µ(., α))dα weakly − ∗ in L∞(Q) (6.4)

Moreover, if µ is independent on α (i.e µ(t, x, α) = u(t, x) for a.e. (t, x), and for all
α), then un converge strongly in L1(Q) towards some u(t, x). In particular, observe
that the following holds:

Lemma 6.6. Suppose that the sequence un(.) ⇀ µ(., α) in the nonlinear weak star
sense, assume that g is a continuous non decreasing function such that g(un(.)) −→ θ

strongly in L1(Q). Then, θ = g(µ(., α)) = g(u) where u(t, x) =

∫ 1

0
µ(t, x, α)dα.

Proof. Let vn = g(un), since g is continuous, then the sequence vn is bounded in

L∞(Q), so that vn(t, x)
nl−∗
⇀ ν(t, x, α) (where

nl−∗
⇀ mean the convergence for weak

star topology in L∞(Q)) and vn → θ in L1(Q) and ν(t, x, α) := g(µ(t, x, α)) is an
associated Young measure, since for all h ∈ C(R,R)

h(vn(t, x)) = (h ◦ g)(un) ⇀
∫ 1

0
h ◦ g(µ(., α))dα =

∫ 1

0
h(ν(t, x, α))dα.

Since vn tend to θ strongly, one deduces that ν(t, x, α) = θ(t, x) and ν does not depend
on α. Moreover, if g is continuous and nondecreasing the level sets g−1({c}) are
closed intervals of R. Then for all (t, x) ∈ Q,

µ(., α) ∈ g−1({θ(.)}) =⇒ u(.) =

∫
µ(., α)dα ∈ g−1({θ(.)}) =⇒ g(u(.)) = θ(.). (6.5)

�
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From now we give a ”discrete L2(0,T ; H1(Ω))” compactness result (see e.g.
[20]).

Lemma 6.7. Consider a family of corresponding discrete functions wO,δt satisfying
the uniform bounds.

N∑
n=0

δt
∑
K∈O

m(K)(wN+1
K )2 ≤ C;

N∑
n=0

δt
∑
K|L

τK|L(∇K̂|LwO)2 ≤ C, (6.6)

where the discrete gradient ∇K̂|L are defined by (2.4).
Then there exists w ∈ L2(0,T ; H1(Ω)) such that, up to extraction of a subsequence,
wO,δt → w in L2(Q) weakly and ∇Ow ⇀ ∇w in (L2(Q))` weakly.

We wish to prove the convergence of the approximate solution (uO,δt) to an
entropy solution u of (P), i.e. we want to prove that there exists a limit u and that
it satisfies (1.1). For that purpose, we prove first that (uO,δt) tends in the nonlinear
weak star sense to an entropy-process solution.

Proposition 6.8. (Convergence towards an entropy-process solution) Under hy-
potheses (2.2)-(2.8), let uO,δt be the approximate solution of problem (P1) defined
by (2.10), (2.11). There exists an entropy-process solution µ of (P1) in the sense of
Definition 6.3 and a subsequence of (uO,δt)O,δt , such that:

1. The sequence (uO,δt)O,δt converges to µ in the nonlinear weak star sense.
2. Moreover (φ(uO,δt))O,δt converges strongly in L2(Q) to φ(u) as h, δt tend to zero

and
3. (∇Oφ(uO,δt))O,δt ⇀ ∇φ(u) in (L2(Q))` weakly,

where u(t, x) =
∫ 1

0 µ(t, x, α)dα.

From this result, we deduce Theorem 6.1, using additional regularity proper-
ties coming from (H`=1), (Huc=0) or (Huc=umax ) (see also Remark 6.2 for variants of
the concluding argument).

Proof of Proposition 6.8. Passage to the limit in the continuous entropy inequality:
Recall that we have proved that υO,n(ξ)→ 0 when (h, δt)→ 0 for ξ ∈ C∞([0,T [×R`).
We follow step by step the passage to the limit for each term of the left hand side of
(5.2).
Because uO,δt is bounded in L∞(Q), by Theorem 6.5, there exist µ ∈ L∞(Q × (0, 1))
such that up to a subsequence, (uO,δt) tends to µ in the nonlinear weak star sense as
max(δt, h) −→ 0. We set u(t, x) =

∫ 1
0 µ(t, x, α)dα. Using the continuity of Φk(.) and

ηk(.) = |. − k|, we prove that:∫ T

0

∫
Ω

ηk(uO,δt)ξtdxdt →
∫ 1

0

∫ T

0

∫
Ω

∫ 1

0
µ(t, x, α)ξtdxdtdα,

∫ T

0

∫
Ω

Φk(uO,δt).∇ξdxdt →
∫ T

0

∫
Ω

∫ 1

0
Φk(µ)dxdtdα.

Due to (4.16) and by the Fréchet-Kolmogorov’s theorem (due to the time and space
translation on φ(uO,δt)) we can apply lemma 6.7 for wO,δt = φ(uO,δt). Notice that in
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view of Lemma 6.6, it appears that φ(µ) = φ(u) where u(t, x) =
∫ 1

0 µ(t, x, α)dα. The
Lipschtiz continuity of ηφ permits to have∫ T

0

∫
Ω

∇Oηφ(φ(uO,n)).∇ξ ⇀
∫ T

0

∫
Ω

∇ηφ(φ(u)).∇ξ.

We conclude that uO,δt converge to an entropy-process solution µ. �

7. Appendix 1
We consider here a Banach space X (in application to the problem (P), we will take
X = L1(Ω)) and the multivalued operator A : X × X −→ X defined by its graph. We
study the general evolution problem u′ + Au 3 h, u(0) = u0. In our application, A
is formally defined by Au = div f (u) − ∆φ(u) with zero-flux boundary condition. In
the sequel, we suppose that the operator A is m-accretive and u0 ∈ D(A). We refer
to [10] for definition and to [4, 6] and Appendix 2 for proof of these properties in
our concrete setting which is our final purpose. In relation with the classical notion
of integral solution to the abstract evolution problem introduced in the thesis of Ph.
Bénilan , see e.g. [10], [8] we consider a new notion of solution called integral-
process solution which depend on an additional variable α ∈ (0, 1). The purpose
here is to prove that the integral-process solution of (E) coincides with mild and
integral solutions. Therefore the interest of the notion of integral-process solution
resides only in the fact that it may appear from some weak convergence arguments,
see Appendix 2 for the example we have in mind. Let us recall the notion of mild
solution. In the sequel, ||.|| = ||.||X being the norm in X.

Definition 7.1. A mild solution of the abstract problem u′ + Au 3 h on [0,T ]
is a function u ∈ C([0,T ]; X) such that for σ > 0 there is an σ− discretization
DN

A (t0, ...., tN , h1, ..., hN) of u′ + Au 3 h on [0,T ] which has an σ− approximate so-
lution v satisfying

||u(t) − v(t)|| ≤ σ for t0 ≤ t ≤ tN . (7.1)

Recall that a σ− approximate solution v of u′+ Au 3 h on [0,T ] is the solution
of an σ− discretization DN

A (t0, ...., tN , h1, ..., hN):

vi − vi−1

ti − ti−1
+ Avi 3 hi, i = 1, 2, ...,N (7.2)

where h ≈
N∑

i=1

hi1]ti−1,ti] and |ti − ti−1| ≤ σ. Further, v is an σ− approximate solution

of the abstract initial value problem (E) if also t0 = 0 and ||v0 − u0|| ≤ σ.

Theorem 7.2. Let A be m-accretive in L1(Ω) and u(0) ∈ D(A). Then the abstract
initial-value problem u′+Au 3 h on (0,T ], u(0) = u0 has a unique mild solution u on
[0,T ]. Moreover u is the unique function on C([0,T ], X) such that for all (û, z) ∈ A

||u(t) − û|| − ||u(s) − û|| ≤
∫ t

s

[
u(τ) − û, g(τ) − z

]
dτ (7.3)
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for 0 ≤ s ≤ t ≤ T.

Here, [a, b] := lim
λ↓0

||a + λb|| − ||a||
λ

is the bracket on X (see [10]). In particular if

X = L1 then [a, b]L1(Ω) =

∫
Ω

sign(a)bdx +

∫
{a=0}
|b|dx.

For the proof, we refer to [10].
A function u satisfying (7.3) is called integral solution. Here, we consider a seem-
ingly more general notion of solution inspired by which is the object of this paper.

Definition 7.3. Let A be an accretive operator and g ∈ L1(0,T ; X). A function v(t, α)
is an integral-process solution of abstract problem v′+Av 3 g on [0,T ], ν(0, α) = ν0,
if v satisfy for all (ν̂, z) ∈ A

∫ 1

0

(
||v(t, α)− ν̂||−||v(s, α)− ν̂||

)
dα≤

∫ 1

0

∫ t

s

[
v(τ, α) − ν̂, g(τ) − z

]
dτdα (7.4)

for 0 < s ≤ t ≤ T and the initial condition is satisfied in the sense

ess- lim
t↓0

∫ 1

0
||v(t, α) − ν0||dα = 0. (7.5)

Such generalization of the notion of integral solution is a purely technical hint,
indeed, we show that integral-process solutions coincide with the unique integral
solution in the following sense.

Theorem 7.4. Assume that A be m-accretive in X and u0 ∈ D(A), u is an integral-
process solution if and only if u is independent on α and for all α, u(., α) coincide
with the unique integral and mild solution.

The result will follow directly from the proposition given bellow.

Proposition 7.5. Let A be an accretive operator. If v is an integral-process solution
of v′+ Av 3 g on [0,T ], ν(0, α) ≡ ν0 and u is a mild solution of u′+ Au 3 h on [0,T ],
u(0) = u0 then

∫ 1

0
||u(t) − v(t, α)||dα≤

∫ 1

0
||u0 − ν0||dα +

∫ t

0

∫ 1

0

[
u(τ) − v(τ, α), h(τ) − g(τ)

]
dτdα

(7.6)

for a.e. t ∈ [0,T ],

Proof. Let un
k , k = 1, ...,Nn be a solution of theσn discretization DA(0 = tn

0, t
n
1, ...., t

n
Nn

)
of u′ + Au 3 h on [0,T ]. Set δn

k = tn
k − tn

k−1 and let 0 ≤ a ≤ b ≤ T . Since v is an
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integral-process solution of v′(t, α) + Av 3 g we have:∫ 1

0

(
||v(b, α) − un

k || − ||v(a, α) − un
k ||

)
dα

≤

∫ 1

0

∫ b

a

[
v(τ, α) − un

k , g(τ) − hn
k +

un
k − un

k−1

δn
k

]
dαdτ

≤

∫ 1

0

∫ b

a

[
v(τ, α) − un

k , g(τ) − hn
k

]
dαdτ

+
1
δn

k

∫ 1

0

∫ b

a

(
||v(τ, α) − un

k−1|| − ||v(τ, α) − un
k ||

)
dαdτ. (7.7)

Where we have used the inequality[
v(τ, α) − un

k , g(τ) − hn
k +

un
k − un

k−1

δn
k

]
≤

[
v(τ, α) − un

k , g(τ) − hn
k

]
+

1
δn

k

(
||v(τ, α) − un

k−1|| − ||v(τ, α) − un
k ||

)
(7.8)

which follows from the facts that
[
X,Y + Z

]
≤

[
X,Y

]
+

[
X,Z

]
;
[
X, eY

]
= e

[
X,Y

]
if e > 0 and

[
X,Y

]
≤
||X + eY || − ||X||

e
. Multiplying (7.7) by δk

n and summing over

k = j + 1, j + 2, ..., i we find that:
i∑

k= j+1

∫ 1

0
δn

k

(
||v(b, α) − un

k || − ||v(a, α) − un
k ||

)
dα

≤

i∑
k= j+1

δn
k

∫ 1

0

∫ b

a
||

[
v(τ, α) − un

k , g(τ) − hn
k

]
dτdα

+

∫ 1

0

∫ b

a

(
||v(τ, α) − un

j || − ||v(τ, α) − un
i ||

)
dτdα. (7.9)

Next, we assume that σn → 0 and the σn− approximate solution of u′ + Au 3 h
locally converge uniformly to the mild solution u on [0,T [. Set

φn(ι, λ, α) = ||v(ι, α) − un
k(λ)
|| for 0 ≤ ι ≤ T ; where k(λ) is defined by tn

k(λ)−1 < λ ≤ tn
k(λ)
.

Then φn(ι, λ, α)→ ||v(ι, α) − u(λ)|| uniformly on [0,T [×[0,T [×[0, 1]. Hence∣∣∣∣∣||v(ι, α) − u(λ)|| − ||v(ι, α) − un
k(λ)
||

∣∣∣∣∣ ≤ ||un
k(λ)
− u(λ)|| → 0. (7.10)

Therefore, if we choose i, j depending on n so that tn
j → c, tn

i → d as n → ∞ we
have ∑i

k= j+1
δn

k ||v(ι, α) − un
k || →

∫ d

c
||v(ι, α) − u(λ)||dλ for ι ∈ [0,T ]. (7.11)

Moreover with ι = τ, we get∫ b

a
||v(τ, α) − un

j ||dτ→
∫ b

a
||v(τ, α) − u(c)||dτ and (7.12)
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∫ b

a
||v(τ, α) − un

i ||dτ→
∫ b

a
||v(τ, α) − u(d)||dτ. (7.13)

From now, let

Fn(λ, α) =

∫ b

a

[
v(τ, α) − un

k , g(τ) − hn
k

]
dτ for tn

k−1 < λ ≤ tn
k . (7.14)

Then ∣∣∣∣∣ i∑
k= j+1

(
δn

k Fn(λ, α) −
∫ tn

k

tn
k−1

∫ b

a

[
v(τ, α) − un

k , g(τ) − h(λ)
]
dτdλ

)∣∣∣∣∣
≤

i∑
k= j+1

∫ tn
k

tn
k−1

∫ b

a
||hn

k − h(λ)||dτdλ ≤ σn(b − a). (7.15)

and therefore

lim
n→∞

i∑
k= j+1

δn
k Fn(λ, α)= lim

n→∞

i∑
k= j+1

∫ tk
n

tn
k−1

∫ b

a

[
v(τ, α) − un

k , g(τ) − h(λ)
]
dτdλ. (7.16)

Since un
k → u(λ) and tn

k → λ as n→ 0 and the bracket
[
·, ·

]
is the upper-semicontinuous,

we deduce from (7.16) that

lim
n→∞

i∑
k= j+1

δn
k

∫ b

a

[
v(τ, α) − un

k , g(τ) − hn
k

]
dτ = lim

n→∞

∫ tn
i

tn
j

Fn(λ, α)dλ

≤

∫ d

c

∫ b

a

[
v(τ, α) − u(λ), g(τ) − h(λ)

]
dτdλ. (7.17)

As previously, the convergence is uniform in α ∈ [0, 1], therefore we can integrate
in α under the limite in (7.12), (7.13), (7.17) and obtain∫ 1

0

∫ d

c

(
||v(b, α) − u(λ)|| − ||v(a, α) − u(λ)||

)
dλdα

≤

∫ 1

0

∫ d

c

∫ b

a

[
v(τ, α) − u(λ), g(τ) − h(λ)

]
dτdλdα

+

∫ 1

0

∫ d

c

(
||v(τ, α) − u(c)|| − ||v(τ, α) − u(d)||

)
dτdα. (7.18)

Now, we set:

$(s, t, α) =

∫ 1

0
||v(s, α) − u(t)||dα

Π(s, t, α) =

∫ 1

0

[
v(s, α) − u(t), g(s) − h(t)

]
dα.

Recall that u ∈ C([0,T ]; X) and ess- limt↓0
∫ 1

0 ||v(t, α) − u0||dα = 0. Then, v is con-
tinuous a.e. for any Lebesgue point on [0,T ]. The function $ and Π are continuous



32 Gazibo M

in t and integrable in s

ϕ(t, t) − ϕ(s, s) ≤
∫ t

s
Π(τ)dτ =

∫ t

0
Π(τ)dτ −

∫ s

0
Π(τ)dτ. (7.19)

Then

Ξ(t) = ϕ(t, t) −
∫ t

0
Π(τ)dτ ≤ ϕ(s, s) −

∫ s

0
Π(τ)dτ = Ξ(s) for a.e. t, s ∈ [0,T ].

(7.20)

The function Ξ is continuous at 0+, therefore Ξ(t) ≤ Ξ(0). This is equivalent to
(7.6). �

8. Appendix 2
In this appendix, we apply the notion of integral-process solution to the problem
(P) and present a way to prove uniqueness of entropy solution. In [30], the authors
introduced a notion of entropy-process solution and using the doubling of variable
method of Kruzhkov [26] they proved that entropy solution is the unique entropy-
process solution. In our case, we were not able to use the same argument because
we need that the entropy solution possess a strong boundary trace on the boundary
in order that the doubling of variables apply (see [4]). Fortunately, under additional
assumptions, we can ensure the desired boundary regularity for the associated sta-
tionary problem:

(S )
{

v + div( f (v) − ∇φ(v)) = g in Ω,(
f (v) − ∇φ(v)

)
.η = 0 on ∂Ω.

Therefore, firstly we compare the entropy-process solution µ of (P) to the solution
of (S ). This suggests the use of nonlinear semigroup theory; more precisely we
find that µ is also an integral-process solution to u′ + Au = 0, µ(0, α) = u0 with
appropriately defined operator A. Then, proving the m-accretivity of A and using the
Appendix 1 we are able to conclude that µ is the unique mild and integral solution
of the abstract evolution problem. At the last step, we use the result of [6] which
says that such solution is the unique entropy solution of (P).

Proposition 8.1. Let ξ ∈ C∞([0,T [×R`), ξ ≥ 0. Then for all k ∈]uc, umax], for all
D ∈ R` and for all entropy-process solution µ of (P), we have∫ T

0

∫
Ω

∫ 1

0

{
|µ − k|ξt + sign(µ − k)

[
f (µ) − f (k)].∇ξ

}
dxdtdα

−

∫ T

0

∫
Ω

sign(u − k)
(
∇φ(u) − D

)
.∇ξdxdt

+

∫
Ω

|u0 − k|ξ(0, x)dx +

∫ T

0

∫
∂Ω

|( f (k) − D).η(x)| ξdH `−1(x)dt

≥ lim
σ→0

1
σ

∫ ∫
Q∩{−σ<φ(u)−φ(k)<σ}

∇φ(u).
(
∇φ(u) − D

)
ξdxdt. (8.1)
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Proof. The proof follows the arguments of [6]. Let us recall that if µ(t, x, α) is

entropy-process solution and (H1) hold, then u(t, x) =

∫ 1

0
µ(t, x, α)dα satisfies in

the weak sense for all k ∈ [uc, umax] and all D ∈ R`:

(Pk)


(u − k)t + div

[(∫ 1

0
f (µ)dα − ∇φ(u)

)
−

(
f (k) − D

)]
= 0 in Q,

ess- lim
t→0+

(u(t, x) − k) = u0(x) − k on Ω,[(∫ 1

0
f (µ)dα − ∇φ(u)

)
−

(
f (k) − D

)]
.η = −( f (k) − D).η on Σ.

Take the test function signσ(φ(u)−φ(k))ξ = Hσ(φ(u)−φ(k))ξ in the weak formulation
of this problem with ξ ∈ C∞([0,T ) × R`). Using the formalism of [1], we have∫ T

0
〈(u − k)t,Hσ(φ(u) − φ(k))ξ〉H1(Ω)∗,H1(Ω) dt

−

∫ T

0

∫
Ω

Hσ(φ(u) − φ(k))
[(∫ 1

0
f (µ)dα − ∇φ(u)

)
−

(
f (k) − D

)]
.∇ξ

−

∫ T

0

∫
Ω

ξ
[(∫ 1

0
f (µ)dα − ∇φ(u)

)
−

(
f (k) − D

)]
.∇Hσ(φ(u) − φ(k))

−

∫ T

0

∫
∂Ω

Hσ(φ(u) − φ(k))( f (k) − D).ηξ = 0. (8.2)

By the weak chain rule (see [1])∫ T

0
〈(u − k)t,Hσ(φ(u) − φ(k))ξ〉H1(Ω)∗,H1(Ω) dt = −

∫ T

0

∫
Ω

Iσ(u)ξtdtdx

−

∫
Ω

Iσ(u0)ξ(0, x)dx (8.3)

where: Hσ(r) =


1 if r > σ,
r
σ

if |r| ≤ σ,
−1 if r < −σ,

and

Iσ : z 7−→
∫ z

k
Hσ(φ(s) − φ(k))ds −→ |z − k| as σ→ 0. (8.4)

Then, after passing to the limit as σ→ 0, we have∫
Q
|u − k|ξtdxdt = −

∫
Q

sign(u − k)(u − k)ξtdxdt

= −

∫
Q

sign(u − k)
(∫ 1

0
µdα − k

)
ξtdxdt (8.5)

Now,notice that because k ∈]uc, umax[ and because φ(µ(α)) = const on [0, 1] we find
that sign(µ(α) − k) is constant on [0, 1] equal to sign(u − k) Then , we see that∫

Q
|u − k|ξtdxdt = −

∫
Q

∫ 1

0
|µ − k|ξtdαdxdt (8.6)
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Similarly, we see∫ T

0

∫ 1

0

∫
Ω

sign(u − k)
[
f (µ) − f (k)

]
.∇ξdxdt

=

∫ T

0

∫
Ω

∫ 1

0
sign(µ − k)

[
f (µ) − f (k)

]
.∇ξdxdtdα (8.7)

For treatment of the others terms, we refer to [6]. �

Let us firstly prove that the initial datum is satisfied in the sense of (7.5) (see
Appendix 1). This means that the entropy-process solution satisfies the initial con-
dition of integral-process solution.

Lemma 8.2. Let v be an entropy-process solution of (P) with initial datum v0 ∈ L∞.
Then the initial datum is taken in the following sense:

lim
s↓0

∫ s

0

∫
Ω

∫ 1

0
|v − v0|dtdxdα = 0. (8.8)

Proof. The proof follows the one of Panov in ([33, Proposition 1]). For c ∈ R and
s > 0, consider the functions

Ψs(., c) : x ∈ Ω 7−→
1
s

∫ s

0

∫ 1

0
|v(t, x, α) − c|dtdα. (8.9)

Because v is bounded, the set (Ψs(., c))s>0 is bounded in L∞(Ω). Therefore for any
sequence sm → 0, there exists a subsequence such that for all c ∈ Q, (Ψs(., c))s>0
converges in L∞(Ω) weak star to some limit denoted by (Ψ(., c)). Fix ξ ∈ D(Ω)+.
From Remark 6.3 with test function ξ̃(t, x) := (1 − t

s )+ξ(x) we readily infer the
inequalities

∀c ∈ Q,
∫

Ω

Ψ(x, c)ξ(x)dx ≤
∫

Ω

|u0 − c|ξ(x)dx. (8.10)

By the density argument, we extend (8.10) to all ξ ∈ L1(Ω), ξ ≥ 0. Now for all
ε > 0, there exists a number N(ε) ∈ N, a collection (cεi )N(ε)

j=1 ⊂ Q and a partition of Ω

into disjoint union of measurable sets Ωε
1, ...,Ω

ε
N(ε) such that ||v0 − vε0||L1 ≤ ε, where

vε0 :=
N(ε)∑
j=1

cεj1Ωε
j
. Because 1Ω =

N(ε)∑
j=1

1Ωε
j
, applying (8.10) with c = cεj and ξ = 1Ωε

j
we

deduce

lim
m→∞

1
sm

∫ sm

0

∫
Ω

∫ 1

0
|v − vε0|dtdxdα = lim

m→∞

∫
Ω

N(ε)∑
j=1

Ψsm (x, cεj)1Ωε
j
dx

=

∫
Ω

N(ε)∑
j=1

Ψ(x, cεj)1Ωε
j
dx

≤

∫
Ω

N(ε)∑
j=1

|v0 − cεj |1Ωε
j
dx = ||v0 − vε0||L1 ≤ ε.

Using once more the bound ||v0 − vε0||L1 ≤ ε (in the first term of the previous cal-
culation), we can send ε to zero and infer the analogue of (8.9), with a limit taken
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along some subsequence of (sm)m>1. Because (sm)m>1 was an arbitrary sequence
convergent to zero, (8.9) is justified. �

Now it remains to prove that the entropy-process solution an is integral-process
solution. Let us define the (possibly multivalued) operator A f ,φ by it resolvent

(v, z)∈ A f ,φ =


v such that v is an entropy solution of (S 1), with g = v + z.

and strong L1 trace of ( f (u) − ∇φ(u)).η|∂Ω exists
and equal to zero.

 .
Definition 8.3. The normal component of the flux F [u] = ( f (u) − ∇φ(u)).η has a
L1 strong trace γF [û] ∈ L1

Loc(∂Ω), at boundary ∂Ω if

lim
s→0

1
s

∫ s

0

∫
x̂∈∂Ω

ξ(x̂)|F [u](s, x̂) − γF [u](x̂)|dx̂dτ = 0. (8.11)

After having defined this operator, we present the following results.

Theorem 8.4. Assume that A f ,φ is m-acccretive densely defined on L1(Ω; [0, umax]).
Then the entropy-process solution is the unique entropy solution.

Before turning to the proof of Theorem 8.4, lets us present three cases where
it applies.

Proposition 8.5. Assume (H`=1) holds. Then, A f ,φ is m-acccretive densely defined
on L1(Ω; [0, umax]).

For the proof, we refer to [6, Proposition 4.10].

Proposition 8.6. Assume that, (Huc=0), holds. Then A f ,φ is m-acccretive densely
defined on L1(Ω; [0, umax]).

Proof. (sketch) The proof is essentially the same as in [4], where the case φ = Id has
been investigated. For general φ satisfying f ◦ φ−1 ∈ C0,α, α > 0 we adapt the result
of Lieberman [27]. As φ is bijective, we set w = φ(u) and rewrite the stationary
problem as:

div( f ◦ φ−1(w) − ∇w) = g(x) − φ−1(w)⇒ div(B(w,∇w)) = F(x,w),

where B and F satisfies the hypothesis of [27], then w = φ(u) ∈ C0,α(Ω̄), α > 0 and
u ∈ C0,α(Ω̄).We deduce that ( f (u) − ∇(φ(u)) ∈ C(Ω̄). �

Proposition 8.7. Assume that (Huc=umax ) holds. Then A f ,φ is m-acccretive densely
defined on L1(Ω; [0, umax]).

For the proof, we refer to [14, 35, 31] where the existence of strong trace of
f (u) has been proved for pure conservation laws.
In the sequel, we concentrate on the proof of Theorem 8.4 in the case (H`=1) holds.
The other cases are similar, using the hint of [4]1.

1Notice that the C2 regularity assumption on ∂Ω, made in [4] is easily bypassed using the variant pre-
sented in [5, Section 4]
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Proof of Theorem 8.4. Now, we apply the doubling of variables [26] in the way of
[4, 6]. We consider µ = µ(t, x, α) an entropy-process solution of (P) and v = v(y)
an entropy solution of (S ) using in the definition of A f ,φ. Consider nonnegative
function ξ = ξ(t, x, y) having the property that ξ(., ., y) ∈ C∞([0,T ) × Ω) for each
y ∈ Ω, ξ(t, x, .) ∈ C∞0 (Ω) for each (t, x) ∈ [0,T ) ×Ω. Let us denote the sets on which
the diffusion term for the first, respectively for the second solutions degenerate by

Ωx = {x ∈ Ω; µ(t, x, α) ∈ [0, uc]} ; Ωy = {y ∈ Ω; v(y) ∈ [0, uc]} .

We denote by Ωc
x respectively Ωc

y their complementaries in Ω. In (8.1), take ξ =

ξ(t, x, y), k = u(y), D = φ(u)y and integrate over Ωc
y × [0, 1]. We get∫

Ωc
y

∫ T

0

∫
x∈Ω

∫ 1

0

{
|µ − v|ξt + sign(µ − v)

[
f (µ) − f (v)].ξx

}
dαdxdtdy

−

∫
Ωc

y

∫ T

0

∫
x∈Ω

sign(u − v)
(
φ(u)x − φ(v)y

)
.ξxdxdtdy

+

∫
Ωc

y

∫ T

0

∫
x∈∂Ω

∣∣∣( f (v) − φ(v)y).η(x)
∣∣∣ ξdσdtdy +

∫
Ωc

y

∫
x∈Ω
|u0 − v|ξ(0, x, y)dxdy

≥ lim
σ→0

1
σ

∫
Ωc

y

∫ T

0

∫
x∈Ω∩{−σ<φ(u)−φ(v)<σ}

φ(u)x(φ(u)x − φ(v)y)ξdxdtdy. (8.12)

In the same way, in (6.3) take ξ = ξ(t, x, y), k = v(y), integrate over Ωy, and use the
fact that φ(v)y = 0 in Ωy. We get∫

Ωy

∫ T

0

∫
x∈Ω

∫ 1

0

{
|µ − v|ξt + sign(µ − v)

[
f (µ) − f (v)

]
.ξx

}
dαdxdtdy

−

∫
Ωy

∫ T

0

∫
x∈Ω

sign(u − v)
(
φ(u)x − φ(v)y

)
.ξxdxdtdy

+

∫
Ωy

∫ T

0

∫
x∈∂Ω

∣∣∣( f (v) − φ(v)y).η(x)
∣∣∣ ξdσdtdy

+

∫
Ωy

∫
x∈Ω
|u0 − v|ξ(0, x, y)dxdy ≥ 0. (8.13)

Since Ω = Ωx ∪Ωc
x, by adding (8.12) to (8.13) we obtain:∫

y∈Ω

∫ T

0

∫
x∈Ω

∫ 1

0

{
|µ − v|ξt + sign(µ − v)

[
f (µ) − f (v)].ξx

}
dαdxdtdy

−

∫
y∈Ω

∫ T

0

∫
x∈Ω

sign(u − v)
(
φ(u)x − φ(v)y

)
.ξxdxdtdy

+

∫
Ω

∫ T

0

∫
x∈∂Ω

∣∣∣( f (v) − φ(v)y).η(x)
∣∣∣ ξdσdtdy +

∫
Ω

∫
x∈Ω
|u0 − v|ξ(0, x, y)dxdy

≥ lim
σ→0

1
σ

∫
Ωc

y

∫ T

0

∫
x∈Ω∩{−σ<φ(u)−φ(v)<σ}

φ(u)x(φ(u)x − φ(v)y)ξdxdtdy. (8.14)
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In the entropy formulation of (S ), take ξ = ξ(t, x, y), k = µ(t, x, α), D = φ(µ)x and
integrate over (t, x, α) ∈ (0,T ) ×Ωc

x × (0, 1)

∫
Ωc

x

∫ T

0

∫ 1

0

∫
y∈Ω

sign(v − µ)
[
f (v) − f (µ)].ξydαdxdtdy

−

∫
Ωc

x

∫ T

0

∫ 1

0

∫
y∈Ω

sign(v − µ)
(
φ(v)y − φ(u)x

)
.ξydαdxdtdy

+

∫ T

0

∫
Ωc

x

∫ 1

0

∫
y∈Ω

sign(v − µ)(v − g(y))ξdαdxdtdy

+

∫ T

0

∫
Ωc

x

∫ 1

0

∫
y∈∂Ω

|( f (µ) − φ(µ)x).η(y)| ξdαdσdxdt

≥ lim
σ→0

1
σ

∫
Ωc

x

∫ T

0

∫
y∈∩{−σ<φ(u)−φ(v)<σ}

∫ 1

0
φ(v)y(φ(v)y − φ(µ)x)ξdαdydtdx. (8.15)

Since v(y) is entropy solution, then take in the entropy dissipative formulation of (S)
ξ = ξ(t, x, y), k = µ(t, x, α) ∈]uc, umax[, integrate over (0,T )×Ωx × (0, 1) and use the
fact that φ(µ)x = φ(u)x = 0 in (0,T ) ×Ωx.

∫
Ωx

∫ T

0

∫ 1

0

∫
y∈Ω

sign(v − µ)
[
f (v) − f (µ)].ξydαdxdtdy

−

∫
Ωx

∫ T

0

∫ 1

0

∫
y∈Ω

sign(v − µ)
(
φ(v)y − φ(u)x

)
.ξydαdxdtdy

+

∫ T

0

∫
Ωx

∫ 1

0

∫
y∈Ω

sign(v − µ)(v − g(y))ξdαdxdtdy

+

∫ T

0

∫
Ωx

∫ 1

0

∫
y∈∂Ω

|( f (µ) − φ(µ)x).η(y)| ξdαdσdxdt ≥ 0 (8.16)

By adding (8.15) to (8.16), we obtain

∫
Ω

∫ T

0

∫ 1

0

∫
y∈Ω

sign(v − µ)
[
f (v) − f (µ)].ξydαdxdtdy

−

∫
Ω

∫ T

0

∫ 1

0

∫
y∈Ω

sign(v − µ)
(
φ(v)y − φ(u)x

)
.ξydαdxdtdy

+

∫ T

0

∫
Ω

∫ 1

0

∫
y∈Ω

sign(v − µ)(v − g(y))ξdαdxdtdy

+

∫ T

0

∫
Ω

∫ 1

0

∫
y∈∂Ω

|( f (µ) − φ(µ)x).η(y)| ξdαdσdxdt

≥ lim
σ→0

1
σ

∫
Ωc

x

∫ T

0

∫
y∈∩{−σ<φ(u)−φ(v)<σ}

∫ 1

0
φ(v)y(φ(v)y − φ(µ)x)ξdαdydtdx. (8.17)
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Now, sum (8.14) and (8.17) to obtain∫ 1

0

∫ T

0

∫
Ω

∫
Ω

|µ − v|ξtdαdydxdt +

∫
Ω

∫
Ω

|u0 − v|ξ(0, x, y)dxdy

+

∫ 1

0

∫ T

0

∫
Ω

∫
Ω

sign(v − u)
[
f (µ) − f (v)

]
.(ξx + ξy)dαdydxdt

−

∫ T

0

∫ 1

0

∫
Ω

∫
Ω

sign(u − v)
(
φ(u)x − φ(v)y

)
.(ξx + ξy)dαdydxdt

+

∫ T

0

∫
x∈∂Ω

∫
Ω

∣∣∣( f (v) − φ(v)y).η(x)
∣∣∣ ξdσdtdy

+

∫ 1

0

∫ T

0

∫
Ω

∫
y∈∂Ω

|( f (µ) − φ(µ)x).η(y)| ξdydσdt

+

∫ 1

0

∫ T

0

∫
Ω

∫
Ω

sign(v − µ)(v − g(y))ξdydxdtdα

≥ lim
σ→0

1
σ

∫ T

0

∫∫
Ωc

x×Ωc
y∩{−σ<φ(v)−φ(u)<σ}

|φ(v)x − φ(u)y|
2ξdydxdt ≥ 0. (8.18)

Next, following the idea of [4] in the simple one-dimensional setting, we consider
the test function ξ(t, x, y) = θ(t)ρn(x, y), where θ ∈ C∞0 (0,T ), θ ≥ 0, ρn(x, y) = δn(∆)
and ∆= (1− 1

n(b−a) )x− y + a+b
2n(b−a) . Then, ρn ∈ D(Ω×Ω) and ρn|Ω×∂Ω

(x, y) = 0. Due to
this choice ∫ T

0

∫
x∈Ω

∫
y∈∂Ω

∫ 1

0
|( f (µ) − φ(u)x).η(y)| ρnθdydσdt = 0.

By the Proposition 8.5 and the definition of A f ,φ, we prove that for the stationary
problem, ( f (v) − φ(v)y) ∈ C0([a, b]). Therefore we have∣∣∣( f (v) − φ(v)y).η(x)

∣∣∣ −→ 0 when x→ y, i.e, as n −→ ∞. We conclude that

lim
n→∞

∫ T

0

∫
x∈∂Ω

∫
y∈Ω

∣∣∣( f (v) − φ(v)y).η(x)
∣∣∣ ρnθdydσdt = 0.

It remains to study the limit, as n→ ∞

In =

∫ 1

0

∫ T

0

∫
Ω

∫
Ω

θsign(µ−v)
[
( f (µ)−φ(u)x)− ( f (v)−φ(v)y)

]
.
(
(ρn)x + (ρn)y

)
dydxdt.

We use the change of variable (x, y) 7→ (x, z) with z = n(x − y) − 1
b−a x + a+b

b−a ,

In =
2

b − a

∫ 1

0

∫ 1

−1

∫ T

0

∫
Ω

sign(µ−v)
[
( f (µ)−φ(u)x)−( f (v)−φ(v)y)

]
.δ′n(z)θdxdtdzdα

=
2

b − a

∫ 1

0

∫ 1

−1

∫ T

0

∫ b

a
sign(µ(t, x, α) − vn(x, z))[

p(t, x, α) − qn(x, z, α)
]
δ′n(z)θ(t)dxdtdzdα, (8.19)

where vn(x, z) := v(y), p(t, x, α) := f (µ) − φ(u)x and qn := f (v) − φ(v)y. For z given,
vn(., z) converges to v(.) in L1 and qn(., z) converges to q(.) := f (v)− φ(v)x in L1. We
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deduce that for all z ∈ [−1, 1] (see [4] also [6])

Kn(z, α) :=
∫ 1

0

∫
Q

sign(wn(t, x, z))hn(t, x, α)dxdtdα −→n→∞

∫ 1

0

∫
Q

sign(w)hdxdt

=: K = const,

where wn := µ − vn, hn := p − qn and h := p − q. Then Kn(.) converges to K
independently on z. Moreover, from the definition of Kn one finds easily the uniform
L∞ bound |Kn| ≤ 2(||p||L1(Q) + T ||q||L1(Ω)), for n large enough. Hence by the Lebesgue
theorem,

lim
n→∞

∫ 1

−1
Kn(z)δ′(z) = K

∫ 1

−1
δ′(z) = 0.

We have shown that the limit of In equals zero. The passage to the limit in other
terms in (8.18) is straightforward. Finally (8.18) gives for n −→ ∞∫ 1

0

∫ T

0

∫
Ω

|µ(t, x, α) − v(y)|θ′(t)dxdtdα +

∫ 1

0

∫ T

0

∫
Ω

sign(v − µ)(v − g)θdxdtdα ≥ 0.

Hence
d
dt

∫ 1

0
||µ(t, α) − v||L1(Ω)dα ≤

∫ 1

0

∫
Ω

sign(µ − v)(v − g)dx inD′(0,T ).

Thus, v is an integral-process solution of (E) with A = A f ,φ. �
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[24] N. Hungerbhüler A refinement of Ball’s Theorem on Young Measures. New York J.Math.
3 (1997) 48-53.

[25] M . Karimou Gazibo, Degenerate Convection-Diffusion Equation with a Robin bound-
ary condition, Proceeding HYP 2012.

[26] S.N. Kruzkhov, First order quasi-linear equations in several independent variables.
Math. USSR Sb. 10 (2) (1970) 217-243.

[27] G M. Lieberman, Boundary regularity for solutions of degenerate elliptic equation.
Nonlinear Anal, Theory, Methods and Applic, 12 (11) (1988) pp 1203-1219.
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