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We experimentally investigate the nonlinear reshaping of a continuous wave which leads to chirp-free and flat-top intense 

pulses or flaticons exhibiting strong temporal oscillations at their edges and a stable self-similar expansion upon propagation 

of their central region. This study was performed in the normal dispersion regime of a non-zero dispersion-shifted fiber and 

involved a sinusoidal phase modulation of the continuous wave. Our fiber optics experiment is analogous to considering the 

collision between oppositely directed currents near the beach, and it may open the way to new investigations in the field of 

hydrodynamics. 
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Since the birth of nonlinear optics, there has frequently 
been a cross-fertilization with hydrodynamics in the study 
of nonlinear wave propagation phenomena. Breakers on a 
sloping beach and river bores [1, 2] are analogous to 
optical wave breaking and shocks which appear in the 
normal group velocity dispersion (GVD) regime of optical 
fibers [3]. Self-filamentation of light beams [4] has the 
same origin as wave train disintegration in deep water 
[5]. The classical dam break problem [6] also describes the 
distortion of non-return-to-zero optical pulses in long 
distance fiber optics communications [7]. Dark soliton 
pulses have been observed in optical fibers since a long 
time [8], and just recently in surface water waves as well 
[9]. Extreme water waves, often known as freak or rogue 
waves, have been known for quite some time in 
oceanography [10]. Yet, the first experiments 
demonstrating the generation of a prototype rogue wave, 
known as the Peregrine soliton [11], have been performed 
using standard telecommunications nonlinear optical 
fibers and components [12]. Extreme waves are also well 
known to occur in shallow waters, e.g., the run-up of a 
tsunami towards the coast [13]. Once again, similar 
phenomena have been recently predicted to occur in 
nonlinear optical fibers with normal GVD [14, 15].  

In shallow water, the crossing of currents that 

propagate with opposite directions may lead to the 

formation of high-elevation and steep humps of water (or 

sneaker waves) that could result in severe coastal 

damages. The analogous effect may occur in optical fibers: 

in Refs. [14, 16] it was numerically and analytically shown 

that a continuous-wave (CW) light beam subject to an 

initial step-wise periodic frequency modulation evolves, 

upon propagation in a fiber with normal GVD, towards a 

train of intense, stable and chirp-free optical pulses. In 

this case, the physical mechanism leading to pulse 

formation is the collision among the slower, positively 

chirped leading wavefront with the faster, negatively 

chirped trailing wavefront. Given the high degree of 

flatness of these nonlinear structures, we name them 

flaticons. Quite remarkably and as predicted in [16], 

flaticons experience a stable self-similar evolution, 

undergoing a linear expansion of their temporal width 

while maintaining their peak-power constant.  

In the present contribution we describe the 

experimental generation of optical flaticons in optical 

fibers at telecommunication wavelengths, by exploiting 

the nonlinear and dispersive reshaping of an intense CW 

in the presence of a suitable input sinusoidal phase 

modulation [14]. The article is therefore organized as 

follows. We first recall the theoretical background of 

flaticon pulse generation. We then describe the details of 

the experimental setup that we implemented in order to 

first imprint the required sinusoidal phase modulation on 

the initial CW, and then to observe the subsequent 

nonlinear reshaping upon propagation into a normally 

dispersive optical fiber. Finally, we discuss the influence of 

both the input CW power and the initial phase 

modulation amplitude (or chirp), and confirm the chirp-

free nature of the central part of the flaticon. 

 
Propagation of light in optical fibers is described by the 
NLSE 
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where z  and t  denote the propagation distance and the 

retarded time (in the frame travelling at the group-

velocity) coordinates; 
2

  and   are the second-order GVD 

and the nonlinear Kerr coefficient of the fiber, 

respectively, and ( , )t z  is the complex field envelope. 

Fiber losses  have been included in order to get a better 

agreement with the experiments, however their low level 

has no qualitative influence on the nonlinear dynamics 

under investigation. Ref. [14] analyzed the progressive 
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reshaping in a fiber with normal GVD of a CW of power P 

with a negative input frequency jump. In this case it has 

been shown that, whenever the dispersion length is large 

with respect to the nonlinear length (i.e., in the 

semiclassical limit of the NLSE), optical pulse dynamics 

can be described in terms of the nonlinear shallow water 

equation. In hydrodynamics, this equation is well known 

to describe water wave propagation in rivers or near the 

coastline: in that context, the optical intensity and 

instantaneous frequency translate into the water depth 

and its velocity. In such a framework, the previously 

described initial value problem has an analytical solution: 

it corresponds to the generation of a so-called flaticon 

pulse, which may stably propagate whenever the negative 

frequency jump remains below a critical value fc, that 

reads in dimensional units as: 
2

/ /cf P    [14]. The 

case of an initial sinusoidal phase modulation 

0
( ) sin( )Mt t   , with M  and 

0
  being the amplitude 

and the frequency of the modulation, respectively, has 

also been discussed in [14]. In this case it has been pointed 

out that, as long as the total frequency jump 

0
2s Mf    does not exceed 2.4 fc, a flaticon-like 

structure should also appear. 
 

 

Fig. 1. (a) Experimental setup. (b) Optical spectrum of the 
continuous seed for an average pump power of 25 dBm. 
Experimental results (black solid line) are compared with 
analytical results of CW with a sinusoidal phase modulation of 
7.3 rad (grey dashed line). (c) Experimental evolution of the 
amplitude of the phase modulation according to the pump power 
in the HNLF. Experimental results (circles) are compared with a 
linear fit (dashed grey line). 

The experimental setup for demonstrating flaticon 
generation is depicted in Fig. 1(a), and it relies exclusively 
on commercially available components ready for 
telecommunication use. The setup can be divided into two 
parts.  

The first part is aimed to imprint on a CW signal the 
required phase modulation. In order to obtain a 
modulation amplitude well above the  radian value 
which is routinely provided by phase modulators for 
telecommunication applications, we took advantage of the 
phenomenon of cross-phase modulation (XPM) imposed 
by an intensity modulated pump wave upon a CW seed in 
a 1-km long highly nonlinear optical fiber (HNLF) with 
low normal dispersion. The pump wave at 1550 nm is 
thus modulated by an intensity modulator driven by a 
sinusoidal electrical clock running at 12.5 GHz. Care has 
been devoted to make sure that the modulator is operated 
in the linear part of its transfer function, in order to 
maintain a purely sinusoidal modulation. The pump is 
also phase modulated at a low frequency (typically 100 
MHz) it order to avoid any detrimental Brillouin 
backscattering during propagation. We have checked that 
such additional phase modulation of the pump has no 
influence on the phase modulated CW signal which is 
generated by the XPM process. Note that a second 
intensity modulator driven by a deterministic non-return 
to zero sequence of 10 successive ones followed by 22 zeros 
enables to achieve, for a given average power, a more than 
three-fold increase of the peak power. In order to 
compensate for the optical losses of the different 
modulators, an erbium doped fiber preamplifier is 
inserted, followed by an adequate programmable optical 
bandpass filter (OBPF) that limits the building up of 
amplified spontaneous emission. A high power EDFA (HP 
EDFA) is then used to obtain the desired power level at 
the HNLF input. 

In order to achieve a maximum XPM efficiency, the 

pump wave and the initial CW seed that is frequency 

shifted by 1 THz (wavelength of 1558 nm) relative to the 

pump wavelength co-propagate in polarization 

maintaining components up to the HNLF. At the output 

of the HNLF, the seed is spectrally isolated by an OBPF 

with a central frequency of 1558 nm and a spectral width 

of 400 GHz. An example of the experimentally generated 

spectrum broadened by XPM is provided in Fig. 1(b), 

where it can be compared with the theoretical spectrum of 

a CW that is sinusoidally phase modulated with an 

amplitude of 7.3 rad. We have checked using high speed 

photodiodes and a sampling oscilloscope that no 

significant phase/amplitude coupling affects the 

continuous seed. The excellent agreement between the 

experimental and the theoretical spectra validates the 

efficient transfer of the intensity modulation of the pump 

wave into a quasi-sinusoidal phase modulation of the CW 

seed at a frequency of 12.5 GHz. Figure 1(c) shows that a 

phase modulation as high as 12 rad can be obtained for an 

average pump power of 0.6 W. The linear fit of the 

dependence of the XPM-induced phase modulation 



amplitude as a function of pump power is fully consistent 

with the well-known laws of cross phase modulation. 

 

The second part of the experimental setup relies on a HP 

EDFA followed by a 10-km long non-zero dispersion 

shifted fiber (NZ-DSF) with a GVD of 5 ps2/km at 1550 

nm, a nonlinear coefficient of 1.7 W-1.km-1, and a linear 

attenuation of 0.2 dB/km. At the output of the fiber, an 

optical sampling oscilloscope (OSO) with a picosecond 

time resolution was used to directly record the temporal 

intensity profile of the generated train of flaticon pulses. 

 

 

Fig. 2.  Temporal intensity profiles at the output of the NZ-DSF 
obtained at a phase modulation of 6.75 rad and at three different 
input powers: 1) 19 dBm, 2) 24 dBm and 3) 28 dBm. 
Experimental results (subplots a) are compared with results of 
numerical integration of the NLSE (subplots b). 

 
Results obtained for three input signal power levels 
injected into the NZ-DSF are plotted in Fig. 2, and are 
compared with the corresponding expected results 
obtained from the numerical integration of the NLSE. The 
experimental results are in pretty good agreement with 
the numerical predictions, and clearly exhibit several of 
the important features of optical flaticons. First, we may 
point out that pulses obtained at a sufficient power level 
clearly exhibit the remarkable flattened temporal 
intensity profile with strong time oscillating structures in 
the wings. The resulting nonlinear wave structure sits 
over a nonzero background: the peak power of the pulse is 
significantly higher than the background. The contrast of 
the experimental oscillations is however reduced when 
compared with the values expected from numerical 
simulations. We attribute this contrast reduction to the 
finite temporal resolution of the OSO as well as the 
influence of the residual noise induced by the three 
cascaded amplifiers in the setup. At low powers, the 
critical frequency fc is reduced so that fs exceeds fc, and no 
stable flaticons can be generated. 

 

 

Fig. 3.  Evolution of the temporal intensity profile as a function of 
the input average power injected into the NZ-DSF for a phase 
modulation of 6.75 rad. Experimental results (panel a) are 
compared with numerical simulations (panel b). 
 

A more systematic study of the dependence of the output 
temporal intensity profile as a function of the input signal 
power injected into the NZ-DSF is presented in Fig. 3. To 
some extent, such study mimics the longitudinal evolution 
inside the fiber, and it substitutes the classical destructive 
cut-off method. The self-similar behavior of the central 
part of the flaticon is clearly observed in the experiments: 
once again the observations are in close agreement with 
the numerical simulations summarized in Fig. 3(b). By 
changing the pump power injected into the HNLF, we 
have also investigated the influence of the initial level of 
phase modulation amplitude for a fixed signal power 
launched into the NZ-DSF set to 250 mW. Different 
regimes can be observed, as outlined in Fig. 4. At low 
input phase modulation, the typical oscillations expected 
in the tails of the flaticon are not observed. For a phase 
modulation amplitude between 5 and 8 rad, clear 
signatures of flaticon pulses are revealed. For modulation 
amplitudes above 10 rad, the resulting frequency jump 
becomes too high, leading to an unstable pulse shape. 
This value can be linked to the threshold of 2.4 fc which is 
estimated to 8.9 rad in the absence of losses. All of these 
observations are fully consistent with the corresponding 
numerical simulations summarized on Fig. 4(b).  
 

 

Fig. 4. Evolution of the temporal intensity profile as a function of 
the amplitude of the initial phase modulation. Experimental 
results (panel a) are compared with numerical simulations (panel 
b). The blue dotted line denotes the phase amplitude leading to 
the frequency jump of 2.4 fc. 



Finally, we have filtered the resulting output train of 
flaticons using an optical bandpass filter  characterized by 
a Gaussian shape centered at the wavelength of the CW 
and a spectral bandwidth of 0.6 nm. Results are plotted in 
Fig.5(a). As suggested in [14], this filtering removes the 
fast oscillations in the leading and trailing edges of the 
flaticons. However, as confirmed by the numerical 
simulations given in Fig. 5(b), a strong and long pedestal 
can be noticed between two successive filtered pulses. 
Consequently, the moderate resulting pulse train quality 
cannot compete at the present stage with other pulse 
train generation methods based on the nonlinear 
reshaping of an intensity modulated signal [17]. However, 
the interest of carrying out such a filtering is that it 
clearly demonstrates the chirp-free nature of the central 
part of the flaticon that remains quite unaffected by the 
filtering process. Such a feature also highlights the 
difference between a flaticon and a pulse which is 
obtained after propagation of a sinusoidally intensity 
modulated wave in a normally dispersive fiber, where the 
central part of the pulse structures becomes highly 
chirped [17]. 

 

 

Fig. 5.  Impact of a Gaussian OBPF of a flaticon pulse generated 
from an average signal power of 25 dBm and an initial phase 
amplitude of 8 rad. The filtered pulse (solid black line) is 
compared with the flaticon pulse (dotted grey line). Experimental 
results (panel a) are compared with numerical results (panel b). 

 
To conclude, we have carried out the first experimental 
demonstration of the generation of flaticon pulses in a 
normally dispersive optical fiber. The nonlinear reshaping 
of an input phase modulated CW leads to the emergence 
of intense pulses with a flat top lying over a continuous 
background. The experimental results reveal strong 
oscillations in the edges of these pulses, as well as a self-
similar evolution of the central part of the pulses. Our 
experiment confirms that an initial step-wise frequency 
modulation is not a mandatory requirement: flaticon 
pulses can also emerge from a sinusoidal phase 
modulation. The reported generation of optical flaticons 
represents the key building block that may further permit 
for the observation of optical shallow water rogue waves 
[14]. Finally we may expect that, similarly to the 
Peregrine solution, this research paves the way to new 
investigations in the field of hydrodynamics to help to 
understand the mechanism for the generation of sneaker 
waves. 
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