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. We answer the following question: Given a pseudo-spherical surface determined by a solution u of such an equation, do the coefficients of the second fundamental form of the local isometric immersion in R 3 depend on a jet of finite order of u? We show that, except for the sine-Gordon equation, where the coefficients depend on a jet of order zero, for all other differential equations, whenever such an immersion exists, the coefficients are universal functions of x and t, independent of u.

Introduction

The class of partial differential equations describing pseudo-spherical surfaces, which has been defined and studied in depth in a foundational paper by Chern and Tenenblat [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF], contains a large subclass of equations enjoying remarkable integrability properties, such as the existence of infinite hierarchies of conservation laws, Bäcklund transformations and associated linear problems. Recall that a partial differential equation ∆(t, x, u, ∂u ∂x , ∂u ∂t , . . . , ∂ k u ∂t l ∂x k-l ) = 0,

is said to describe pseudo-spherical surfaces if there exist 1-forms

ω i = f i1 dx + f i2 dt, 1 ≤ i ≤ 3, (2) 
where the coefficients f ij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, are smooth functions of t, x, u and finitely many derivatives of u with respect to t and x, such that the structure equations

dω 1 = ω 3 ∧ ω 2 , dω 2 = ω 1 ∧ ω 3 , dω 3 = ω 1 ∧ ω 2 (3) 
hold if, and only if, u is a solution of (1) for which ω 1 ∧ ω 2 = 0. In other words, every smooth solution of an equation (1) describing pseudo-spherical surfaces defines on its domain U ⊂ R 2 a Riemannian metric ds 2 = (ω 1 ) 2 + (ω 2 ) 2 , (4) of constant Gaussian curvature equal to -1, with ω 3 being the Levi-Civita connection 1-form of the metric [START_REF] Ding | On differential systems describing surfaces of constant curvature[END_REF].

One of the most important examples of a partial differential equation describing pseudospherical surfaces is the sine-Gordon equation

∂ 2 u ∂t∂x = sin u, (5) 
for which a choice of 1-forms (2) satisfying the structure equations ( 3) is given by

ω 1 = cos u 2 (dx + dt), (6) 
ω 2 = sin u 2 (dx -dt), (7) 
ω 3 = u x 2 dx - u t 2 dt. (8) 
It should be noted that this choice of 1-forms is by no means unique. In particular, we could also have used

ω 1 = 1 η sin u dt, (9) 
ω 2 = η dx + 1 η cos u dt, (10) 
ω 3 = u x dx, ( 11 
)
where η is a continuous non-vanishing real parameter. This continuous parameter is closely related to the parameter appearing in the classical Bäcklund transformation for the sine-Gordon equation and accounts for the existence of infinitely many conservation laws for the sine-Gordon equation. More generally, partial differential equations (1) which describe pseudo-spherical surfaces and for which one of the components f ij (say f 21 ) can be chosen to be a continuous parameter will be said to describe η pseudo-spherical surfaces.

In [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF], Chern and Tenenblat provided a complete classification of the evolution equations of the form u t = F (u, u x , ..., ∂u/∂x k ),

which describe pseudo-spherical surfaces under the assumption that f 21 = η, where η is a real parameter, providing an extensive class of non-linear partial differential equations, in two independent variables, describing pseudo-spherical surfaces. Rabelo in [START_REF] Rabelo | A characterization of differential equations of type uxt = F (u, ∂u/∂x, ..., ∂ k /∂x k ) which describe pseudospherical surfaces, An[END_REF], [START_REF] Rabelo | On equations which describe pseudospherical surfaces[END_REF] characterized equations of the form u xt = F (u, u x , ..., ∂u/∂x k ), with f 21 = η. The complete classification for equations of type u xt = F (u, u x ) and u t = u xxx + G(u, u x , u xx ) was given in [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF] and [START_REF] Rabelo | A classification of pseudospherical surfaces equations of the type ut = uxxx + G(u, ux, uxx) which describe pseudospherical surfaces[END_REF], respectively.

In general, the importance of the class of differential equations that describe pseudo-spherical surfaces is due to the fact that such a differential equation is always the integrability condition of a linear system of differential equations, which may be used in the inverse scattering method to solve the differential equation (see for example [START_REF] Beals | Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations[END_REF], where the method was applied to a subclass of equations obtained in [START_REF] Rabelo | On equations which describe pseudospherical surfaces[END_REF]). While the assumption of f 21 = η is natural in the context of the inverse scattering method, the problem of classifying the differential equations describing pseudo-spherical surfaces, without any other assumption, is important in its own right and was considered by Kamran and Tenenblat in [START_REF] Kamran | On differential equations describing pseudo-spherical surfaces[END_REF], where one can find a complete classification of evolution equations of the form [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF] which describe pseudo-spherical surfaces, as opposed to η pseudo-spherical surfaces. These results provide a systematic way of verifying if a given differential equation of this type describes pseudo-spherical surfaces. The results obtained in [START_REF] Kamran | On differential equations describing pseudo-spherical surfaces[END_REF] were extended by Reyes in [START_REF] Reyes | Pseudo-spherical surfaces and integrability of evolution equations[END_REF] to differential equations of the form u t = F (x, t, u, u x , ..., ∂u/∂x k ). The concept of a differential equation that describes pseudo-spherical surfaces was extended by Ding and Tenenblat in [START_REF] Ding | On differential systems describing surfaces of constant curvature[END_REF] to a system of differential equations that describes constant curvature surfaces (pseudo-spherical and also spherical), where classification results for such systems were obtained. More recently, in order to determine new classes of differential equations that describe pseudo-spherical surfaces, as a consequence of [START_REF] Kamran | On differential equations describing pseudo-spherical surfaces[END_REF], assuming that f 21 and f 31 are linear combinations of f 11 , Gomes [START_REF] Gomes Neto | Fifth-order evolution equations describing pseudospherical surfaces[END_REF] classified and obtained large new classes of such equations by considering fifth order equations of type [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF].

We should point out that the classification results mentioned above, contain not only general statements, but also examples of interesting new and well kown non linear differential equations. Other aspects of the theory of differential equations which describe pseudo-spherical surfaces and its applications thereof can be found in [START_REF] Cavalcante | Conservation laws for nonlinear evolution equations[END_REF], [START_REF] Górka | The modified Hunter-Saxton equation[END_REF], [START_REF] Jorge | Linear problems associated to evolution equations of type utt = F (u, ux, uxx, ut)[END_REF], [START_REF] Foursov | On formal integrability of evolution equations and local geometry of surfaces[END_REF], [START_REF] Reyes | Pseudo-spherical surfaces and integrability of evolution equations[END_REF]- [START_REF] Reyes | Correspondence theorems for hierarchies of equations of pseudo-spherical type[END_REF].

A classical theorem in the theory of surfaces states that any pseudo-spherical surface can be locally isometrically immersed into three-dimensional Euclidean space E 3 . This result can thus be applied to the metrics arising from the solutions u of any partial differential equation (1) describing pseudo-spherical surfaces, thereby associating to any solution u a local isometric immersion of a metric with constant Gaussian curvature equal to -1. This theorem is however largely an existence result, which does not give an explicit expression for the second fundamental form of the local isometric immersion. It is therefore a most remarkable property of the sine-Gordon equation that the second fundamental form of any such immersion can be expressed in closed form as a function of u and finitely many derivatives. Indeed, let us first recall that the components a, b, c of the second fundamental form of any local isometric immersion of a metric of constant curvature equal to -1 into E 3 are defined by the 1-forms ω 3 1 , ω 3 2 according to

ω 3 1 = aω 1 + bω 2 , ω 3 2 = bω 1 + cω 2 , ( 13 
)
where these forms satisfy the structure equations

dω 3 1 = -ω 3 2 ∧ ω 3 , dω 3 2 = ω 3 1 ∧ ω 3 , (14) 
and the Gauss equation ac -b 2 = -1. For the sine-Gordon equation, with the choice of 1-forms ω 1 , ω 2 and ω 3 given by ( 6), ( 7) and [START_REF] Kamran | On differential equations describing pseudo-spherical surfaces[END_REF], it is easily verified that the 1-forms ω 3 1 , ω 3 2 are given by

ω 3 1 = sin u 2 (dx + dt) = tan u 2 ω 1 , ω 3 2 = -cos u 2 (dx -dt) = -cot u 2 ω 2 .
In general, given a partial differential equation (1) describing pseudo-spherical surfaces, it is straightforward to derive a set of necessary and sufficient conditions, in terms of the coefficients f ij of the 1-forms (2), for a, b and c to be the components of the second fundamental form of a local isometric immersion corresponding to a solution of (1). We write

dω 3 1 = db(e 1 ) -da(e 2 ) ω 1 ∧ ω 2 -a ω 2 ∧ ω 3 + b ω 1 ∧ ω 3 , (15) 
dω 3 2 = dc(e 1 ) -db(e 2 ) ω 1 ∧ ω 2 -b ω 2 ∧ ω 3 + c ω 1 ∧ ω 3 , (16) 
where (e 1 , e 2 ) is the pair of vector fields dual to the coframe (ω 1 , ω 2 ), given by

f 11 f 21 f 12 f 22 e 1 = f 22 ∂ x -f 21 ∂ t , f 11 f 21 f 12 f 22 e 2 = -f 12 ∂ x + f 11 ∂ t .
Thus, using the notation D t and D x for the total derivative operators, we obtain

f 11 D t a + f 21 D t b -f 12 D x a -f 22 D x b -2b f 11 f 31 f 12 f 32 + (a -c) f 21 f 31 f 22 f 32 = 0, (17) 
f 11 D t b + f 21 D t c -f 12 D x b -f 22 D x c + (a -c) f 11 f 31 f 12 f 32 + 2b f 21 f 31 f 22 f 32 = 0, (18) 
where a, b and c, which are assumed to depend on t, x, u and finitely many derivatives of u with respect to t and x, satisfy the Gauss equation

ac -b 2 = -1. (19) 
In view of the above discussion, it is is natural to ask the following question: Do there exist equations other than the sine-Gordon equation within the class of partial differential equations describing pseudo-spherical (or η pseudo-spherical) surfaces, for which the components a, b, c of the second fundamental form of the local isometric immersion depend on a jet of finite order of u, that is on x, t, u and finitely many derivatives of u?

If such equations were to exist, they would have an important geometric property in common with the sine-Gordon equation. In this paper, we give a complete answer to the above question in the case of second-order hyperbolic equations of the form

u xt = F (u, u x ), (20) 
and evolution equations of the form

u t = F (u, u x , u xx ), (21) 
which describe η pseudo-spherical surfaces as in [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF] and [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] .

We begin with the case of evolution equations ( 21), for which our main result is the following:

Theorem 1. Except for second-order evolution equations of the form

u t = f 12,ux f 11,u u xx + f 12,u f 11,u u x ∓ λf 11 -ηf 12 f 11,u , (22) 
where f 11,u = 0 and f 12,ux = 0, there exists no second-order evolution equation describing η pseudo-spherical surfaces, given as in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF], with the property that the coefficients of the second fundamental forms of the local isometric immersions of the surfaces associated to the solutions u of the equation depend on a jet of finite order of u. Moreover, the coefficients of the second fundamental forms of the local isometric immersions of the surfaces determined by the solutions u of ( 22) are universal, i.e., they are universal functions of x and t, independent of u.

Theorem 1 suggests that there is no real analogue of the sine-Gordon equation within the class of second-order evolution equations describing η pseudo-spherical surfaces, from the perspective of the local isometric immersions of pseudo-spherical surfaces associated to their solutions. Indeed, even though the special class of evolution equations (22) has the property that the components of the second fundamental forms of the immersions associated to its solutions depend on jets of finite order of u, this dependence is given in terms of functions of x and t for all choices of solutions u (see Proposition 2).

The results for second-order hyperbolic equations (20) are similar, with the notable exception that they single out the sine-Gordon equation as the only equation, up to constants, for which the second fundamental form of the local isometric immersion is not universal. In order to state these results, we begin by recalling the classification theorem proved by Rabelo and Tenenblat [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF] for equations (20) describing pseudo-spherical surfaces:

Theorem 2 (Rabelo & Tenenblat [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF]). Let F be a differentiable function defined on an open connected subset U ⊂ R 2 . An equation

u xt = F (u, u x )
describes an η pseudo-spherical surface for η ∈ P ⊂ R, where P is a dense subset of R and F independent of η if, and only if, F satisfies one of the following: i) F is independent of u x and F ′′ (u) + αF (u) = 0, U = R 2 , P = R \ {0}, and α is a non-zero real constant. ii) F = νe δu β + γu 2

x , where U = {(u, z) ∈ R 2 ; β + γz 2 > 0}, P = R, δ, γ, β, ν are real constants, with δ, γ, ν nonzero, and β = 0 when γ = 1; or iii) F = λu + ζu x + τ , where U = R 2 , P = R \ {0}, and λ, ζ, τ are real constants.

The expressions of functions f ij of the 1-forms ω i for each equation of Theorem 2 are recalled in Section 4 (Lemmas 6-8). We are now ready to state our main result for the case of second-order hyperbolic equations (20). Theorem 3. Let F be an equation of the form u xt = F (u, u x ) that describes η pseudo-spherical surfaces as in [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF].

(1) If F is independent of u x and satisfies F ′′ (u) + αF (u) = 0, where α is a positive real constant, then there exists a local isometric immersion in R 3 of the pseudo-spherical surface determined by a solution u, for which the coefficients of the second fundamental form depend on a jet of finite order of u if, and only if, they depend on the jet of order zero.

(2) If F = λu + ζu x + τ , then there exists a local isometric immersion in R 3 of the pseudospherical surface determined by a solution u, for which the coefficients of the second fundamental form depend on a jet of finite order of u if, and only if, λ, ξ and τ do not vanish simultaneously, and the coefficients are independent of u, that is they are universal functions of x and t. (3) For the remaining equations, that is, if F is independent of u x and satisfies F ′′ (u) + αF (u) = 0, where α is a negative real constant, F = νe δu β + γu 2

x and F = 0, there is no local isometric immersion of the pseudo-spherical surface determined by a solution u, for which the coefficients of the second fundamental form depend on a jet of finite order of u.

The coefficients of the second fundamental form of the local isometric immersions stated in Theorem 3 are given explicitly in Section 4 (Propositions 3 and 5). Theorem 3 shows likewise that when viewed through the perspective of the local isometric immersions associated to its solutions, the sine-Gordon equation occupies a special position within the class of hyperbolic equations (20) as the unique equation, up to normalization constants, for which the coefficients of the second fundamental form of the local isometric immersion of the surface determined by a solution u, depends on a jet of finite order of u, without being universal, i.e. independent of u.

While Theorems 1 and 3 give a complete answer to the general question we have raised in this paper in the case of second-order evolution equations (21) and second-order hyperbolic equations (20), the question still remains open for all the other classes of equations describing pseudo-spherical surfaces. We believe that it should be possible to extend the proof of Theorem 1 to the case of k-th order evolution equations with k ≥ 3 in order to obtain a similar result to the effect that all the second-fundamental forms that depend only on jets of finite order of the solutions of evolution equation should be universal.

Our paper is organized as follows. In Section 2, we recall the results of Chern and Tenenblat [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] on the classification of evolution equations describing pseudo-spherical surfaces and use these to give an analogue of the normal forms of Theorem 2 for the case of second-order evolution equations (21). These normal forms are then used as the starting point in Section 3 of the proof of Theorem 1. Section 4 is devoted to the proof of Theorem 3. The proofs involve a careful analysis of the possible dependence on higher-order jets of u of the solutions of the system of differential constraints [START_REF] Reyes | Pseudo-potentials, nonlocal symmetries and integrability of some shallow water equations[END_REF] and [START_REF] Reyes | Correspondence theorems for hierarchies of equations of pseudo-spherical type[END_REF] that must be satisfied by components a, b, c of the second fundamental form, together with the algebraic constraint given by the Gauss equation (19).

The classification of second-order evolution equations describing η pseudo-spherical surfaces

In [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF], Chern and Tenenblat obtained necessary and sufficient conditions in the form of differential equations on the functions f ij for the existence of an evolution equation of the form

∂u ∂t = F (u, . . . , ∂ k u ∂x k ), (23) 
which describes η pseudo-spherical surfaces, i.e., with f 21 = η, where η is a nonzero parameter. They also performed a complete classification of the evolution equations of the form (23) which describe η pseudo-spherical surfaces. They obtained four classes of evolution equations (Theorems 2.2 to 2.5 in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF]). These four classes of equations are determined algebraically by f 11 , f 31 , f 22 and their derivatives, up to some differential constraints. In what follows, we consider only secondorder evolution equations of the form (23) and solve the differential constraints that f 11 , f 31 and f 22 must satisfy in order for (23) to describe η pseudo-spherical surfaces. We shall deal with two of the four classes (Theorems 2.2 and 2.4 in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF]) since the two remaining classes of evolution equations (Theorems 2.3 and 2.5 in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF]) lead to evolution equations of the first order, when k = 2.

It will be convenient to introduce the following notation for the spatial derivatives of u (used in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] and also in [START_REF] Kamran | On differential equations describing pseudo-spherical surfaces[END_REF]),

z i = ∂ i u ∂x i , 0 i k, and to view (x, t, z 0 , z 1 , . . . , z k ) as local coordinates in an open subset U of a manifold.
Lemma 1 (Chern & Tenenblat [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF]). Consider a second-order evolution equation of the form z 0,t = F (z 0 , z 1 , z 2 ) which describes an η pseudo-spherical surface with associated forms

ω i = f i1 dx + f i2 dt. If f ij are differentiable functions of z 0 , z 1 , z 2 , then f ij,z2 = 0, f 11,z1 = f 31,z1 = f 22,z1 = 0, (24) 
f 2 11,z0 + f 2 31,z0 = 0. (25) 
In order to state the results, we introduce the following notation

H = f 11 f 11,z0 -f 31 f 31,z0 , L = f 11 f 31,z0 -f 31 f 11,z0 , P = f 11,z0 f 31,z0z0 -f 31,z0 f 11,z0z0 , M = f 2 31,z0 -f 2 11,z0 . (26) 
Lemma 2. Let f ij , 1 i 3, 1 j 2, be differentiable functions of z 0 , z 1 , z 2 such that (24) and (25) hold and f 21 = η a nonzero parameter. Suppose HL = 0. Then z 0,t = F (z 0 , z 1 , z 2 ) describes an η pseudo-spherical surface with associated 1-forms

ω i = f i1 dx + f i2 dt, if and only if F = ∓f 22,z0 η √ 1 -α 2 f 11,z0 z 2 ∓ f 22,z0z0 η √ 1 -α 2 f 11,z0 z 2 1 + (η 2 + f 2 11 -f 2 31 )f 22,z0 η (1 -α 2 )f 11 ∓ αη √ 1 -α 2 f 11,z0 + f 22 η z 1 , (27) 
and

f 31 = αf 11 ± η 1 -α 2 , ( 28 
)
f 12 = f 11 f 22 η ∓ f 22,z0 η √ 1 -α 2 z 1 , (29) 
f 32 = (αf 11 ± η √ 1 -α 2 )f 22 η ∓ αf 22,z0 η √ 1 -α 2 z 1 , (30) 
where f 22,z0 = 0, f 11,z0 = 0, and α 2 < 1.

Proof. If k = 2, Theorem 2.2 in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] gives the general expression of second-order evolution equations z 0,t = F which describe η pseudo-spherical surfaces, namely

F = 1 L 1 i=0 z i+1 B zi + 1 HL -z 1 L η + f 2 31 -f 2 11 z 1 A 0 + B HL (z 1 M + ηL) + z 1 f 22 η , (31) 
where

B = f 22,z0 z 1 , A 0 = 1 L (-z 1 P + ηM )B z1 + f 22,z1 H,
where the functions f 12 and f 32 are given by

f 12 = f 11 f 22 η + 1 H - f 11 A 0 η z 1 + f 31,z0 B , (32) 
f 32 = f 31 f 22 η + 1 H - f 31 A 0 η z 1 + f 11,z0 B ,
and where (2.12) in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] gives two differential equations that the functions f 11 , f 31 and f 22 must satisfy. When k = 2, these equations reduce to

L η f 22,z0 - L η z 1 A 0 H z0 + A 0 + M H B z0 + B H 2 (LP + M 2 ) = 0, (33) 
L η f 22,z1 - L η z 1 A 0 H z1 + M H B z1 = 0. (34) 
If L = 0, then the differential equation (34) leads to P f 22,z0 = 0. The vanishing of f 22,z0 contradicts the fact that F is a second order evolution equation. We conclude then that f 22,z0 = 0, P = 0.

(35)

Differentiating (33) with respect to z 1 leads to -L(M/HL) z0 + M 2 /L 2 = 0 and hence, the differential equation ( 33) leads to

M = - L 2 η 2 . ( 36 
)
The vanishing of P implies that

f 31 = αf 11 + β, where α, β ∈ R. (37) 
We have then

L = -βf 11,z0 , H = [(1 -α 2 )f 11 -αβ]f 11,z0 . (38) 
The non-vanishing of L implies that β = 0 and f 11,z0 = 0. Substituting (37) in (36) and in the expression of M as in (26) leads to

β 2 = η 2 (1 -α 2 ). (39) 
The non-vanishing of β and η, and the latter equation imply that α ∈ (-1, 1). Finally, substituting β = ±η √ 1 -α 2 , P = 0 and (37) in the expressions (31) and (32) leads to expressions ( 27), ( 28), (29), and (30).

If HL = 0, then there are three classes of evolution equations to consider, which are given in Theorems 2.3-2.5 in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF]. However, F is of second order only when H = L = 0, as in Theorem 2.4 in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF].

Lemma 3. Let f ij , 1 i 3, 1 j
2, be differentiable functions of z 0 , z 1 , z 2 such that (24) and (25) hold and f 21 = η a nonzero parameter. Suppose f 31 = ±f 11 = 0. Then z 0,t = F (z 0 , z 1 , z 2 ) describes an η pseudo-spherical surface with associated 1-forms 

ω i = f i1 dx + f i2 dt, if
f 11 a t + ηb t -f 12 a x -f 22 b x -2b(f 11 f 32 -f 31 f 12 ) + (a -c)(ηf 32 -f 22 f 31 ) - ℓ i=0 (f 12 a zi + f 22 b zi )z i+1 + ℓ i=0 (f 11 a zi + ηb zi )z i,t = 0, (41) 
and ( 18) becomes

f 11 b t + ηc t -f 12 b x -f 22 c x + (a -c)(f 11 f 32 -f 12 f 31 ) + 2b(ηf 32 -f 22 f 31 ) - ℓ i=0 (f 12 b zi + f 22 c zi )z i+1 + ℓ i=0 (f 11 b zi + ηc zi )z i,t = 0. ( 42 
)
Since f 22,z0 = 0 and f 11,z0 = 0 for evolution equations (27), and f 11,z0 = 0 and f 12,z1 = 0 for evolution equations (40), differentiating (41) and (42) with respect to z ℓ+2 leads to f 11 a z ℓ +ηb z ℓ = f 11 b z ℓ + ηc z ℓ = 0, and hence

b z ℓ = - f 11 η a z ℓ , and c z ℓ = f 2 11 η 2 a z ℓ . (43) 
Differentiating the Gauss equation ( 19) with respect to z ℓ leads to ca z ℓ + ac z ℓ -2bb z ℓ = 0, and substituting (43) in the latter leads to We have then

c + f 11 η 2 a + 2 f 11 η b a z ℓ = 0. ( 44 
) If c + f 11 η 2 a + 2
D t b = - f 11 η D t a - a η f 11,z0 F, D t c = f 11 η 2 D t a + 2 η f 11 η a ∓ 1 f 11,z0 F, D x b = - f 11 η D x a - a η f 11,z0 z 1 , , D x c = f 11 η 2 D x a + 2 η f 11 η a ∓ 1 f 11,z0 z 1 ,
and hence

f 11 D t a + ηD t b = -af 11,z0 F, (45) 
f 11 D t b + ηD t c = f 11 η a ∓ 2 f 11,z0 F, (46) 
f 12 D x a + f 22 D x b = - ∆ 12 η D x a - af 22 η f 11,z0 z 1 , (47) 
f 12 D x b + f 22 D x c = f 11 η ∆ 12 η D x a + ∆ 12 η 2 af 11,z0 z 1 + f 22 η f 11 η a ∓ 2 f 11,z0 z 1 . ( 48 
)
where

∆ 12 = f 11 f 22 -ηf 12 .
Substituting the latter four equalities in ( 17) lead to

-af 11,z0 F + ∆ 12 η D x a + af 22 η f 11,z0 z 1 -2b(f 11 f 32 -f 31 f 12 ) + (a -c)(ηf 32 -f 31 f 22 ) = 0,
which is equivalent to

-af 11,z0 F + ∆ 12 η ℓ i=0 a zi z i+1 + af 22 η f 11,z0 z 1 -2b(f 11 f 32 -f 31 f 12 ) + (a -c)(ηf 32 -f 31 f 22 ) = 0. ( 49 
)
Substituting the four equalities (45)-( 48) into ( 18) lead to

f 11 η a ∓ 2 f 11,z0 F - f 11 η ∆ 12 η D x a - ∆ 12 η 2 af 11,z0 z 1 - f 22 η f 11 η a ∓ 2 f 11,z0 z 1 + (a -c)(f 11 f 32 -f 31 f 12 ) + 2b(ηf 32 -f 31 f 22 ) = 0,
which is equivalent to

f 11 η a ∓ 2 f 11,z0 F - f 11 η ∆ 12 η ℓ i=0 a zi z i+1 - ∆ 12 η 2 af 11,z0 z 1 - f 22 η f 11 η a ∓ 2 f 11,z0 z 1 + (a -c)(f 11 f 32 -f 31 f 12 ) + 2b(ηf 32 -f 31 f 22 ) = 0. (50) 
• If ℓ ≥ 2, then differentiating (49) with respect to z ℓ+1 leads to ∆ 12 a z ℓ = 0. Thus a z ℓ = 0 and also b z ℓ = c z ℓ = 0. • If ℓ = 1, then differentiating (49) and (50) with respect to z 2 lead to

-af 11,z0 F z2 + ∆ 12 η a z1 = 0, f 11 η a ∓ 2 f 11,z0 F z2 - f 11 η ∆ 12 η a z1 = 0.
The latter system leads to f 11,z0 F z2 = 0, which runs into a contradiction. • If ℓ = 0, then differentiating (49) and (50) with respect to z 2 lead to

-af 11,z0 F z2 = 0, f 11 η a ∓ 2 f 11,z0 F z2 = 0.
The latter system leads to f 11,z0 F z2 = 0, which runs into a contradiction.

Therefore, for all ℓ, (17), [START_REF] Reyes | Correspondence theorems for hierarchies of equations of pseudo-spherical type[END_REF] and the Gauss equation is an inconsistent system. Finally, if the functions a, b and c depend on a jet of finite order, then there are universal, i.e., they are functions of x and t only.

If c + f 11 η 2 a + 2 f 11 η b = 0, then a z ℓ = 0,
Proposition 1. For the second-order evolution equations which describe η pseudo-spherical surfaces as in Lemma 2, there is no local isometric immersion in R 3 of a pseudo-spherical surface determined by a solution u, for which the coefficients a, b, c of the second fundamental form depend on a jet of finite order of u.

Proof. Let a, b, and c be coefficients of the second fundamental form satisfying the Gauss equation ac -b 2 = -1. By Lemma 4, if a, b and c depend on a jet of finite order, then a, b and c depend only on x and t. From (28)-(30), we have

f 11 f 32 -f 12 f 31 = f 22,z0 z 1 , (51) 
ηf 32 -f 22 f 31 = ∓ αf 22,z0 √ 1 -α 2 z 1 . ( 52 
)
Taking into account the expressions (51), ( 52) and (29), equations ( 17) and ( 18) become

f 11 a t + ηb t - f 11 f 22 η ∓ f 22,z0 η √ 1 -α 2 z 1 a x -f 22 b x -2bf 22,z0 z 1 ∓ (a -c) αf 22,z0 √ 1 -α 2 z 1 = 0, (53) 
f 11 b t + ηc t - f 11 f 22 η ∓ f 22,z0 η √ 1 -α 2 z 1 b x -f 22 c x + (a -c)f 22,z0 z 1 ∓ 2b αf 22,z0 √ 1 -α 2 z 1 = 0. (54) 
Differentiating ( 53) and ( 54) with respect to z 1 and the fact that f 22,z0 = 0 lead to

a x b x = ±η √ 1 -α 2 αη αη ∓η √ 1 -α 2 2b a -c .
The determinant of the 2 × 2 matrix appearing in the above equation is non-zero, therefore, a x and b x can not vanish simultaneously. Otherwise, a -c = b = 0, and this contradicts the Gauss equation. ( 53) and (54) become then

ηf 11 a t + η 2 b t -f 11 f 22 a x -ηf 22 b x = 0, (55) 
ηf 11 b t + η 2 c t -f 11 f 22 b x -ηf 22 c x = 0. (56) 
Differentiating ( 55) and (56) with respect to z 0 , and dividing by ηf 11,z0 lead to

a t = (f 11 f 22 ) z0 ηf 11,z0 a x + f 22,z0 f 11,z0 b x , (57) 
b t = (f 11 f 22 ) z0 ηf 11,z0 b x + f 22,z0 f 11,z0 c x . (58) 
Observe that (f 11 f 22 ) z0 f 11,z0 and f 22,z0 f 11,z0 cannot both be constant. Otherwise, f 22,z0 = 0 which is a contradiction. Differentiating (57) and (58) with respect to z 0 leads to

(f 11 f 22 ) z0 ηf 11,z0 z0 
a x + f 22,z0 f 11,z0 z0 b x = 0, (f 11 f 22 ) z0 ηf 11,z0 z0 b x + f 22,z0 f 11,z0 z0 c x = 0.
We conclude that

a x c x -b 2 x = 0. (59) 
Subtracting (58) multiplied by a x from (57) multiplied by b x , it follows from (59) that

a x b t -a t b x = 0. (60) 
From (55), we have f 11 (ηa t -f 22 a x ) + η 2 b t -ηf 22 b x = 0. Note that (ηa t -f 22 a x ) = 0. Otherwise, since f 22,z0 = 0, we have a x = a t = 0 and hence it follows from (59) that b x = 0, which runs into a contradiction. Therefore,

f 11 = η(ηb t -f 22 b x ) ηa t -f 22 a x . (61) 
Differentiating (61) with respect to z 0 and taking into account (60) lead to f 11,z0 = 0, which is a contradiction.

Proposition 2. Let u t = F (u, u x , u xx ) be a second-order evolution equation which describes η pseudo-spherical surfaces, as in Lemma 3. There exists a local isometric immersion in R 3 of a pseudo-spherical surface, determined by a solution u, for which the coefficients of the second fundamental form (13) depend on a jet of finite order of u if, and only if, the coefficients are universal and are given by

a = le ±2(ηx+λt) -γ 2 e ±4(ηx+λt) -1, ( 62 
) b = γe ±2(ηx+λt) , (63) 
c = γ 2 e ±4(ηx+λt) -1 le ±2(ηx+λt) -γ 2 e ±4(ηx+λt) -1 , (64) 
l, γ ∈ R, l > 0 and l 2 > 4γ 2 . The 1-forms are defined on a strip of R where

log l -l 2 -4γ 2 2γ 2 < ±(ηx + λt) < log l + l 2 -4γ 2 2γ 2 . ( 65 
)
Moreover, the constants l and γ have to be chosen so that the strip intersects the domain of the solution of the evolution equation.

Proof. As for the previous proposition, if a, b and c depend on a jet of finite order, it follows from Lemma 4 that a, b and c depend only on x and t. We assume also that f 12,z1 = 0, otherwise, the evolution equation is not of second-order. Equations ( 17) and ( 18) become

f 11 a t + ηb t -f 12 a x -λb x ± (ηf 12 -λf 11 )(a -c) = 0, (66) 
f 11 b t + ηc t -f 12 b x -λc x ± (ηf 12 -λf 11 )2b = 0. (67) 
Differentiating (66) and (67) with respect to z 1 , and the fact that f 12,z1 = 0 lead to

a x ∓ η(a -c) = 0, (68) 
b x ∓ 2ηb = 0. ( 69 
)
Taking into account (68) and (69) and differentiating (66) and (67) with respect to z 0 leads to

a t ∓ λ(a -c) = 0, ( 70 
) b t ∓ 2λb = 0, (71) 
and hence, (66) and (67) become

ηb t -λb x = 0, ( 72 
)
ηc t -λc x = 0. ( 73 
)
Note that (69) and ( 71) imply (72), and (68) and (70) imply

ηa t -λa x = 0, (74) 
and hence imply (73). From ( 69) and (71), we conclude that

b = γe ±2(ηx+λt) , γ ∈ R. (75) 
Note that a = 0. Otherwise, if a = 0, then (68) implies that c = 0 and the Gauss equation leads to b = ±1 which contradicts (69). Therefore, from the Gauss equation we have c = (b 2 -1)a -1 . Then, in view of (75), equations (68) and (70) reduce to

aa x ∓ η(a 2 -γ 2 e ±4(ηx+λt) + 1) = 0, aa t ∓ λ(a 2 -γ 2 e ±4(ηx+λt) + 1) = 0.
The latter system leads then to

a = le ±2(ηx+λt) -γ 2 e ±4(ηx+λt) -1, l ∈ R,
which is defined wherever le ±2(ηx+λt) -γ 2 e ±4(ηx+λt) -1 > 0. Hence l > 0 and

l -l 2 -4γ 2 2γ 2 < e ±2(ηx+λt) < l + l 2 -4γ 2 2γ 2 ,
i.e., a is defined on the strip described by (65). Now, from either (68) or (70), we obtain

c = γ 2 e ±4(ηx+λt) -1 le ±2(ηx+λt) -γ 2 e ±4(ηx+λt) -1 .
A straightforward computation shows that the converse holds. Finally, we observe that given a solution of the evolution equation, in order to have an immersion, one has to choose the constants l and γ, such that the strip (65) intersects the domain of the solution in R 2 .

Proof of Theorem 3

We begin by introducing some notations. Given a differentiable function u(x, t), we denote its partial derivatives by

z i = ∂ i u ∂x i , w i = ∂ i u ∂t i , where z 0 = w 0 = u. (76) 
We have therefore

z i,x = z i+1 , z i,t = ∂ i-1 u xt ∂x i-1 , w i,x = ∂ i-1 u xt ∂t i-1
, w i,t = w i+1 , and the total derivatives of a differentiable function ϕ = ϕ(x, t, z 0 , z 1 , w 1 , . . . , z ℓ , w ℓ ) are given by

D x ϕ = ϕ x + ℓ i=0 ϕ zi z i+1 + ℓ i=1 ϕ wi w i,x , (77) 
D t ϕ = ϕ t + ℓ i=1 ϕ zi z i,t + ℓ i=0 ϕ wi w i+1 . ( 78 
)
We also introduce the notation

∆ ij = f i1 f j2 -f j1 f i2 . (79) 
Observe that

∆ 12 = 0, ∆ 2 13 + ∆ 2 23 = 0. (80) 
In fact, ∆ 12 = 0 is equivalent to ω 1 ∧ ω 2 = 0. Moreover, ω 1 ∧ ω 3 = ∆ 13 dx ∧ dt and ω 2 ∧ ω 3 = ∆ 23 dx ∧ dt. If ∆ 13 = ∆ 23 = 0, then it follows from (3) that dω 1 = dω 2 = 0. Therefore, ω 3 (e 1 ) = ω 3 (e 2 ) = 0 and hence ω 3 = 0 that is in contradiction with

dω 3 = ω 1 ∧ ω 2 .
The classification theorem of Rabelo and Tenenblat (see Theorem 2) for hyperbolic equations describing η pseudo-spherical surfaces makes use of a number of lemmas. Its proof also provides the coefficients f ij of the 1-forms (2) for each equation of Theorem 2. We will need the lemmas and these coefficients for the proof of Theorem 3. We therefore recall them from [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF] without proof. However, the reader can easily check, in each case stated in Lemmas 6-8, that the structure equations (3) hold if, and only if, the corresponding hyperbolic equation holds.

Lemma 5. [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF] Let u xt = F (u, u x ) be a differential equation describing η pseudo-spherical surfaces, with associated one-forms

ω i = f i1 dx + f i2 dt, where f ij and F are real differentiable (C ∞ ) functions on a open connected set U ⊂ R 2 . Then f 11,u ≡ f 31,u ≡ 0, f 12,ux ≡ f 22,ux ≡ f 32,ux ≡ 0, f 2 11,ux + f 2 31,ux = 0, in U. Lemma 6. [12]
The coefficients f ij of the 1-forms (2) for the equation

u xt = F (u),
where

F ′′ (u) + αF (u) = 0, α ∈ R \ {0} (81) 
are given by

  f 11 f 12 f 21 f 22 f 31 f 32   =   -α(Bz 1 -AQ) Aα(QF ′ -ηF )/(Q 2 α + η 2 ) η (ηF ′ + αQF )/(Q 2 α + η 2 ) -α(Az 1 -BQ) Bα(QF ′ -ηF )/(Q 2 α + η 2 )   , (82) 
where

z 1 = u x , A, B, Q ∈ R are such that α = 1/(A 2 -B 2 ), A 2 -B 2 = 0 and Q 2 α + η 2 = 0 and η ∈ R \ {0}.
In particular, if B = 0 and hence A = 0, one has α = 1/A 2 > 0 and

  f 11 f 12 f 21 f 22 f 31 f 32   =   αAQ αA(QF ′ -ηF )/(Q 2 α + η 2 ) η (ηF ′ + QαF )/(Q 2 α + η 2 ) -αAz 1 0   . ( 83 
)
Lemma 7. [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF] The coefficients f ij of the 1-forms (2) for the equation

u xt = νe δu β + γu 2 x , where δ, γ, ν ∈ R \ {0} and β = 0, when γ = 1, (84) 
are given as follows:

a) If γ = 1, then   f 11 f 12 f 21 f 22 f 31 f 32   =   ηAδ -(Bz 1 ∓ A √ ∆)δ 2 /(γ -1) ±Aδνe δz0 η ±νe δz0 ηBδ -(Az 1 ∓ B √ ∆)δ 2 /(γ -1) ±Bδνe δz0   , (85) 
where

z 0 = u, z 1 = u x , ∆ = β + γz 2 1 > 0, A 2 -B 2 = (γ -1)/δ 2 and η ∈ R \ {0}. b) If γ = 1,   f 11 f 12 f 21 f 22 f 31 f 32   =   1 2 ( 1 A + δ 2 A)z 1 + ηδA ±Aδνe δz0 η ±νe δz0 1 2 (-1 A + δ 2 A)z 1 ± ηδA Aδνe δz0   , (86) 
where A, η ∈ R \ {0}.

Lemma 8. [12]

The coefficients f ij of the 1-forms (2) for the equation

u xt = λu + ξu x + τ, λ, ξ, τ ∈ R (87) 
are given as follows:

a) If λ = ξ = τ = 0, then   f 11 f 12 f 21 f 22 f 31 f 32   =   z 1 0 η e z0 η e z0   , (88) 
where

z 0 = u, z 1 = u x and η = 0. b) If λ = 0, then   f 11 f 12 f 21 f 22 f 31 f 32   =   ±ηT z 1 /λ T z 0 + τ T /λ η λ/η ∓ ξ ηT z 1 /λ ±T z 0 ± τ T /λ   ( 89 
)
where

T, η ∈ R \ {0}. c) If λ = 0 and ξ 2 + τ 2 = 0, then   f 11 f 12 f 21 f 22 f 31 f 32   =   dz 1 /F (z 1 ) 1/η η 0 dz 1 /F (z 1 ) 1/η   ( 90 
)
where η ∈ R \ {0}.

Having recalled these results from [START_REF] Rabelo | On equations of the type uxt = F (u, ux) which describe pseudospherical surfaces[END_REF], we are now ready to proceed with the proof of Theorem 3. The proof consists of a number of technical lemmas and propositions, in which we analyze the existence of solutions for the system of equations ( 17), ( 18) and ( 19) that depend on u and finitely many derivatives, for each of the classes of hyperbolic equations obtained by Rabelo and Tenenblat in Theorem 2.

With the notation introduced in (79), equations ( 17) and ( 18) are written as 

f 11 D t a + ηD t b -f 12 D x a -f 22 D x b -2b∆ 13 + (a -c)∆ 23 = 0, (91) 
f 11 D t b + ηD t c -f 12 D x b -f 22 D x c + (a -c)∆ 13 + 2b∆ 23 = 0. (92 
∓2∆ 13 -c∆ 23 = 0, ( 94 
)
ηD t c -f 22 D x c -c∆ 13 ± 2∆ 23 = 0. ( 95 
)
It follows from ( 94) and (80) that ∆ 23 = 0 and c = ∓2∆ 13 /∆ 23 . Since ∆ 13 and ∆ 23 depend only on z 0 and z 1 , we conclude that c depends only on z 0 and z 1 and (95) reduces to

η(c z1 F + c z0 w 1 ) -f 22 (c z0 z 1 + c z1 z 2 ) -c∆ 13 ± 2∆ 23 = 0. ( 96 
)
Taking the derivative of this equation with respect to z 2 and w 1 implies that f 22 c z1 = 0 and c z0 = 0. If f 22 = 0 then c is constant and (96) reduces to -c∆ 13 ± 2∆ 23 = 0 i.e., we have

-c ±2 ∓2 -c ∆ 13 ∆ 23 = 0 0 .
Since the determinant is nonzero, it implies that ∆ 13 = ∆ 23 = 0 which contradicts (80). If f 22 = 0 on an open set, then the functions f ij are given by (90) and hence ∆ 13 = 0 and ∆ 23 = 1.

Then (94) implies that c = 0 and (95) gives a contradiction. This concludes the proof of i).

ii) Observe that except for the functions f ij given by ( 83) with Q = 0, f 11 does not vanish on an open set. We will first show that if f 11 = 0 on an open set i.e, F satisfies (81) and f ij are given by ( 83) and Q = 0, then c = 0. In fact, for such f ij s we have 91) and (92) reduce to

∆ 13 = -A 2 α 2 F (u)z 1 /η, ∆ 23 = AαF ′ (u)z 1 /η, α = 1/A 2 > 0 and A = 0. Hence (
ηD t b -f 12 D x a -f 22 D x b -2b∆ 13 + (a -c)∆ 23 = 0, ηD t c -f 12 D x b -f 22 D x c + (a -c)∆ 13 + 2b∆ 23 = 0,
where f 12 = -αAF/η and f 22 = F ′ /η. Assume c = 0, then it follows from (19) that a = (b 2 -1)/c. Assume that a,b and c depend on a jet of order ℓ of u. For ℓ ≥ 1, taking derivatives of both equations with respect to w ℓ+1 implies that b w ℓ = c w ℓ = 0 and hence a w k = 0. Successive differentiation with respect to w k ,...w 1 imply that a, b and c do not depend on w ℓ ,...w 0 . Successive differentiation with respect to z ℓ+1 , ...z 2 imply that a, b and c do not depend on z ℓ ,...z 1 . Hence, a, b and c depend only on x and t. Therefore, the above system of equations reduce to

ηb t + αAF η a x - F ′ η b x + 2b α 2 A 2 F η z 1 + (a -c) αAF ′ η z 1 = 0, ηc t + αAF η b x - F ′ η c x + (a -c) α 2 A 2 F η z 1 + 2b αAF ′ η z 1 = 0.
Taking the derivative with respect to z 1 we get

2b a -c a -c 2b αAF F ′ = 0 0 . ( 97 
)
Since αAF and F ′ are not zero we get a -c = ±2b and the derivative with respect to z 0 of any equation of (97) reduces to b(AF ′ ∓ F ) = 0 as a consequence of (81). If b = 0 then Gauss equation ( 19) reduces to a 2 = -1. If F = ±AF ′ then the derivative with respect to z 0 implies that αA 2 = -1. In both cases we get a contradiction. Therefore, c = 0.

Conversely, assume c = 0 on an open set, then (19) implies b = ±1 and (91) and (92) reduce to

f 11 D t a -f 12 D x a ∓ 2∆ 13 + a∆ 23 = 0, (98) a∆ 13 ± 2∆ 23 = 0. ( 99 
)
It follows from ( 99) and (80) that ∆ 13 = 0 and a = ∓2∆ 23 /∆ 13 . Since ∆ 13 and ∆ 23 depend only on z 0 and z 1 , we conclude that a depends only on z 0 and z 1 and (98) reduces to

f 11 (a z1 F + a z0 w 1 ) -f 12 (a z0 z 1 + a z1 z 2 ) ∓ 2∆ 13 + a∆ 23 = 0. ( 100 
)
Differentiation with respect to w 1 and z 2 implies

f 11 a z0 = f 12 a z1 = 0. ( 101 
)
Since ∆ 12 = 0, we observe that f 11 and f 12 cannot vanish simultaneously.

If both f 11 = 0 and f 12 = 0 then from (101) we conclude that a is constant and (100) reduces to ∓2∆ 13 + a∆ 23 = 0. This equation with (99) implies that ∆ 13 = ∆ 23 = 0 which contradicts (80).

If f 12 = 0 on an open set, then f ij are given by (82) with A = 0, B = 0 or (85) with A = 0, B = 0 or (88). Since f 11 = 0, it follows from (101) that a z0 = 0 and (100) reduces to f 11 a z1 F ∓ 2∆ 13 + a∆ 23 = 0.

(102)

If f ij are given by ( 82) with A = 0, B = 0, then

∆ 13 = α(QF ′ -ηF Q 2 α + η 2 z 1 , ∆ 23 = -BαF, a z1 z 1 = -a.
Substituting into (102) and differentiating twice with respect to z 1 runs into a contradiction. If f ij are given by ( 85) with A = 0, B = 0, then

∆ 13 = ∓Bνδ 2 z 1 e δz0 , ∆ 23 = ±νδz 1 e δz0 , a = ± 2 Bδ .
Therefore, (102) reduces to ∓2∆ 13 + a∆ 23 = 0 which is in contradiction with (99). Finally if f ij are given by (88), then ∆ 23 = 0, hence it follows from (80) and (99) that a = 0 which is a contradiction. We conclude that if c = 0 on an open set, then f 11 = 0 i.e., f ij are given by ( 83) with

Q = 0. Therefore ∆ 13 = -A 2 α 2 F (u)z 1 /η, ∆ 23 = AαF ′ (u)z 1 /
η and hence (99) implies that a = ±2F ′ /(AαF ). Moreover, (100) is an identity since A 2 α = 1. This concludes the proof of Lemma 9.

Consider an equation u xt = F (u, u x ) describing η pseudo-spherical surfaces given by Lemmas 6-8. The existence of a local isometric immersion in R 3 of any pseudo-spherical surface, determined by a solution u, for which the coefficients a, b and c depend on x, t, z 0 , z 1 , w 1 , ...z ℓ , w ℓ , is equivalent to requiring that (91), ( 92) and ( 19) must be satisfied. Substituting the expressions of the total derivatives with respect to x and t given by ( 77) and (78), we rewrite (91) and ( 92) as

f 11 a t + ηb t + ℓ i=0 (f 11 a wi + ηb wi )w i+1 + ℓ i=1 (f 11 a zi + ηb zi ) ∂ i-1 F ∂x i-1 -(f 12 a x + f 22 b x ) - ℓ i=0 (f 12 a zi + f 22 b zi )z i+1 - ℓ i=1 (f 12 a wi + f 22 b wi ) ∂ i-1 F ∂t i-1 -2b∆ 13 + (a -c)∆ 23 = 0, (103) 
and

f 11 b t + ηc t + ℓ i=0 (f 11 b wi + ηc wi )w i+1 + ℓ i=1 (f 11 b zi + ηc zi ) ∂ i-1 F ∂x i-1 -(f 12 b x + f 22 c x ) - ℓ i=0 (f 12 b zi + f 22 c zi )z i+1 - ℓ i=1 (f 12 b wi + f 22 c wi ) ∂ i-1 F ∂t i-1 + (a -c)∆ 13 + 2b∆ 23 = 0. (104) 
Differentiating ( 103) and ( 104) with respect to w ℓ+1 leads to

f 11 a w ℓ + ηb w ℓ = 0 f 11 b w ℓ + ηc w ℓ = 0. (105) 
Differentiation of the Gauss equation ( 19) with respect to w ℓ gives ca w ℓ + ac w ℓ -2bb w ℓ = 0.

Taking into account (105) in the latter, we obtain

c + f 11 η 2 a + 2 f 11 η b a w ℓ = 0. (106) 
The following two lemmas will consider the cases in which the expression between brackets in (106) vanishes or not on an open set.

Lemma 10. Consider an equation u xt = F (u, u x ) describing η pseudo-spherical surfaces, with 1-forms ω i as in [START_REF] Cavalcante | Conservation laws for nonlinear evolution equations[END_REF] where the functions f ij are given by ( 82)-(90). Assume there is a local isometric immersion of a pseudo-spherical surface determined by a solution u(x, t), for which the coefficients a, b, c of the second fundamental form depend on a jet of finite order of u. If

c + f 11 η 2 a + 2 f 11 η b = 0 (107) 
on a non empty open set, then i) For equation ( 81) with f ij as in (83) a, b and c are given by

a = ± 2η A(Q 2 α + η 2 ) ηF ′ αF + Q , b = ∓ 1 Q 2 α + η 2 2ηQ F ′ F + Q 2 α -η 2 , (108) 
c = ± 2QAα Q 2 α + η 2 Q F ′ F -η ,
where α = 1/A 2 . In particular when Q = 0, a, b, c are given by (93). ii) For all equations, except those considered in i), equations ( 91), ( 92) and ( 19) form an inconsistent system.

Proof. If (107) holds then substituting c into the Gauss equation ( 19) leads to (f 11 a/η + b) 2 = 1, and hence

b = ±1 - f 11 η a and c = f 11 η 2 a ∓ 2 f 11 η . (109) 
Therefore,

f 11 D t a + ηD t b = -af 11,z1 F, f 12 D x a + f 22 D x b = - ∆ 12 η D x a - af 22 f 11,z1 η z 2 , f 11 D t b + ηD t c = af 11 f 11,z1 η F ∓ 2f 11,z1 F, f 12 D x b + f 22 D x c = f 11 ∆ 12 η 2 D x a + ∆ 12 af 11,z1 η 2 z 2 + af 22 f 11 f 11,z1 η 2 z 2 ∓ 2 f 22 f 11,z1 η z 2 .
Equation (91) becomes

-af 11,z1 F + ∆ 12 η D x a+ af 22 f 11,z1 η z 2 ∓2∆ 13 +2 f 11 η a∆ 13 + 1- f 11 η 2 a∆ 23 ±2 f 11 η ∆ 23 = 0 (110)
and (92) becomes

af 11 f 11,z1 η F ∓ 2f 11,z1 F - f 11 ∆ 12 η 2 D x a - ∆ 12 af 11,z1 η 2 z 2 - af 22 f 11 f 11,z1 η 2 z 2 ± 2 f 22 f 11,z1 η z 2 + 1 - f 11 η 2 a∆ 13 ± 2 f 11 η ∆ 13 ± 2∆ 23 -2 f 11 η a∆ 23 = 0. (111) 
If ℓ 2, then differentiating (110) with respect to z ℓ+1 leads to a z ℓ = 0. Successive differentiation with respect to z ℓ , ..., z 3 leads to 110) and (111)with respect to z 2 leads to

a z ℓ = a z ℓ-1 = • • • = a z2 = 0. If ℓ ≥ 1, then differentiating (
∆ 12 a z1 + af 22 f 11,z1 = 0, -f 11 ∆ 12 a z1 -∆ 12 af 11,z1 -af 22 f 11 f 11,z1 ± 2ηf 22 f 11,z1 = 0, which is equivalent to ∆ 12 a z1 + af 22 f 11,z1 = 0, (112) 
(∆ 12 a ∓ 2ηf 22 )f 11,z1 = 0. (113) 
i) For equation ( 81) with f ij given by (83) we have f 11,z1 = 0. Hence (113) is trivially satisfied and (112) implies that a z1 = 0. Moreover, (110) and (111) reduce to

∆ 12 η D x a + 2 f 11 η a ∓ 1 ∆ 13 + 1 - f 2 11 η 2 a ± 2 f 11 η ∆ 23 , (114) 
-f 11 ∆ 12 η 2 D x a + 1 - f 2 11 η 2 a ± 2 f 11 η ∆ 13 -2 f 11 η a ∓ 1 ∆ 23 . (115) 
Adding equation (114) multiplied by f 11 /η with (115) and cancelling a nonzero factor, we get

a∆ 13 - f 11 a η ∓ 2 ∆ 23 = 0. Since ∆ 13 -f 11 ∆ 23 /η = f 31 ∆ 12 /η, we conclude that a = ∓2∆ 23 η/(f 31 ∆ 12 ).
For the functions f ij as in (83) we have f 31 = -αAz 1 = 0 and

∆ 12 = αAF, ∆ 13 = α(QF ′ -ηF ) Q 2 α + η 2 z 1 , ∆ 23 = αA(ηF ′ + αQF ) Q 2 α + η 2 z 1 .
Therefore, we conclude that a is given by

a = ± 2η αQ 2 + η 2 ηA F ′ F + Q A .
A straightforward computation shows that substituting the expressions of a, D x a = a z0 z 1 , f 11 = αAQ and using the fact that αA 2 = 1 equation ( 114) is trivially satisfied. It follows from (109) that b and c are given as in (108). Observe that when Q = 0 then (108 reduces to (93).

ii) For all equations except those considered in i) we have f 11,z1 = 0. If ℓ = 0, then differentiating (110) and (111) with respect to z 2 leads to af 22 f 11,z1 = 0 and to ∆ 12 af 11,z1 + af 22 f 11 f 11,z1 ∓ 2ηf 22 f 11,z1 = 0. From Lemma 9 a = 0, hence f 22 f 11,z1 = 0 and ∆ 12 f 11,z1 = 0. This implies that f 11,z1 = 0 which is a contradiction. Therefore, ℓ ≥ 1.

If f 22 = 0, which is the case for equation (87) with f ij given by (90), then (112) and (113) leads to a = 0 which contradicts Lemma 9. Thus, (91), (92), and the Gauss equation form an inconsistent system.

If f 22 = 0, (which is the case for all equations except (87) with λ = 0, ξ 2 + τ 2 = 0) then dividing (113) by f 11,z1 leads to ∆ 12 a ∓ 2ηf 22 = 0, and differentiating the latter with respect to z 1 gives ∆ 12 a z1 + a∆ 12,z1 = 0, where from (79) we have ∆ 12,z1 = f 22 f 11,z1 . Therefore, (112) is a consequence of (113). From (113), we have

a = ±2η f 22 ∆ 12 , (116) 
which means that a w1 = a x = a t = 0, i.e., a is a function of z 0 and z 1 only. Equations ( 110 

Observe that we are considering f 22 = 0 and f 11,z1 = 0. A straightforward computation shows that (119) leads to a contradiction for equation (81) with f ij as in (82) with B = 0 and equations ( 84), (87) with f ij given as in ( 85) -( 90). This concludes the proof of Lemma 10.

Lemma 11. Consider an equation u xt = F (u, u x ) describing η pseudo-spherical surfaces, with 1-forms ω i as in [START_REF] Cavalcante | Conservation laws for nonlinear evolution equations[END_REF] where the functions f ij are given by ( 82)-(90). Assume there is a local isometric immersion of a pseudo-spherical surface, determined by a solution u(x, t), for which the coefficients a, b, c of the second fundamental form depend on a jet of finite order of u.

If c + f 11 η 2 a + 2 f 11 η b = 0, (120) 
holds then a, b and c are functions of x and t, and thus universal.

Proof. If (120) holds then, it follows from Lemma 9 that c = 0 and f 11 = 0. Moreover, from (106) we get a w ℓ = 0 and hence (105) implies that b w ℓ = c w ℓ = 0. If ℓ = 0, then a, b, and c are functions of x and t, and thus universal. If ℓ 1, then consecutive differentiation of (103), ( 104) and ( 19) with respect to w ℓ , . . . w 1 lead to a wi = b wi = c wi = 0 for i = 0, . . . , ℓ. In particular, a, b and c do not depend on z 0 . Therefore, a, b, and c are functions of x, t, z 1 , . . . , z ℓ . Differentiating (103) and (104) with respect to z ℓ+1 leads to

f 12 a z ℓ + f 22 b z ℓ = 0 and f 12 b z ℓ + f 22 c z ℓ = 0. (121) 
Differentiation of the Gauss equation ( 19) with respect to z ℓ gives

ca z ℓ + ac z ℓ -2bb z ℓ = 0. (122) 
If f 22 = 0, which is the case for equation (87) with f ij as in (90), since f 12 = 0, (121) implies that a z ℓ = b z ℓ = 0, and (122) leads to ac z ℓ = 0. From Lemma [START_REF] Jorge | Linear problems associated to evolution equations of type utt = F (u, ux, uxx, ut)[END_REF] we have a = 0, hence c z ℓ = 0. Successive differentiation of (103), ( 104) and ( 19) with respect to z ℓ , . . . , z 2 leads to a zi = b zi = 0, and hence c zi = 0 for i = 1, . . . , ℓ. Therefore, a, b, and c are functions of x and t.

If f 22 = 0, then (121) leads to

b z ℓ = - f 12 f 22 a z ℓ and c z ℓ = f 2 12 f 2 22 a z ℓ . (123) 
Substituting these expressions into (122) we get 

c + f 12 f 22 2 a + 2 f 12 f 22 b a z ℓ = 0. (124) If c + f 12 f 22 2 a + 2 f 12 f 22 b = 0, (125) 
Therefore,

f 11 D t a + ηD t b = ∆ 12 f 22 D t a -ηa f 12 f 22 z0 w 1 , f 12 D x a + f 22 D x b = -af 22 f 12 f 22 z0 z 1 , f 11 D t b + nD t c = 2ηf 12 f 22 a -f 11 a ∓ 2η f 12 f 22 z0 w 1 - f 12 f 2 22 ∆ 12 D t a, f 12 D x b + f 22 D x c = (af 12 ∓ 2f 22 ) f 12 f 22 z0 z 1 .
Therefore, equation (91) becomes

∆ 12 f 22 D t a -ηa f 12 f 22 z0 w 1 + af 22 f 12 f 22 z0 z 1 -2b∆ 13 + (a -c)∆ 23 = 0 and (92) becomes - f 12 f 22 ∆ 12 f 22 D t a+ 2ηf 12 f 22 a -f 11 a ∓ 2η w 1 -(af 12 ∓ 2f 22 )z 1 f 12 f 22 z0 +(a-c)∆ 13 +2b∆ 23 = 0.
Differentiating the first equation with respect to w 1 leads to ηa( f12 f22 ) z0 = 0. Since ηa = 0 we have ( f12 f22 ) z0 = 0 and the equations reduce to

∆ 12 f 22 D t a -2b∆ 13 + (a -c)∆ 23 = 0, (128) 
- f 12 f 22 ∆ 12 f 22 D t a + (a -c)∆ 13 + 2b∆ 23 = 0, (129) 
Adding (128) multiplied by f 12 /f 22 with (129) we get

a∆ 13 + ±2 - f 12 f 22 a ∆ 23 = 0, which reduces to f 32 f 22 ∆ 12 a ± 2∆ 23 = 0. (130) 
Observe that we have f 22 = 0, f 12 = 0 and (f 12 /f 22 ) z0 = 0. Therefore, the only equation that satisfies these conditions is (84) with f ij as in Lemma 7.

If γ = 1, it follows from (86) that f 32 = 0 and (130) implies that a is constant hence, D t a = 0. Therefore, (128) and ( 129 

Substituting the expressions of b and c as in (127) into (128) we get

∆ 12 f 22 D t a + 2 f 12 f 22 a ∓ 1 ∆ 13 + a - f 12 f 22 2 a ± 2 f 12 f 22 ∆ 23 = 0. (132) 
Computing the total derivative of a with respect to t, using the expression of a as in (131), equation (132) leads to

F (∆ 23,z1 ∆ 12 -∆ 12,z1 ∆ 23 ) = -f 22 (∆ 2 13 + ∆ 2 23
), which in view of (84) and (85) reduces to (B 2 -A 2 γ)z 2 1 -A 2 β = 0, which is also a contradiction. Therefore, we conclude that the system (91), (92) and the Gauss equation is an inconsistent system. This concludes the proof of Lemma 11.

Lemma 12. Consider the equation u xt = F (u, u x ) which describes η pseudo-spherical surfaces where F is given by (81) and f ij as in (82). If the coefficients of the second fundamental form of the isometric immersion in R 3 of the pseudo-spherical surface, determined by a solution u, are universal, then the system of equations (91), (92) and the Gauss equation ( 19) is inconsistent.

Proof. If the coefficients of the second fundamental form of the isometric immersion of the η pseudo-spherical surfaces described by the differential equation are universal, then equations (91) and (92) reduce to:

f 11 a t + ηb t -f 12 a x -f 22 b x -2b∆ 13 + (a -c)∆ 23 = 0 f 11 b t + ηc t -f 12 b x -f 22 c x + (a -c)∆ 13 + 2b∆ 23 = 0,
where f ij are given by (82). Differentiating both equations with respect to z 1 leads to

-αBa t -2b α(QF ′ -ηF ) Q 2 α + η 2 + (a -c) αA(ηF ′ + αQF ) Q 2 α + η 2 = 0 (133) -αBb t + (a -c) α(QF ′ -ηF ) Q 2 α + η 2 + 2b αA(ηF ′ + αQF ) Q 2 α + η 2 = 0 (134) 
Multiplying ( 133) and (134) by Q 2 α + η 2 /α, and differentiating with respect to z 0 , and taking into account that F ′′ = -αF , we obtain

2b αA(a -c) -(a -c) 2αAb αQF + ηF ′ QF ′ -ηF = 0 0 .
Since αQF + ηF ′ and QF ′ -ηF are not zero, we conclude that αA[4b 2 + (a -c) 2 ] = 0. If b = 0 and a = c then Gauss equation leads to a contradiction. If A = 0 then equations (133) and (134) reduce to

-αBa t -2b α(QF ′ -ηF ) Q 2 α + η 2 = 0, -αBb t + (a -c) α(QF ′ -ηF ) Q 2 α + η 2 = 0.
taking derivative with respect to z 0 of both equations, we conclude that b = a -c = 0 which is again a contradiction. Therefore, the system (91), (92) and the Gauss equation is inconsistent.

Proposition 3. Consider an equation

u xt = F (u), with F ′′ + αF = 0, α = 0,
describing η pseudo-spherical surfaces with f ij given by (82). There exists a local isometric immersion in R 3 of a pseudo-spherical surface, defined by a solution u, for which the coefficients of the second fundamental form depend on a jet of finite order of u, that is, a, b and c depend on x, t, u, w 1 . . . , ∂ ℓ u/∂x ℓ , w ℓ , where ℓ is finite if, and only if, α > 0 and f ij are given by (83), a, b, c depend on the jet of order zero of u and are given by (108).

Proof. Assume the local isometric immersion exists. If c+(f 11 /η) 2 a+2f 11 b/η = 0 on a non empty open set, then it follows from Lemma 10 that B = 0, i.e. α > 0 and f ij are given by (83). Moreover, a, b, c depend on the jet of order zero of u and are given by (108). If c + (f 11 /η) 2 a + 2f 11 b/η = 0, then Lemma 11 implies that a, b, c are universal. However, it follows from Lemma 12 that such an immersion does not exist.

Conversely, a straightforward computation shows that if f ij are given as in (83) and a, b, c as in (108), then the connection forms ω 3 1 and ω 3 2 given by ( 13) satisfy the structure equations ( 14) of an immersion in R 3 and the Gauss equation (19). x describing η pseudo-spherical surfaces, with f ij given by Lemma 7. There is no local isometric immersion in R 3 of a pseudospherical surface determined by a solution u of the equation, for which the coefficients of the second fundamental form depend on a jet of finite order of u. In both cases, i.e., γ = 1 or γ = 1, since ∆ 13,z1z0 ∆ 23,z1z0 = 0, these equations imply that b = 0 and a = c which is inconsistent with the Gauss equation.

Proposition 5. Consider an equation u xt = λu + ξu x + τ describing η-pseudospherical surfaces with f ij given by (88)-(90). There exists a local isometric immersion in R 3 of a pseudo-spherical surface, defined by a solution u, for which the coefficients of the second fundamental form a, b, c depend of a jet of finite order of u if, and only if, λ, ξ and τ do not vanish simultaneously and a, b, c are universal and given by:

i) When λ = 0, a = lL(x, t) -γ 2 L 2 (x, t) -1, b = γL(x, t), c = b 2 -1 a , (135) 
where L(x, t) = e ±2[ηx+(λ/η∓ζ)t] l, γ ∈ R and l 2 > 4γ 2 and the 1-forms are defined on a strip of R where

log l -l 2 -4γ 2 2γ 2 < ±[ηx + (λ/η ∓ ζ)t] < log l + l 2 -4γ 2 2γ 2 . ( 136 
)
ii) When λ = 0 and ξ 2 + τ 2 = 0,

a = le 2ηx -γ 2 e 4ηx -1, b = γe 2ηx , c = b 2 -1 a , (137) 
l, γ ∈ R and l 2 > 4γ 2 and the 1-forms are defined on a strip of R 2 where

log l -l 2 -4γ 2 2γ 2 < ηx < log l + l 2 -4γ 2 2γ 2 . ( 138 
)
Moreover, the constants l and γ have to be chosen so that the strip intersects the domain of the solution of the evolution equation. 137), that are defined on the strip given by (138).

The converse follows from a straightforward computation.

Finally, the proof of Theorem 3 follows from Propositions 3, 4 and 5.

f 11 η b = 0

 0 on an open set, then substituting the expression of c in the Gauss equation -ac + b 2 = 1 leads to (f 11 a/η + b) 2 = 1, so that b = ±1 -

  and hence b z ℓ = c z ℓ = 0, and successive differentiating leads to a zi = b zi = c zi = 0 for all i = 0, . . . , ℓ.

) Lemma 9 .

 9 Consider an equation u xt = F (u, u x ) describing η pseudo-spherical surfaces, with 1-forms ω i as in[START_REF] Cavalcante | Conservation laws for nonlinear evolution equations[END_REF] where the functions f ij are given by (82)-(90). Assume there is a local isometric immersion of any pseudo-spherical surface, determined by a solution u(x, t), for which the coefficients a, b, c of the forms ω 3 1 and ω 3 2 depend on a jet of finite order of u. Then i) a = 0 on any open set. ii) c = 0 on an open set U if, and only if, f 11 = 0 on U , i.e., F satisfies (81) and f ij are given by (83) with Q = 0. In this case, α = 1/A 2 > 0, If there is a local isometric immersion of the pseudo-spherical surface, then (91), (92) and (19) must be satisfied by a, b and c. i) Assume a = 0 on an open set, then it follows from (19) that b ± 1. Substituting into (91) and (92) leads to

then a z ℓ = 0

 0 and (123) implies that b z ℓ = c z ℓ = 0. Consecutive differentiations of (103) and (104) with respect to z ℓ , . . . , z 2 lead to a zi = b zi = c zi = 0 for i = 1, . . . , ℓ, and hence, a, b and c are functions of x and t only. If empty open set, then Lemma 9 and (120) imply that c = 0 and hence f 12 = 0. It follows from (126) and (19) that b = ±1 -

  It follows from (80) that b = 0 and a = c, which contradicts the Gauss equation.If γ = 1, the functions f ij are given by (85). If f 32 = 0 then B = 0 and (130) implies that ∆ 23 = 0. Then it follows from the expression of ∆ 23 that A = 0, which contradicts the fact that A 2 -B 2 = 0. If f 32 = 0 i.e., B = 0, then (130) implies that a = ∓2 ∆ 23 f 22 ∆ 12 f 32 .

Proposition 4 .

 4 Consider an equation of type u xt = νe δu β + γu 2

Proof.

  If the immersion exists, then Lemma 10 ii) implies that c + (f 11 /η) 2 a + 2f 11 b/η = 0, and it follows from Lemma 11 that a, b, c are universal. Therefore, equations (91) and (92) reduce tof 11 a t + ηb t -f 12 a x -f 22 b x -2b∆ 13 + (a -c)∆ 23 = 0, f 11 b t + ηc t -f 12 b x -f 22 c x + (a -c)∆ 13 + 2b∆ 23 = 0,where f ij are given by (85) if γ = 1 and (86) if γ = 1. Differentiating these equations with respect to z 1 and then with respect to z 0 leads to -2b a -c a -

Proof.

  If the coefficients of the second fundamental form of the local isometric immersion of η pseudo-spherical surfaces described by the equation of type iii) depend of a jet of finite order of u, then they are universal by Lemmas 10 and 11, and hence (91) and (92) becomesf 11 a t + ηb t -f 12 a x -f 22 b x -2b∆ 13 + (a -c)∆ 23 = 0,(139)f 11 b t + ηc t -f 12 b x -f 22 c x + (a -c)∆ 13 + 2b∆ 23 = 0.(140)If λ = ξ = τ = 0 and f ij are given by (88) then taking the derivative of both equations with respect to z 0 , and using the fact that ∆ 13 = e z0 z 1 and ∆ 23 = 0 we getb x + 2bz 1 = 0, c x -(a -c)z 1 = 0.Since a, b, c are universal we conclude that b = 0 and a = c which contradicts Gauss equation. Therefore the immersion does not exit. i) If λ = 0 and the functions f ij are as in (89) then ∆ 13 = 0. Differentiating (139) and (140) with respect to z 1 leads to (after dividing by f 11,z1 )a t = ±f 22 (a -c), (141) b t = ±2bf 22 .(142)Differentiating (139) and (140) with respect to z 0 leads to (after dividing by f 12,z0 )a x = ±η(a -c),(143)b x = ±2ηb. (144)and hence, (139) and (140) reduce toηb t -f 22 b x = 0, (145) ηc t -f 22 c x = 0. (146)The equations (141), (142), (143), (144), (145), and (146) are the same as (70), (71), (68), (69), (72), and (73) respectively, since f 22 is contant. Therefore, a is as in (62), b is as in (63), and c is as in (64) and are subject to (65), where λ is replaced by f 22 = λ/η ∓ ζ. Therefore, we obtain a, b, c given as in (135) defined on the strip (136).ii) If λ = 0, ξ 2 + τ 2 = 0 and the functions f ij are as in (90), then ∆ 13 = 0 and ∆ 23 = 1, hence (139) and (140) reduce tof 11 a t + ηb t -f 12 a x + (a -c) = 0,(147)f 11 b t + ηc t -f 12 b x + 2b = 0.(148)Differentiating with respect to z 1 leads to a t = b t = 0. Since from Lemma 9 we have a = 0, Gauss equation implies that c t = 0 and thus (147) and (148) become a x = η(a -c), b x = 2ηb, where c = (b 2 -1)/a. The arguments used in the proof of Proposition 2, with λ = 0 and ± replaced by +, imply that a, b, c are given by (

  and only if f 22 = λ, where λ is constant, f 32 = ±f 12 , and Lemma 4. Let u t = F (u, u x , u xx ) be a second-order evolution equation describing η pseudospherical surfaces as in Lemma 2 or in Lemma 3. If there exists a local isometric immersion of a surface determined by a solution u for which the coefficients of the second fundamental form[START_REF] Rabelo | A classification of pseudospherical surfaces equations of the type ut = uxxx + G(u, ux, uxx) which describe pseudospherical surfaces[END_REF] depend on a jet of finite order of u, i.e., a, b and c depend on x, t, u, . . . , ∂ ℓ u/∂x

	F =	f 12,z1 f 11,z0	z 2 +	f 12,z0 f 11,z0	z 1 ∓	λf 11 -ηf 12 f 11,z0	.	(40)
	Proof. Immediate when k = 2 in Theorem 2.4 in [3].			
		3. Proof of Theorem 1		

ℓ 

, where ℓ is finite, then a, b and c are universal, i.e., a, b and c depend only on x and t.

Proof. Assume a, b and c depend on a jet of finite order, i.e., they depend on x, t, z 0 , . . . and z ℓ , where ℓ is fixed. Then (17) becomes
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