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SECOND-ORDER EQUATIONS AND LOCAL ISOMETRIC IMMERSIONS
OF PSEUDO-SPHERICAL SURFACES

NABIL KAHOUADJI, NIKY KAMRAN AND KETI TENENBLAT

ABsTrRACT. We consider the class of differential equations that describe pseudo-spherical
surfaces of the form u; = F(u, ug, uzz) and ugzt = F(u,usz) given in Chern-Tenenblat [3] and
Rabelo-Tenenblat [12]. We answer the following question: Given a pseudo-spherical surface
determined by a solution u of such an equation, do the coefficients of the second fundamental
form of the local isometric immersion in R3 depend on a jet of finite order of u? We show
that, except for the sine-Gordon equation, where the coefficients depend on a jet of order
zero, for all other differential equations, whenever such an immersion exists, the coefficients
are universal functions of x and ¢, independent of w.

Keywords: evolution equations; nonlinear hyperbolic equations; pseudo-spherical surfaces;
isometric immersions.

MSC 2010: 35L60, 37K25, 47J35, 53B10, 53B25

1. INTRODUCTION

The class of partial differential equations describing pseudo-spherical surfaces, which has been
defined and studied in depth in a foundational paper by Chern and Tenenblat [3], contains a large
subclass of equations enjoying remarkable integrability properties, such as the existence of infinite
hierarchies of conservation laws, Bécklund transformations and associated linear problems. Recall
that a partial differential equation
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is said to describe pseudo-spherical surfaces if there exist 1-forms

w' = fudr + fiadt, 1<i<3, (2)
where the coefficients f;;, 1 <i < 3,1 < j <2, are smooth functions of ¢, z,u and finitely many
derivatives of v with respect to t and x, such that the structure equations

dw' = WP Aw?, dw? = W AW3) dw® = Wl A W? (3)

A(t, z,u,

hold if, and only if, u is a solution of (1) for which w! A w? # 0. In other words, every smooth

solution of an equation (1) describing pseudo-spherical surfaces defines on its domain U C R? a
Riemannian metric

ds® = (w')? + (v*)?, (4)

of constant Gaussian curvature equal to —1, with w? being the Levi-Civita connection 1-form of

the metric (4).

One of the most important examples of a partial differential equation describing pseudo-

spherical surfaces is the sine-Gordon equation
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= sinwu, (5)
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for which a choice of 1-forms (2) satisfying the structure equations (3) is given by

w!' = cos %(dm + dt), (6)

w? = sin g(dx —dt), (7)
3 Mg, Wt

W= dx 5 dt. (8)

It should be noted that this choice of 1-forms is by no means unique. In particular, we could also
have used

1
w' = =sinudt, 9)
n
1
w? = ndr+ = cosudt, (10)
n
W o= uyde, (11)

where 7 is a continuous non-vanishing real parameter. This continuous parameter is closely related
to the parameter appearing in the classical Backlund transformation for the sine-Gordon equation
and accounts for the existence of infinitely many conservation laws for the sine-Gordon equation.
More generally, partial differential equations (1) which describe pseudo-spherical surfaces and
for which one of the components f;; (say f21) can be chosen to be a continuous parameter will
be said to describe 7 pseudo-spherical surfaces.

In [3], Chern and Tenenblat provided a complete classification of the evolution equations of
the form

Us :F(u,um,...,au/awk), (12)

which describe pseudo-spherical surfaces under the assumption that fo; = 7, where 7 is a
real parameter, providing an extensive class of non-linear partial differential equations, in two
independent variables, describing pseudo-spherical surfaces. Rabelo in [10], [11] characterized
equations of the form u,; = F(u,us, ..., 0u/0z*), with fo; = 1. The complete classification for
equations of type uz: = F(u,u;) and uy = Uzps + G(U, Uy, uyy) was given in [12] and [13],
respectively.

In general, the importance of the class of differential equations that describe pseudo-spherical
surfaces is due to the fact that such a differential equation is always the integrability condition of
a linear system of differential equations, which may be used in the inverse scattering method to
solve the differential equation (see for example [1], where the method was applied to a subclass
of equations obtained in [11]). While the assumption of fo; = 7 is natural in the context of
the inverse scattering method, the problem of classifying the differential equations describing
pseudo-spherical surfaces, without any other assumption, is important in its own right and
was considered by Kamran and Tenenblat in [8], where one can find a complete classification
of evolution equations of the form (12) which describe pseudo-spherical surfaces, as opposed
to n pseudo-spherical surfaces. These results provide a systematic way of verifying if a given
differential equation of this type describes pseudo-spherical surfaces. The results obtained in [8]
were extended by Reyes in [14] to differential equations of the form u; = F/(x,t, u, ug, ..., Ou/0x").
The concept of a differential equation that describes pseudo-spherical surfaces was extended
by Ding and Tenenblat in [4] to a system of differential equations that describes constant
curvature surfaces (pseudo-spherical and also spherical), where classification results for such
systems were obtained. More recently, in order to determine new classes of differential equations
that describe pseudo-spherical surfaces, as a consequence of [8], assuming that fo; and f3; are
linear combinations of f11, Gomes [6] classified and obtained large new classes of such equations
by considering fifth order equations of type (12).
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We should point out that the classification results mentioned above, contain not only general
statements, but also examples of interesting new and well kown non linear differential equations.
Other aspects of the theory of differential equations which describe pseudo-spherical surfaces and
its applications thereof can be found in (2], [7], [9], [5], [14]-[18].

A classical theorem in the theory of surfaces states that any pseudo-spherical surface can
be locally isometrically immersed into three-dimensional Euclidean space E2. This result can
thus be applied to the metrics arising from the solutions u of any partial differential equation
(1) describing pseudo-spherical surfaces, thereby associating to any solution u a local isometric
immersion of a metric with constant Gaussian curvature equal to —1. This theorem is however
largely an existence result, which does not give an explicit expression for the second fundamental
form of the local isometric immersion. It is therefore a most remarkable property of the sine-
Gordon equation that the second fundamental form of any such immersion can be expressed in
closed form as a function of u and finitely many derivatives. Indeed, let us first recall that the
components a, b, ¢ of the second fundamental form of any local isometric immersion of a metric

of constant curvature equal to —1 into E? are defined by the 1-forms w?, w3 according to
Wi =aw' +bw? Wl =bw' + aw?, (13)
where these forms satisfy the structure equations
dw? = —wW3 AW?, dwd = wd AW, (14)
and the Gauss equation
ac—b* = —1.
For the sine-Gordon equation, with the choice of 1-forms w!, w? and w? given by (6), (7) and

(8), it is easily verified that the 1-forms w$, w3 are given by
w? = sin %(dz + dt) = tan %wl,
ws = —cos %(dx —dt) = —cot 22

In general, given a partial differential equation (1) describing pseudo-spherical surfaces, it is
straightforward to derive a set of necessary and sufficient conditions, in terms of the coefficients
fij of the 1-forms (2), for a,b and ¢ to be the components of the second fundamental form of a
local isometric immersion corresponding to a solution of (1). We write

dw? = (db(el) - da(eg))wl Aw? —aw? Aw? +bw! Awd, (15)
dws = (dc(el) - db(eg))wl Aw? —bw? Aw® + cwh Aw?, (16)
where (e1, e3) is the pair of vector fields dual to the coframe (w',w?), given by
S fa S fa
= f220, — f2104, = —f120; 0.
Flo fao er = fa f210% Fla fao €2 f120, + f110¢
Thus, using the notation D; and D, for the total derivative operators, we obtain
fuDsa+ foDib — fsDya— fanDub—2b| 110 31 |4 (a—c) fufa g (17)
12 fa2 Ja2  fa2
_ _ N fa Jar far | _
J11Dib + forDic — f12Dzb — fooDyc+ (a —c) +2b =0, (18)
12 fa2 Ja2  fa2

where a,b and ¢, which are assumed to depend on ¢, z,u and finitely many derivatives of v with
respect to t and x, satisfy the Gauss equation

ac —b* = —1. (19)



4 NABIL KAHOUADJI, NIKY KAMRAN AND KETI TENENBLAT

In view of the above discussion, it is is natural to ask the following question: Do there exist
equations other than the sine-Gordon equation within the class of partial differential equations
describing pseudo-spherical (or n pseudo-spherical) surfaces, for which the components a,b,c of
the second fundamental form of the local isometric immersion depend on a jet of finite order of
u, that is on x,t,u and finitely many derivatives of u?

If such equations were to exist, they would have an important geometric property in common
with the sine-Gordon equation. In this paper, we give a complete answer to the above question
in the case of second-order hyperbolic equations of the form

Uyt = F(u,uy), (20)
and evolution equations of the form
ur = F(u, Uy, Ugy ), (21)

which describe 7 pseudo-spherical surfaces as in [12] and [3] .
We begin with the case of evolution equations (21), for which our main result is the following:

Theorem 1. Ezcept for second-order evolution equations of the form

u u Af11 —
_ fi2, C e fiz, T fi1 77f12’ (22)

fll,u fll,u fll,u
where fi1,, # 0 and fi2., # 0, there exists no second-order evolution equation describing n
pseudo-spherical surfaces, given as in [3], with the property that the coefficients of the second
fundamental forms of the local isometric immersions of the surfaces associated to the solutions
u of the equation depend on a jet of finite order of w. Moreover, the coefficients of the second
fundamental forms of the local isometric immersions of the surfaces determined by the solutions
u of (22) are universal, i.e., they are universal functions of x and t, independent of u.

Ut

Theorem 1 suggests that there is no real analogue of the sine-Gordon equation within the class
of second-order evolution equations describing 7 pseudo-spherical surfaces, from the perspective
of the local isometric immersions of pseudo-spherical surfaces associated to their solutions.
Indeed, even though the special class of evolution equations (22) has the property that the
components of the second fundamental forms of the immersions associated to its solutions depend
on jets of finite order of u, this dependence is given in terms of functions of & and ¢ for all choices
of solutions u (see Proposition 2).

The results for second-order hyperbolic equations (20) are similar, with the notable exception
that they single out the sine-Gordon equation as the only equation, up to constants, for which
the second fundamental form of the local isometric immersion is not universal. In order to state
these results, we begin by recalling the classification theorem proved by Rabelo and Tenenblat
[12] for equations (20) describing pseudo-spherical surfaces:

Theorem 2 (Rabelo & Tenenblat [12]). Let F be a differentiable function defined on an open
connected subset U C R2. An equation

Uyt = F(u,uy)
describes an mn pseudo-spherical surface for n € P C R, where P is a dense subset of R and F
independent of n if, and only if, F satisfies one of the following:
i) F is independent of u, and F"(u) + aF(u) = 0, U = R?, P = R\ {0}, and « is a

non-zero real constant.
ii) = ved"\/B +~yu2, where U = {(u,z) € R% B+ ~2%2 > 0}, P = R,d,7,3,v are real

constants, with 0,~,v nonzero, and B =0 when v =1; or
iii) F= \u+ Cuy + 7, where U = R?, P =R\ {0}, and \,{, T are real constants.
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The expressions of functions f;; of the 1-forms w’ for each equation of Theorem 2 are recalled
in Section 4 (Lemmas 6-8). We are now ready to state our main result for the case of second-order
hyperbolic equations (20).

Theorem 3. Let F be an equation of the form u,, = F(u,u,) that describes n pseudo-spherical
surfaces as in [12].

(1) If F is independent of u, and satisfies F"'(u) + aF(u) = 0, where «a is a positive real
constant, then there exists a local isometric immersion in R® of the pseudo-spherical
surface determined by a solution u, for which the coefficients of the second fundamental
form depend on a jet of finite order of u if, and only if, they depend on the jet of order
zero.

(2) If F = Au+ Cug + 7, then there exists a local isometric immersion in R of the pseudo-
spherical surface determined by a solution w, for which the coefficients of the second
fundamental form depend on a jet of finite order of w if, and only if, A\, & and T do not
vanish simultaneously, and the coefficients are independent of u, that is they are universal
functions of x and t.

(3) For the remaining equations, that is, if F' is independent of u, and satisfies F"(u) +
aF (u) = 0, where a is a negative real constant, F = ve®\/B +yu2 and F = 0, there is
no local isometric immersion of the pseudo-spherical surface determined by a solution u,
for which the coefficients of the second fundamental form depend on a jet of finite order

of u.

The coefficients of the second fundamental form of the local isometric immersions stated in
Theorem 3 are given explicitly in Section 4 (Propositions 3 and 5). Theorem 3 shows likewise
that when viewed through the perspective of the local isometric immersions associated to its
solutions, the sine-Gordon equation occupies a special position within the class of hyperbolic
equations (20) as the unique equation, up to normalization constants, for which the coefficients
of the second fundamental form of the local isometric immersion of the surface determined by a
solution u, depends on a jet of finite order of u, without being universal, i.e. independent of wu.

While Theorems 1 and 3 give a complete answer to the general question we have raised in
this paper in the case of second-order evolution equations (21) and second-order hyperbolic
equations (20), the question still remains open for all the other classes of equations describing
pseudo-spherical surfaces. We believe that it should be possible to extend the proof of Theorem
1 to the case of k-th order evolution equations with £ > 3 in order to obtain a similar result to
the effect that all the second-fundamental forms that depend only on jets of finite order of the
solutions of evolution equation should be universal.

Our paper is organized as follows. In Section 2, we recall the results of Chern and Tenenblat
[3] on the classification of evolution equations describing pseudo-spherical surfaces and use these
to give an analogue of the normal forms of Theorem 2 for the case of second-order evolution
equations (21). These normal forms are then used as the starting point in Section 3 of the proof
of Theorem 1. Section 4 is devoted to the proof of Theorem 3. The proofs involve a careful
analysis of the possible dependence on higher-order jets of u of the solutions of the system of
differential constraints (17) and (18) that must be satisfied by components a, b, ¢ of the second
fundamental form, together with the algebraic constraint given by the Gauss equation (19).
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2. THE CLASSIFICATION OF SECOND-ORDER EVOLUTION EQUATIONS DESCRIBING 7)
PSEUDO-SPHERICAL SURFACES

In [3], Chern and Tenenblat obtained necessary and sufficient conditions in the form of
differential equations on the functions f;; for the existence of an evolution equation of the form

ou P Fu

E = (’U,, ey w),
which describes 1 pseudo-spherical surfaces, i.e., with fo; = 7, where 7 is a nonzero parameter.
They also performed a complete classification of the evolution equations of the form (23) which
describe 1 pseudo-spherical surfaces. They obtained four classes of evolution equations (Theorems
2.2 to 2.5 in [3]). These four classes of equations are determined algebraically by fi1, f31, f22 and
their derivatives, up to some differential constraints. In what follows, we consider only second-
order evolution equations of the form (23) and solve the differential constraints that f11, f31 and
f22 must satisfy in order for (23) to describe 7 pseudo-spherical surfaces. We shall deal with
two of the four classes (Theorems 2.2 and 2.4 in [3]) since the two remaining classes of evolution
equations (Theorems 2.3 and 2.5 in [3]) lead to evolution equations of the first order, when k = 2.

It will be convenient to introduce the following notation for the spatial derivatives of u (used
in [3] and also in [8]),

(23)

o' )
zZ; = @, < 1 < k,
and to view (z,t, 2o, 21, ..., 2x) as local coordinates in an open subset U of a manifold.

Lemma 1 (Chern & Tenenblat [3]). Consider a second-order evolution equation of the form
204 = F(z0,21,22) which describes an n pseudo-spherical surface with associated forms w' =
firdx + fiodt. If fi; are differentiable functions of zg, 21, 22, then

Jijea =0, f1120 = f31,5 = fo2.2, =0, (24)
f121,zo + f321,zo 7é 0. (25)
In order to state the results, we introduce the following notation
H = fiifi1,20 — f31/31,205 L = fi1fs1,20 — [31/11,20 (26)
r = fll,zof31,z0zo - f31,zof11,zozm M = f321720 - f121720-

Lemma 2. Let f;;, 1 <i<3,1<j <2, be differentiable functions of zg, z1, z2 such that (24)
and (25) hold and fo1 = n a nonzero parameter. Suppose HL # 0. Then zy; = F(z0,21,22)
describes an 1 pseudo-spherical surface with associated 1-forms w' = fidx + fiodt, if and only if

22,2 22,202 R 22,2 22
B 77\/%}11;0 z2jF77\/1f——C¥[;;11,z0 Z%—i_(n[(l —(ZQ)fjl; ajiif——a:} fi1,z0 +f_)21’ 27
and
f31 = afiiE£nV1-—a2, (28)
fio = Ji1.f22 S22,z (29)

F 21,
7 V1 —a? '

(afi1 £nv1—a2)f afa2 2
fa2 = 1 7 2 $77\/122——a221’ (30)

where f22,zo 7£ 0, fll,zo 7£ 0, and o® < 1.
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Proof. If k = 2, Theorem 2.2 in [3] gives the general expression of second-order evolution
equations 2 = F which describe 7 pseudo-spherical surfaces, namely

1
1 1 L B fa2
F= I ;ZiHBzi T (—Zlg + f31 - f121) 2 A%+ E(ZlM +nL) + 217a (31)

where
1
B = f221202’1, AO — Z(—le + UM)Bm + f227Z1H,

where the functions fi2 and f35 are given by

1 A0
fi2 = S + = (—fLm + f31,z(,B) ,
7 H n
(32)
1 A0
fa2 = M + = (—f31 z1+ f11,ZOB) )
7 H n

and where (2.12) in [3] gives two differential equations that the functions fi1, f31 and fao must
satisfy. When k = 2, these equations reduce to

L L A° M B

= fazzg — — (12 A+ —B. +—(LP+ M?) =

nf2270 77 <21H>ZO+ + H U+H2( + ) 05 (33)
L L A0 M
= J—— - —B, =0. 4
77‘/:22,l 77<21H>z1+H ., =0 (34)

If L # 0, then the differential equation (34) leads to Pfa2 ., = 0. The vanishing of foo ,
contradicts the fact that F' is a second order evolution equation. We conclude then that

fozzg £0, P =0. (35)

Differentiating (33) with respect to z1 leads to —L(M/HL),, + M?/L* = 0 and hence, the
differential equation (33) leads to

M= 717/—22 (36)
The vanishing of P implies that
f31 =afi1 + 5, where o, € R. (37)
We have then
L=—Bfu1z, H=[1-0a)fi1—ab]fi1z- (38)

The non-vanishing of L implies that 8 # 0 and fi; ,, # 0. Substituting (37) in (36) and in the
expression of M as in (26) leads to

B2 =n*(1—a?). (39)
The non-vanishing of 8 and 7, and the latter equation imply that o € (—1, 1). Finally, substituting

B =+nv1—a2, P=0and (37) in the expressions (31) and (32) leads to expressions (27), (28),
(29), and (30). O

If HL = 0, then there are three classes of evolution equations to consider, which are given in
Theorems 2.3-2.5 in [3]. However, F' is of second order only when H = L = 0, as in Theorem 2.4
in [3].
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Lemma 3. Let fi;, 1 <1 < 3,1 < j < 2, be differentiable functions of zo, 21,22 such that
(24) and (25) hold and fa1 = n a nonzero parameter. Suppose fs1 = +f11 # 0. Then zoy =
F(20, 21, 22) describes an 1 pseudo-spherical surface with associated 1-forms w' = fi1dx + fiadt,
if and only if foo = X\, where X\ is constant, fso = +f12, and

fi2 z1 fi2 20 Af11 —nfi2
F = =29 + . F . 40
fll,zo E fll,zo ! fll,zo ( )
Proof. Immediate when k& = 2 in Theorem 2.4 in [3]. O

3. PROOF OF THEOREM 1

Lemma 4. Let uy = F(u,uy, uze) be a second-order evolution equation describing n pseudo-
spherical surfaces as in Lemma 2 or in Lemma 3. If there exists a local isometric immersion of
a surface determined by a solution u for which the coefficients of the second fundamental form
(13) depend on a jet of finite order of u, i.e., a,b and ¢ depend on x,t,u,...,0/0z", where £
is finite, then a,b and c are universal, i.e., a,b and ¢ depend only on x and t.

Proof. Assume a,b and ¢ depend on a jet of finite order, i.e., they depend on x,t, zg, ... and zy,
where ¢ is fixed. Then (17) becomes

friae + by — firoae — faoby — 2b(f11f32 — farfi2) + (a — ¢)(nfaz — fa2f31)

- Z(fuazi + fa2b,)zip1 + Z(fuazi +nb;, )zt =0,

i=0 i=0
and (18) becomes

f11be + ney — fr2by — fascy + (6 — ) (f11f32 — fr2f31) + 2b(nfs2 — fa2f31)

- Z(fubzi + fa2cz,)zip1 + Z(fubzi +nes, )z = 0.
i=0 1=0
Since faz,,, # 0 and f11,,, # 0 for evolution equations (27), and fi1 ., # 0 and fia,, # 0 for
evolution equations (40), differentiating (41) and (42) with respect to z¢y2 leads to fi1a., +nb,, =
fi1bz, +ncz, = 0, and hence
y — _u 4 e -1 (43)
Ze T n aZ[) all CZ[ - 772 a’Z['
Differentiating the Gauss equation (19) with respect to zy leads to ca., +ac,, — 2bb,, = 0, and
substituting (43) in the latter leads to

2
[c—i— (E) a+ QEb] a,, = 0. (44)
n n

2
If e+ (E) a+ QEb = 0 on an open set, then substituting the expression of ¢ in the Gauss

n n
equation —ac + b? = 1 leads to (fi1a/n+b)? = 1, so that

2
b:ilf&a, and c<&) aZFQE.
Ui Ui Ui
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We have then

2
a 2
Dib = —EDta — —fi1,F, Dic = (E) Dia + — (Ea F 1) fi1,20F,
n n n n\n
2
2
Dzb = _&Dma - gfll,Zozla ) ch = <E> Dma + = (Ea + 1>f1112021’
n n n n\n
and hence
fiiDia+nDib = —afi1z,F, (45)
fiiDb+nDic = (%GIFQ)JCH,ZOF, (46)
A a
fi2Dya + foo Db = _$Dma - %fll,zozla (47)
A A
J12Dzb + foeDyc = &iDza + %afu,zUZl + Jaz (Ea F 2> J11,20%1- (48)
non n n n
where A1a = f11 faa — nf12. Substituting the latter four equalities in (17) lead to

A a
—afi1,.F + %Dza + %fll,zozl —2b(f11f32 — fs1f12) + (@ — &) (nfs2 — fs1f22) =0,

which is equivalent to

¢
A
—afi1,0F + % Z az; Zip1 + %fﬂ,zoh —2b(f11f32 — f31f12) + (a — c)(nfs2 — f31f22) = 0. (49)
i=0

Substituting the four equalities (45)-(48) into (18) lead to

A A

(fna . 2) FrianF — fi1 e Doa - ;2 afit szt — f22 (@a T 2) Fiz
n /) n n n

+ (a — o) (fi1fs2 — farfi2) + 2b(nfs2 — fa1f22) = 0,

which is equivalent to
¢

A A
(Ea + 2) f11,z0F - &i Zazizi—i—l - %afu,z()m - @ (Ea¥ 2) f11,Z021
n non i—o n n n

+ (@ — c)(fi1fs2 — farf12) +2b(nfs2 — f31f22) = 0.

o If ¢ > 2, then differentiating (49) with respect to z¢41 leads to Ajsa,, = 0. Thus a,, =0
and also b, = c;, = 0.
e If / =1, then differentiating (49) and (50) with respect to z5 lead to

A
7a’f11,ZOF22 + #azl - 0)

A
(&a i 2) finzo b — &iaz1 =
n non

The latter system leads to fi1,.,F., = 0, which runs into a contradiction.
e If £ =0, then differentiating (49) and (50) with respect to zo lead to

7af117ZUFZ2 = 0)
fll
70/ F2 fll,zonQ = 0.

The latter system leads to fi1,,,£%, = 0, which runs into a contradiction.

(50)
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Therefore, for all ¢, (17), (18) and the Gauss equation is an inconsistent system.
2
Ifc+ (E) a-+ QEb # 0, then a,, = 0, and hence b, = ¢, = 0, and successive differentiating
n n

leads to a,;, =b,, =c,, =0foralli=0,...,¢
Finally, if the functions a, b and ¢ depend on a jet of finite order, then there are universal, i.e.,
they are functions of x and ¢ only. O

Proposition 1. For the second-order evolution equations which describe 1 pseudo-spherical
surfaces as in Lemma 2, there is no local isometric immersion in R of a pseudo-spherical surface
determined by a solution u, for which the coefficients a, b, ¢ of the second fundamental form depend
on a jet of finite order of u.

Proof. Let a, b, and ¢ be coefficients of the second fundamental form satisfying the Gauss equation
ac — b> = —1. By Lemma 4, if a,b and ¢ depend on a jet of finite order, then a,b and ¢ depend
only on z and ¢. From (28)-(30), we have

fiifse — fizfs1 = f22,Z02’17 (51)
Nfs2 — fa2fs1 = ?%21- (52)

Taking into account the expressions (51), (52) and (29), equations (17) and (18) become

fi1fa2 fa2 20 ) afa2 20
a; + nby — : 21 |ag — fooby — 2bfos . 2 a—c)—=—=—2z; =0, 53
fllt 70t ( :anl f22 f22,01:F( )ml ( )
Z (67 zZ
fiibs +ney — (funfzz F nj%zl)bx — fa2ce + (@ — ) faz 2021 F 20— ,{2_2—’O;Zl =0. (54)

Differentiating (53) and (54) with respect to z; and the fact that fa2 ., # 0 lead to

()= i) (L2)

The determinant of the 2 x 2 matrix appearing in the above equation is non-zero, therefore, a,
and b, can not vanish simultaneously. Otherwise, a — ¢ = b = 0, and this contradicts the Gauss
equation. (53) and (54) become then

nfiras +n°be — fi1 fasas — nfazby =0, (55)
nfiibe +n’ce — fi1 fozbs — nfaoce = 0. (56)
Differentiating (55) and (56) with respect to zg, and dividing by 1 fi1 ., lead to

(fi1f22) = S22,

a; = Ay + b, 57

! 77f11,z0 fll,zo ( )
(f11f22) f22,20

by = by + e, 58

‘ 77f11,z0 f11,z0 ( )

(f11f22)z0 and f22,z0

fll,zo fll,zo
contradiction. Differentiating (57) and (58) with respect to zy leads to

((f11f22)zo) ay + (f22,z0) b =0

nf11,2 11,20

(f11f22)z0> <f22,20> -
( 77fl1,zU Zobz+ fu,z0 Zo% =0

Observe that cannot both be constant. Otherwise, f22 ,, = 0 which is a
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We conclude that

ApCp — bi =0. (59)
Subtracting (58) multiplied by a, from (57) multiplied by b,, it follows from (59) that
awbt — atbz = 0. (60)

From (55), we have f11(na; — faza.) +n?bs — 1 fa2b, = 0. Note that (na; — faza,) # 0. Otherwise,
since faz, ., # 0, we have a, = a; = 0 and hence it follows from (59) that b, = 0, which runs into
a contradiction. Therefore,
~ n(nby — fa2bz)
Jn=—"—7—".
nat — f220

Differentiating (61) with respect to zp and taking into account (60) lead to fi1 ., = 0, which is
a contradiction. O

(61)

Proposition 2. Let uy = F(u,uy, uze) be a second-order evolution equation which describes
n pseudo-spherical surfaces, as in Lemma 3. There exists a local isometric immersion in R? of
a pseudo-spherical surface, determined by a solution w, for which the coefficients of the second
fundamental form (13) depend on a jet of finite order of w if, and only if, the coefficients are
universal and are given by

0 = leR20m A _ 2o (e an _ 1, (62)
L ar ) (63)
726i4(nz+kt) -1

¢ = : (64)
\/leiQ(’r]m-i-)\t) _ 726i4(nz+kt) —1

I,y E€R,1>0 and? > 4y%. The 1-forms are defined on a strip of R where
I — /12 —4~2 I+ /12 —4~2 (65)
22 22 ’

Moreover, the constants | and v have to be chosen so that the strip intersects the domain of the
solution of the evolution equation.

log < E(nx + M) < log

Proof. As for the previous proposition, if a, b and ¢ depend on a jet of finite order, it follows from
Lemma 4 that a,b and ¢ depend only on x and ¢. We assume also that fi2 ., # 0, otherwise, the
evolution equation is not of second-order. Equations (17) and (18) become

friag +nby — frzaz — Abz £ (nf12 — Afi1)(a —¢) =0, (66)
fi1be +mee — fr2be — Aew & (nf12 — Af11)20 = 0. (67)
Differentiating (66) and (67) with respect to z1, and the fact that fi2 ., # 0 lead to

4w Fla—c) =0, (68)
by F 27b = 0. (69)

Taking into account (68) and (69) and differentiating (66) and (67) with respect to zg leads to
a; FANa—c¢)=0, (70)
b, T 20b = 0, (71)

and hence, (66) and (67) become
nee — Aeg = 0. (73)
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Note that (69) and (71) imply (72), and (68) and (70) imply

nay — Aa, = 0, (74)
and hence imply (73). From (69) and (71), we conclude that
b=nret2meHA) o e R, (75)

Note that a # 0. Otherwise, if @ = 0, then (68) implies that ¢ = 0 and the Gauss equation leads
to b = 41 which contradicts (69). Therefore, from the Gauss equation we have ¢ = (b> — 1)a~!.
Then, in view of (75), equations (68) and (70) reduce to

aay F n(aQ _ 72e:|:4(77z+)\t) + 1) =0,
aay F Ma? — 2022 1) — 0,

The latter system leads then to
a = \/leiQ(nm-i-)\t) _ 72€i4(7]m+)\t) -1, = R’
which is defined wherever leF2(17+A) _ 42e+4mz+At) _ 1 > (0. Hence [ > 0 and
[ — /12 — 4~2 < eE2mart) _ I+ /12 —4~2
2+2 22 ’
i.e., a is defined on the strip described by (65). Now, from either (68) or (70), we obtain
+4(nz+At) _ 1

_ 7e
o \/leiQ(nm-i-)\t) _ ,72€i4(7]m+)\t) —1 ’

c

A straightforward computation shows that the converse holds. Finally, we observe that given a
solution of the evolution equation, in order to have an immersion, one has to choose the constants
[ and ~, such that the strip (65) intersects the domain of the solution in R?. O

4. PROOF OF THEOREM 3

We begin by introducing some notations. Given a differentiable function u(z,t), we denote its
partial derivatives by

B O'u B O'u

Zi = Fet w; = R where 2o = wo = u. (76)
We have therefore
aiflumt aifluzt
Zie = Zi+1, Rt = W’ Wiz = W’ Wit = Wi41,
and the total derivatives of a differentiable function ¢ = ¢(x,t, 29, 21, w1, . . ., 2¢, we) are given by
¢ ¢
Dip = @ut Y ¢uzipi+ ) PuWia, (77)
i=0 i=1
¢ ¢
Dip = 0+ ¢uzii+ Y Puitt: (78)
i=1 i=0
We also introduce the notation
Aij = firfij2 — firfie- (79)

Observe that
Az #0, Al + A5 # 0. (80)
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In fact, Az # 0 is equivalent to w' A w? # 0. Moreover, w! A w?® = Ajzdz A dt and w? A w? =
Aosdx A dt. If Aj3 = Agz = 0, then it follows from (3) that dw! = dw? = 0. Therefore,
w3(e1) = w3(ez) = 0 and hence w? = 0 that is in contradiction with dw?® = w! A w?.

The classification theorem of Rabelo and Tenenblat (see Theorem 2) for hyperbolic equations
describing 7 pseudo-spherical surfaces makes use of a number of lemmas. Its proof also provides
the coefficients f;; of the 1-forms (2) for each equation of Theorem 2. We will need the lemmas
and these coefficients for the proof of Theorem 3. We therefore recall them from [12] without
proof. However, the reader can easily check, in each case stated in Lemmas 6-8, that the structure
equations (3) hold if, and only if, the corresponding hyperbolic equation holds.

Lemma 5. [12] Let uyy = F(u,uy) be a differential equation describing n pseudo-spherical
surfaces, with associated one-forms w; = findx + fiodt, where f;; and F' are real differentiable
(C>) functions on a open connected set U C R?. Then

fll,u = f31,u = Oa
f12,u, = f22,u, = [32,u, =0,
f121,um + f??l,um 7é Oa in U.
Lemma 6. [12] The coefficients fij of the 1-forms (2) for the equation

gt = F(u), where F"(u) +aF(u) =0, a e R\ {0} (81)
are given by
fin fi2 —a(Bz1 — AQ)  Aa(QF' —nF)/(Q%*a +n?)
for fa2 | = 7 (nF' +aQF)/(Q*a +n?) ; (82)
far fa2 —a(Az1 — BQ) Ba(QF' —nF)/(Q%a+n?)

where 21 = uy, A, B,Q € R are such that o = 1/(A? — B%), A2 — B2 # 0 and Q*a+n* # 0 and
n € R\ {0}. In particular, if B =0 and hence A # 0, one has a = 1/A% > 0 and

Jii o fiz aAQ  aA(QF —nF)/(Q*a+n?)
Joao f2 | = n (nF' + QaF)/(Q*a +n?) . (83)
Js1 fa2 —aAz 0
Lemma 7. [12] The coefficients fi; of the 1-forms (2) for the equation
Ups = ve®"\/B+yu2,  where 6,7y, v € R\ {0} and B =0, wheny=1, (84)

are given as follows:

a) If v # 1, then

fir fiz nAS — (Bzy F AVA)S?/(y —1) +Asved?
Jor fa2 | = n Fvel# ) (85)
f31 fa2 nBS — (Az; F BVA)?/(y — 1) £Béve®>

where zo = u, 21 = uz, A= B +~v22 >0, A> - B?> = (y—1)/6? and n € R\ {0}.
b) Ify =1,

Jii fi2 (45 +6%A)z + A EASve’*
a1 fa2 | = U Fved® ; (86)
fa1 f32 (=% +0%A)zy £ndA  Abved®

where A,n € R\ {0}.
Lemma 8. [12] The coefficients fi; of the 1-forms (2) for the equation
Ugt = MU+ Eug + T, MNETER (87)
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are given as follows:

a) If \=&=7=0, then

Ju fiz 2 0
Jor S | = n e* |, (88)
f31 fa2 n e
where zo = u, z1 = uy and n # 0.
b) If X # 0, then
fir o fie Tz /N Tzo+71T/A
Jfor fa2 | = Ui AnFE (89)
fa1 f32 nTz1/\  +Tzg+7T/\
where T,n € R\ {0}.
c) If =0 and £ + 12 # 0, then
Jui fi2 Jdz/F(z1) 1/n
for fao = n 0 (90)
f31 fa2 [dz1/F(z1) 1/n

where n € R\ {0}.

Having recalled these results from [12], we are now ready to proceed with the proof of Theorem
3. The proof consists of a number of technical lemmas and propositions, in which we analyze
the existence of solutions for the system of equations (17), (18) and (19) that depend on u and
finitely many derivatives, for each of the classes of hyperbolic equations obtained by Rabelo and
Tenenblat in Theorem 2.

With the notation introduced in (79), equations (17) and (18) are written as

fllDta —+ 77Dtb — f12DIa — fQQDzb — 2bA13 =+ (a — C)Agg = 0, (91)
fllDtb + 77DtC — flgDzb — fQQDmC + (a — C)A13 + 2bAs3 = 0. (92)

Lemma 9. Consider an equation u,: = F(u,u,) describing n pseudo-spherical surfaces, with
1-forms w' as in (2) where the functions fi; are given by (82)-(90). Assume there is a local
isometric immersion of any pseudo-spherical surface, determined by a solution u(x,t), for which
the coefficients a, b, ¢ of the forms w} and w3 depend on a jet of finite order of u. Then

i) a # 0 on any open set.

ii) ¢ =0 on an open set U if, and only if, f11 =0 on U, i.e., F satisfies (81) and f;; are
given by (83) with Q = 0. In this case, « = 1/A? > 0,

2 F

Aa F’

Proof. If there is a local isometric immersion of the pseudo-spherical surface, then (91), (92) and

(19) must be satisfied by a, b and c.

a==+ b==+1, and c¢=0. (93)

i) Assume a = 0 on an open set, then it follows from (19) that b+ 1. Substituting into (91)
and (92) leads to

:|:2A13 — CA23 = 0, (94)
7’]DtC - fggDzC - CA13 + 2A23 =0. (95)

It follows from (94) and (80) that Aasz # 0 and ¢ = F2A13/Ass. Since Az and Ass depend only
on zg and z1, we conclude that ¢ depends only on zg and z; and (95) reduces to

T](Cle + CZO’LU1> — ng(CZOZl + CZIZQ) — CA13 :l: 2A23 = 0 (96)
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Taking the derivative of this equation with respect to zo and w; implies that faec,, = 0 and
€z = 0. If foo # 0 then c is constant and (96) reduces to —cA13 4+ 2A93 = 0 i.e., we have

(2 ) ()= (0)

Since the determinant is nonzero, it implies that Aj3 = Agz = 0 which contradicts (80). If
fa2 = 0 on an open set, then the functions f;; are given by (90) and hence A3 = 0 and Ags = 1.
Then (94) implies that ¢ = 0 and (95) gives a contradiction. This concludes the proof of i).

ii) Observe that except for the functions f;; given by (83) with @ = 0, f11 does not vanish
on an open set. We will first show that if f11 = 0 on an open set i.e, F satisfies (81) and f;
are given by (83) and Q = 0, then ¢ = 0. In fact, for such f;;s we have A3 = —A?a?F(u)21/n,
Ags = AaF'(u)z1/n, a« = 1/A? > 0 and A # 0. Hence (91) and (92) reduce to

77Dtb — flgDma — fggDzb — 2bAq3 + (a — C)Agg =0,

nDtC — flgDmb — fQQDgEC + (a — C)Alg + 2bAo3 = 0,
where f12 = —aAF/nand fas = F’/n. Assume ¢ # 0, then it follows from (19) that a = (b*—1)/c.
Assume that a,b and ¢ depend on a jet of order £ of u. For £ > 1, taking derivatives of both
equations with respect to w4+ implies that b,, = c¢,, = 0 and hence a,, = 0. Successive
differentiation with respect to wy,...w; imply that a, b and ¢ do not depend on wy,...wy. Successive
differentiation with respect to zyy1, ...2z2 imply that a, b and ¢ do not depend on zy,...z;. Hence,
a, b and ¢ depend only on z and t. Therefore, the above system of equations reduce to

AF F’ 2A2F AF’
nbt—i—a am——bz—i—Qba zl—i—(a—c)a 21 =0,
n
aAF F’ o2 A%F aAF'

z1 + 2b

ney + ——by, — —ci + (a—c) z1 = 0.
n n

Taking the derivative with respect to z; we get

20 a-—c aAF 0
<ac 2b )( F’ >_<0>' (97)
Since aAF and F' are not zero we get a — ¢ = +2b and the derivative with respect to zy of

any equation of (97) reduces to b(AF’ F F') = 0 as a consequence of (81). If b = 0 then Gauss
equation (19) reduces to a? = —1. If F' = +£AF” then the derivative with respect to zo implies

that a4? = —1. In both cases we get a contradiction. Therefore, ¢ = 0.
Conversely, assume ¢ = 0 on an open set, then (19) implies b = £1 and (91) and (92) reduce
to
Ju1Dia — fiaDga F 2A13 + alg3 = 0, (98)
aA13 + 2A23 =0. (99)

It follows from (99) and (80) that Aj3 # 0 and a = F2A53/A;3. Since A3 and Ags depend only
on zp and z1, we conclude that a depends only on zy and z; and (98) reduces to

fr1(az, F' 4 azowi) — fia(azo21 + az, 22) F 2013 + alaz = 0. (100)
Differentiation with respect to w; and z5 implies
fiiaz, = fizaz, = 0. (101)

Since A1s # 0, we observe that f1; and fio cannot vanish simultaneously.

If both f1; # 0 and f12 # 0 then from (101) we conclude that a is constant and (100) reduces
to F2A13 + alas = 0. This equation with (99) implies that A3 = Agg = 0 which contradicts
(80).
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If fi2 = 0 on an open set, then f;; are given by (82) with A =0, B # 0 or (85) with A =0,
B # 0 or (88). Since f11 # 0, it follows from (101) that a,, = 0 and (100) reduces to

fllale + 2A13 + aAgg =0. (102)
If f;; are given by (82) with A =0, B # 0, then
F' —nF
Az = %zl’ Agz = —BakF, a2 = —a.

Substituting into (102) and differentiating twice with respect to z; runs into a contradiction. If
fi; are given by (85) with A =0, B # 0, then

Az = :FBZ/52216520, Aoz = :tyézleazo, a= :I:Bié.
Therefore, (102) reduces to F2A;13 + aAg3 = 0 which is in contradiction with (99). Finally if
fi; are given by (88), then Assz = 0, hence it follows from (80) and (99) that a = 0 which is a
contradiction.

We conclude that if ¢ = 0 on an open set, then fi1 = 0 ie., f;; are given by (83) with
Q = 0. Therefore A1z = —A2a?F(u)z1/n, Ass = AaF'(u)z1/n and hence (99) implies that
a = £2F'/(AaF). Moreover, (100) is an identity since A2« = 1. This concludes the proof of
Lemma 9. 0

Consider an equation u,; = F(u,u,) describing n pseudo-spherical surfaces given by Lemmas
6-8. The existence of a local isometric immersion in R? of any pseudo-spherical surface,
determined by a solution u, for which the coefficients a, b and ¢ depend on z, t, 2q, 21, w1, ...2¢, Wy,
is equivalent to requiring that (91), (92) and (19) must be satisfied. Substituting the expressions
of the total derivatives with respect to x and ¢ given by (77) and (78), we rewrite (91) and (92)
as

¢ ¢ ;
oF
Jriae 4+ nbs + Z(fuawi + Mbw, Jwit1 + Z(fuazi + nbzi)m — (f12az + f22b2)
=0 i=1
; . ' (103)
O F
- Z(fuazi + fa2bz)zit1 — Z(fuawi + f22bwi)w —2bA13 + (a — ¢)Az3 =0,
i=0 i=1
and
¢ ¢ 9-1F
Jiibe +nee + Z(fubwi + MCw,; Jwit1 + Z(fubzi + nCzi)W — (fi2bs + fa2cs)
=0 i=1
, , _ (104)
o-F
- Z(flzbz,_- + fazez,)zipr — Z(fubw,_- + fzzcwi)w + (a — ¢)A13 + 2bAg3 = 0.
i=0 i=1

Differentiating (103) and (104) with respect to w41 leads to
fllaw[ + Ubw[ =0 fllbw[ + NCw, = 0. (105)

Differentiation of the Gauss equation (19) with respect to wy gives caw, + acy, — 2bby, = 0.
Taking into account (105) in the latter, we obtain

2
|:C+ <E> a+ QEb] yy, = 0. (106)
n n

The following two lemmas will consider the cases in which the expression between brackets in
(106) vanishes or not on an open set.
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Lemma 10. Consider an equation u.y = F(u,u,) describing n pseudo-spherical surfaces, with
I-forms w' as in (2) where the functions f;; are given by (82)-(90). Assume there is a local
isometric immersion of a pseudo-spherical surface determined by a solution u(x,t), for which the
coefficients a, b, ¢ of the second fundamental form depend on a jet of finite order of u. If

2
¢+ (@) a+2dy g (107)
1 1

on a non empty open set, then

i) For equation (81) with fi; as in (83) a, b and c are given by

2n nk’ 1 F , ,
=t b=r— (990 B 1
a A(Q20<+772)<aF+Q)’ ¢Q2a+n2<nQF+Qa n?), (108)
20QAx F’
2t (Hl
‘ Q2a+n2(QF 77),

where o = 1/A%. In particular when Q =0, a,b, c are given by (93).
ii) For all equations, except those considered in i), equations (91), (92) and (19) form an
inconsistent system.

Proof. If (107) holds then substituting ¢ into the Gauss equation (19) leads to (fi1a/n+b)% =1,
and hence

2
b—t1-910 and = (@) a2l (109)
n n n
Therefore,
fiiDia+nDib = —afii ., F,
A 2
fi2Dga + foaDyb = ——2D,a- %22,
n n
fuDib D = %F = 2f . F,
A A z z1 Z1
f12D2b+ foaDye = anQ 12 Dy,a+ 12(:7];11’ Lo+ af22f717;f11, 22 F 27f22j;11’ 29.

Equation (91) becomes

fu

A . ?
_a/fll,le'i_iDza"'% ) :|aA23i2&A23 =0 (110)
n n n n

Z2¥2A13+2%GA13+ [1— (

and (92) becomes

A A
afi1fi1,z FT2fi. F— fi - 12D oo 120/‘2‘117,21 . af22f1;f11,z1 o 2fz2fl1,z1 o
n n n

Ul n

) (111)
+ [1 - (E) :|G,A13 + QEAlg + 2A23 — QEaAgg =0.
n n n
If ¢ > 2, then differentiating (110) with respect to z,11 leads to a,, = 0. Successive
differentiation with respect to zy,...,23 leads to a;, = a,, , = -+ = a,, = 0. If £ > 1, then

differentiating (110) and (111)with respect to zy leads to

Aqa,, +afafii,z =0,
*f11A12az1 - Auafll,zl - af22f11f11,z1 =+ 277f22f11,zl =0,
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which is equivalent to

Aqgaz, + afoofi,z, =0, (112)
(A12a F 20 f22) f11,2, = 0. (113)

i) For equation (81) with f;; given by (83) we have f11,., = 0. Hence (113) is trivially satisfied
and (112) implies that a,, = 0. Moreover, (110) and (111) reduce to

ED +2(f“a¢1)A13+K1f_1221) :|:2f ]Azg, (114)
n n 7 n
2
_qumD + K —%) i2fn ]Alg—Q(@azp 1) Ags. (115)

Adding equation (114) multiplied by f11/n with (115) and cancelling a nonzero factor, we get

a3 — (%HF )A23 =0.

Since A1z — f1193/n = f31A12/n, we conclude that a = F2A23n/(f351A12). For the functions
fij asin (83) we have f31 = —adz; # 0 and
a(QF" —nF)
QQa + 772
Therefore, we conclude that a is given by

_ 2n FoQ
“iWWNA)-

A straightforward computation shows that substituting the expressions of a, Dya = a,,21, fi1 =
aAQ and using the fact that aA? = 1 equation (114) is trivially satisfied. It follows from (109)
that b and ¢ are given as in (108). Observe that when @ = 0 then (108 reduces to (93).

aA(nF" + aQF)

Ay = 0 AF, Az = QPat P

21, A23 = Z1-

ii) For all equations except those considered in i) we have f11 , # 0.

If ¢ = 0, then differentiating (110) and (111) with respect to z2 leads to afaafi1,,, = 0 and
to Algaf11721 + af22f11f111Z1 F 27]f22f11721 = 0. From Lemma 9 a 7é 0, hence f22f11,z1 = 0 and
A12f11,,, = 0. This implies that fi11 ., = 0 which is a contradiction. Therefore, £ > 1.

If foo = 0, which is the case for equation (87) with f;; given by (90), then (112) and (113)
leads to @ = 0 which contradicts Lemma 9. Thus, (91), (92), and the Gauss equation form an
inconsistent system.

If fao # 0, (which is the case for all equations except (87) with A = 0, £2 + 72 # 0) then
dividing (113) by fi1,., leads to Ajoa F 2nfa2 = 0, and differentiating the latter with respect to
21 gives Ajsa,, + alqa ., = 0, where from (79) we have A1z ., = f22f11,2,- Therefore, (112) is a
consequence of (113). From (113), we have

f22
Ao’
which means that a,, = a, = a; = 0, i.e., a is a function of zp and z; only. Equations (110) and
(111) become

a = £2n— (116)

JAND
—afir, F + ; az021 F2Aq3 +2%GA13 + [1 - (&) }GA% jE2J€11A23 =0,
A F A ?
% T 2f11721F — flln—;2a2021 + [1 — (%) :|aA13 + QEAB +2A95 — 2fl alog = 0,



SECOND-ORDER EQUATIONS AND IMMERSIONS OF PSEUDO-SPHERICAL SURFACES 19

which are equivalent to

A A
afllyle — %a%zl — %aAlg + 2A13 - aAgg == % <0,f31% + 2A23> (117)

and

A A
i2f11,z1F = % afll,le — %(IZOZl — %aAlg + 2A13 — (IA23:| + afglf + 2A23. (118)

Substituting (117) in (118), we obtain

1 fh AP
1+ == —=FA
oo ( + 2 afs 2 F Ao |,

(Ut +7°)fs
77f11,z1 '
Observe that we are considering fos # 0 and fi1,,, # 0. A straightforward computation shows

that (119) leads to a contradiction for equation (81) with f;; as in (82) with B # 0 and equations

(84), (87) with f;; given as in (85) - (90). This concludes the proof of Lemma 10. O

F=+

which simplifies to

F = (119)

Lemma 11. Consider an equation uy = F(u,u,) describing n pseudo-spherical surfaces, with
1-forms w' as in (2) where the functions fi; are given by (82)-(90). Assume there is a local
isometric immersion of a pseudo-spherical surface, determined by a solution u(x,t), for which
the coefficients a, b, ¢ of the second fundamental form depend on a jet of finite order of w. If
2
c+ (@) at 2y 20, (120)
n n

holds then a, b and ¢ are functions of x and t, and thus universal.

Proof. Tf (120) holds then, it follows from Lemma 9 that ¢ # 0 and f1; # 0. Moreover, from
(106) we get a,, = 0 and hence (105) implies that by, = ¢, = 0.

If £ = 0, then a, b, and ¢ are functions of x and ¢, and thus universal. If £ > 1, then consecutive
differentiation of (103), (104) and (19) with respect to wy, ... w; lead to ay, = by, = ¢y, = 0 for

1 =20,...,¢. In particular, a, b and ¢ do not depend on zy. Therefore, a, b, and ¢ are functions of
x,t,21,..., 2. Differentiating (103) and (104) with respect to z,41 leads to
fi2az, + foob., =0 and  fi2b., + fa2c., = 0. (121)
Differentiation of the Gauss equation (19) with respect to zy gives
caz, + acy, — 2bb,, = 0. (122)

If fo2 = 0, which is the case for equation (87) with f;; as in (90), since f12 # 0, (121) implies
that a,, = b,, =0, and (122) leads to ac,, = 0. From Lemma (9) we have a # 0, hence c,, = 0.
Successive differentiation of (103), (104) and (19) with respect to zy, ..., 22 leads to a,, = b,, =0,
and hence c,, =0 for ¢ = 1,...,f. Therefore, a, b, and ¢ are functions of x and ¢.

If foo # 0, then (121) leads to

J12

_ [t
= and ¢, = S (123)
J22

= Ay, .
R

b, = — az,
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Substituting these expressions into (122) we get

A2\ he B
c+|=—) a+2=—b|a,, =0. (124)
f22 f22
If
2
c+ <@> o422y 2, (125)
J22 J22
then a,, = 0 and (123) implies that b,, = ¢,, = 0. Consecutive differentiations of (103) and (104)
with respect to zs,..., 22 lead to a,, = b,, =c¢,, =0 for i =1,...,¢, and hence, a,b and c are
functions of z and ¢ only.
If
2
c+ <@> at2912y _ (126)
J22 J22

on a non empty open set, then Lemma 9 and (120) imply that ¢ # 0 and hence f12 # 0. It follows
from (126) and (19) that

fr2 (f12)2 fr2
b=41—=—a and c=|==) aF2=—. 127
fa2 fa2 fa2 (127)
Therefore,
A
fiiDia+nDyb = iDta—n <&) wy,
fa2 f22 /) .,
fi2Dga + foaDyb = —af22(g) 21,
f22) .,
2
fuiDib+nDic = (nfuafua:FQU) <@> wl*f_122A12Dta,
f22 fe2) ., [%
fi2Dzb+ fooDye = (af12¥2f22)(%) 2.
22/ .,

Therefore, equation (91) becomes

A
Bizp m(&
22 f22

> wy + afao <%) z1 — 2013 + (a — C)Azg =0

and (92) becomes

——DtaJr{ (277f12a — fiia F 277) wi — (afi2 F 2f22)21} E) +(a—c)A13+2bAs3 = 0.
fo2 fo2 fa2 f22

Differentiating the first equation with respect to w; leads to na(jﬁ—)zO = 0. Since na # 0 we have

12
22

20

(m)zU = 0 and the equations reduce to

faz
JAND)
——D;a — 2bA13 + (a — C)Agg =0, (128)
f22
A
—@iDta + (a — ¢)Asz + 2bAg3 = 0, (129)
Ja2 fo2
Adding (128) multiplied by f12/ f22 with (129) we get

aAlg + <:|:2 - &a) Agg = 0,
f22
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which reduces to
@Alga + 2A23 =0. (130)
f22
Observe that we have fas # 0, fi2 # 0 and (f12/f22)., = 0. Therefore, the only equation that
satisfies these conditions is (84) with f;; as in Lemma 7.
If v = 1, it follows from (86) that f32 # 0 and (130) implies that @ is constant hence, D:a = 0.

Therefore, (128) and (129) reduce to

—2b a—cC Alg o 0
a—c 2b A23 o 0 '
It follows from (80) that b =0 and a = ¢, which contradicts the Gauss equation.
If v # 1, the functions f;; are given by (85). If fz» = 0 then B = 0 and (130) implies that

Aoz = 0. Then it follows from the expression of Aoz that A = 0, which contradicts the fact that
A2 — B2 #£0. If f33 # 0 i.e.,, B #0, then (130) implies that

Aoz f22
a=F2——7. 131
S sy
Substituting the expressions of b and ¢ as in (127) into (128) we get
A 2
“LDa+2 <@aq:1> A+ |a— <@) o212 Ags = 0. (132)
J22 J22 J22 J22

Computing the total derivative of a with respect to t, using the expression of a as in (131),
equation (132) leads to
F(Agg 2 Atz — Ag o Agz) = — faa(Al5 + A3),

which in view of (84) and (85) reduces to (B? — A%y)z? — A?3 = 0, which is also a contradiction.
Therefore, we conclude that the system (91), (92) and the Gauss equation is an inconsistent
system. This concludes the proof of Lemma 11. O

Lemma 12. Consider the equation uz: = F(u,u,) which describes n pseudo-spherical surfaces
where F' is given by (81) and f;; as in (82). If the coefficients of the second fundamental form of
the isometric immersion in R3 of the pseudo-spherical surface, determined by a solution u, are
universal, then the system of equations (91), (92) and the Gauss equation (19) is inconsistent.

Proof. If the coefficients of the second fundamental form of the isometric immersion of the 7
pseudo-spherical surfaces described by the differential equation are universal, then equations
(91) and (92) reduce to:

fiiae + by — froaz — faoby —20A13 4+ (@ — €)Ag3 =0
f11be + nee — fr2by — faocy + (@ — ¢)Aqg + 2bA93 = 0,

where f;; are given by (82). Differentiating both equations with respect to z1 leads to

a(QF" —nF) aA(nF' + aQF)
_aBat — 2()Q20474>772 + (a — 0)62204—%>772 = 0 (133)
a(QF —nF) aA(nF' + aQF)
—aBb - 2b = 134
aBb; + (a —¢) Qo + QPatr? 0 (134)

Multiplying (133) and (134) by Q%« + 1?/a, and differentiating with respect to 2z, and taking
into account that F” = —aF', we obtain

(oo a6t )=(5)
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Since aQF + nF’ and QF’ — nF are not zero, we conclude that a«A[4b? + (a — ¢)?] = 0. If b =0
and a = ¢ then Gauss equation leads to a contradiction. If A = 0 then equations (133) and (134)
reduce to

a(QF" —nF)
,aBathbW:O,
a(QF —nF)
—aBb —o e — ),
aBb; + (a —c) Qo T

taking derivative with respect to zy of both equations, we conclude that b = a — ¢ = 0 which is
again a contradiction. Therefore, the system (91), (92) and the Gauss equation is inconsistent. [

Proposition 3. Consider an equation
Uuge = F(u), with F"+aF =0, a#0,

describing n pseudo-spherical surfaces with f;; given by (82). There exists a local isometric
immersion in R? of a pseudo-spherical surface, defined by a solution u, for which the coefficients
of the second fundamental form depend on a jet of finite order of u, that is, a,b and c depend
on x,t,u,w ..., 0%/ 0x" wy, where € is finite if, and only if, o > 0 and fij are given by (83),
a,b, ¢ depend on the jet of order zero of uw and are given by (108).

Proof. Assume the local isometric immersion exists. If c+(f11/1)%a+2f11b/n7 = 0 on a non empty
open set, then it follows from Lemma 10 that B = 0,i.e. &« > 0 and f;; are given by (83). Moreover,
a,b, ¢ depend on the jet of order zero of u and are given by (108). If ¢ + (f11/n)%a+2f11b/n # 0,
then Lemma 11 implies that a, b, ¢ are universal. However, it follows from Lemma 12 that such
an immersion does not exist.

Conversely, a straightforward computation shows that if f;; are given as in (83) and a, b, ¢ as
in (108), then the connection forms w? and w3 given by (13) satisfy the structure equations (14)
of an immersion in R?® and the Gauss equation (19). O

Proposition 4. Consider an equation of type uy; = ve®\/B + yu2 describing n pseudo-spherical
surfaces, with fi; given by Lemma 7. There is no local isometric immersion in R3 of a pseudo-
spherical surface determined by a solution u of the equation, for which the coefficients of the
second fundamental form depend on a jet of finite order of .

Proof. If the immersion exists, then Lemma 10 ii) implies that ¢+ (f11/1)%a + 2f11b/n # 0, and
it follows from Lemma 11 that a, b, ¢ are universal. Therefore, equations (91) and (92) reduce to

fiiae + nbe — fioaz — faoby — 20A13 + (a — ¢)Agz = 0,
fiibe +nee — fraby — fascw + (0 — ¢) A1z + 2bAs3 = 0,

where f;; are given by (85) if v # 1 and (86) if v = 1. Differentiating these equations with respect
to z1 and then with respect to zg leads to

72[) a—cC A1372120 _ 0
a—C 2b A2372120 - 0 ’

In both cases, i.e., v =1 or v # 1, since A13 ;,20023,2,2, 7 0, these equations imply that b = 0
and a = ¢ which is inconsistent with the Gauss equation. ]

Proposition 5. Consider an equation uz: = Au~+ Euy, + 7 describing n-pseudospherical surfaces
with fi; given by (88)-(90). There exists a local isometric immersion in R of a pseudo-spherical
surface, defined by a solution w, for which the coefficients of the second fundamental form a, b,
c depend of a jet of finite order of u if, and only if, X\, & and T do not vanish simultaneously and
a, b, ¢ are universal and given by:
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i) When A #0,

b -1
a=/1L(zx,t) —y2L2(z,t) — 1, b=~L(x,t), e=—, (135)

where L(x,t) = eB2ne+A/mFOU 1 ~ e R and 12 > 442 and the 1-forms are defined on a
strip of R where

I — /12 —4~2 I+ /12 —4~2 (136)

log 272 < £[nz + (A/nF Q)t] <log 27
ii) When A\ =0 and £ + 72 #0,
- b —1
a= \/162’79” —y2etnr — 1, b= e ", c= , (137)
a

I,v €R and [?> > 4v* and the 1-forms are defined on a strip of R? where
1 — /12 —4~2 I+ /1% — 4~2
v v

Moreover, the constants | and v have to be chosen so that the strip intersects the domain of the
solution of the evolution equation.

log

Proof. If the coefficients of the second fundamental form of the local isometric immersion of 7
pseudo-spherical surfaces described by the equation of type iii) depend of a jet of finite order of
u, then they are universal by Lemmas 10 and 11, and hence (91) and (92) becomes

Jrias +nby — fi2a. — faaby — 2bA13 + (@ — ¢)Ag3 = 0, (139)
f11be + nee — fi2by — faace + (@ — ¢)Aqs 4+ 20A55 = 0. (140)
IfX=¢=r71=0and f;; are given by (88) then taking the derivative of both equations with
respect to zg, and using the fact that A3 = e*02; and Ay = 0 we get
by + 2bz1 =0,
cx —(a—¢)z1 = 0.

Since a, b, ¢ are universal we conclude that b = 0 and a = ¢ which contradicts Gauss equation.
Therefore the immersion does not exit.

i) If A # 0 and the functions f;; are as in (89) then A;3 = 0. Differentiating (139) and (140)
with respect to z; leads to (after dividing by fi1.z,)

a; = ZEfala—c), (141)

by = +2bfan. (142)
Differentiating (139) and (140) with respect to zo leads to (after dividing by fi2 2,)

a; = =*£n(a—c), (143)

b, = -+2nb. (144)
and hence, (139) and (140) reduce to

nby — fazbe =0, (145)

nee — faocy = 0. (146)

The equations (141), (142), (143), (144), (145), and (146) are the same as (70), (71), (68), (69),
(72), and (73) respectively, since foo is contant. Therefore, a is as in (62), b is as in (63), and ¢
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is as in (64) and are subject to (65), where A is replaced by foo = A/ F (. Therefore, we obtain
a, b, c given as in (135) defined on the strip (136).

i) If A = 0, €2 + 72 # 0 and the functions f;; are as in (90), then A3 = 0 and Agg = 1, hence
(139) and (140) reduce to

fiiar +nby — fizag + (a—c¢) =0, (147)

Jiibe +nee — fi2by +2b=0. (148)

Differentiating with respect to z; leads to a; = by = 0. Since from Lemma 9 we have a # 0,
Gauss equation implies that ¢; = 0 and thus (147) and (148) become

a; = nla—c),
b, = 2nb,

where ¢ = (b — 1)/a. The arguments used in the proof of Proposition 2, with A = 0 and =+
replaced by +, imply that a, b, ¢ are given by (137), that are defined on the strip given by (138).

The converse follows from a straightforward computation. O
Finally, the proof of Theorem 3 follows from Propositions 3, 4 and 5. g
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